JPH0861283A - Pumping plant - Google Patents
Pumping plantInfo
- Publication number
- JPH0861283A JPH0861283A JP6817295A JP6817295A JPH0861283A JP H0861283 A JPH0861283 A JP H0861283A JP 6817295 A JP6817295 A JP 6817295A JP 6817295 A JP6817295 A JP 6817295A JP H0861283 A JPH0861283 A JP H0861283A
- Authority
- JP
- Japan
- Prior art keywords
- water level
- water
- pumps
- pump
- vertical shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Non-Positive-Displacement Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は主として、降雨時の出水
を排水する立軸ポンプの先行待機運転を実施するポンプ
機場に関し、特に同一の吸水槽に複数の立軸ポンプを設
けるポンプ機場に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a pump station for performing a stand-by standby operation of a vertical shaft pump for draining water discharged during rainfall, and more particularly to a pump station for providing a plurality of vertical shaft pumps in the same water tank.
【0002】[0002]
【従来の技術】一般に、従来のポンプ機場における立軸
ポンプは、特開昭63−90697号公報に記載されて
いるように、ポンプ没水時の水位がそれ以下では空気を
吸い込んでしまう最低水位レベルに相当するポンプ固有
のポンプ特定部位より、僅かに上方位置にポンプ羽根車
を設け、その最低水位より低い水位になったとき、真空
破壊により空転状態とし、落水させて排水運転ができな
いようにし、空気の巻き込み渦を防止して先行待機運転
している。2. Description of the Related Art Generally, a vertical shaft pump in a conventional pumping station has a minimum water level that sucks air when the water level when the pump is submerged is below that, as described in JP-A-63-90697. A pump impeller is provided slightly above the pump specific part that is unique to the pump, and when the water level is lower than the lowest water level, the vacuum break breaks the pump into an idling state, causing water to drop and preventing drainage operation. Air is not entrained in the vortex and the vehicle is in standby operation ahead of time.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来技術
は、降雨情報などに基づいて水位が羽根車位置よりも低
いうちから先行待機運転する場合において、複数台の立
軸ポンプを同一の吸水槽に設置してポンプ機場を構成す
る場合の問題について配慮がされておらず、吸水槽のサ
ージ現象が発生するという問題がある。すなわち、立軸
ポンプを先行待機運転すると、水位が低いときは空回し
運転の状態にあるが、水位が羽根車近傍に達すると急激
に排水を開始する。したがって、同一の吸水槽に複数台
の立軸ポンプの羽根車を同一レベルに位置させて配置
し、降雨情報に基づいてそれらのポンプを先行待機運転
するようにした場合、吸水槽の水位が上昇して羽根車位
置近傍に達すると、複数台のポンプが一斉に排水を開始
することになる。そのため、複数台分の流量が一度に排
水されることから、吸水槽のサージ現象が発生する。ま
た、このような吸水槽のサージ現象はポンプを駆動する
モータの急激な負荷変動をもたらし、電源設備に対して
も負荷が急激に増加するので好ましくない。However, in the above-mentioned prior art, when the preparatory standby operation is carried out while the water level is lower than the impeller position based on the rainfall information or the like, a plurality of vertical pumps are installed in the same water tank. No consideration has been given to the problem of installing the pump station to construct a pump station, and there is a problem that a surge phenomenon occurs in the water absorption tank. That is, when the vertical pump is operated in advance standby, it runs idle when the water level is low, but when the water level reaches the vicinity of the impeller, it starts draining rapidly. Therefore, if the impellers of multiple vertical pumps are placed at the same level in the same water absorption tank, and if those pumps are operated in advance standby based on the rainfall information, the water level in the water absorption tank will rise. When it reaches the vicinity of the impeller position, multiple pumps start draining all at once. Therefore, since the flow rate of a plurality of units is drained at once, a surge phenomenon occurs in the water absorption tank. Further, such a surge phenomenon in the water absorption tank causes an abrupt load change of the motor that drives the pump, and the load also suddenly increases in the power supply equipment, which is not preferable.
【0004】本発明が解決しようとする課題は、先行待
機運転を行う複数台の立軸ポンプを同一の吸水槽に設置
するポンプ機場において、急激な排水開始による吸水槽
のサージ現象を緩和することにある。The problem to be solved by the present invention is to mitigate the surge phenomenon in the water absorption tank due to abrupt start of drainage in a pumping station where a plurality of vertical shaft pumps performing the preceding standby operation are installed in the same water absorption tank. is there.
【0005】[0005]
【課題を解決するための手段】上記の目的は、ポンプ羽
根車下方のケーシング内に一端側が連通され他端側が大
気に開放される吸気管を備え、揚水運転中の水位がそれ
以下では吸込ベルマウスから空気を吸込んでしまう最低
水位レベルに相当する水位より低い水位から先行待機運
転を行う立軸ポンプを、同一吸水槽内に複数台設置し、
かつ該複数の立軸ポンプの羽根車位置を互いに上下方向
にずらし、前記複数の立軸ポンプの排水開始水位を互い
に異ならせたことにより達成される。The above object is to provide an intake pipe, one end of which is connected to the inside of the casing below the pump impeller and the other end of which is open to the atmosphere. When the water level during pumping operation is lower than that, suction bell is provided. Multiple vertical shaft pumps that perform pre-standby operation from a water level lower than the water level equivalent to the lowest water level that sucks air from the mouse are installed in the same water absorption tank,
Further, it is achieved by shifting the positions of the impellers of the plurality of vertical shaft pumps from each other in the vertical direction so that the drainage start water levels of the plurality of vertical shaft pumps are different from each other.
【0006】[0006]
【作用】上記のように、複数の立軸ポンプの羽根車位置
を互いに上下方向にずらし、それらの立軸ポンプの排水
開始水位を互いに異ならせたことから、吸込水槽全体か
ら見たときの排水開始は、ポンプ単位で段階的に行われ
ることになる。As described above, the positions of the impellers of the vertical shaft pumps are vertically shifted from each other, and the water discharge starting water levels of the vertical pumps are made different from each other. , It will be done in stages on a pump-by-pump basis.
【0007】その結果、複数の先行待機運転ポンプが全
台同時に排水を開始することを回避できるから、吸水槽
のサージ現象を緩和できる。これにより電源設備に対す
る負荷の急激な増加を軽減できる。As a result, it is possible to prevent all the plurality of preceding standby operation pumps from starting draining at the same time, so that the surge phenomenon in the water absorption tank can be alleviated. This can reduce a sudden increase in load on the power supply equipment.
【0008】[0008]
【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0009】図1に本発明に係るポンプ機場の一実施例
を示す。本実施例は、3台の立軸ポンプNo.1〜N
o.3を同一の吸水槽に設置した場合を示す。図示のよ
うに、それらの立軸ポンプは、それぞれ羽根車1を収納
したポンプケーシング4のケーシングライナー2の下方
向にポンプケーシングの吸込ベル3が接続され、かつ、
上方側にはポンプケーシング4の一部である揚水管5お
よび吐出エルボ6が接続されて構成されている。また、
羽根車1の下方近傍には吸気孔9が設けられ、吸気孔9
と連結して吸気管10が設けられ、吸気管10に吸気量
調整弁11が設けられている。尚、20は吸水槽の底壁
である。FIG. 1 shows an embodiment of a pumping station according to the present invention. In this embodiment, three vertical shaft pump Nos. 1 to N
o. The case where 3 is installed in the same water absorption tank is shown. As shown in the drawings, these vertical shaft pumps are each connected to a suction bell 3 of a pump casing below a casing liner 2 of a pump casing 4 accommodating an impeller 1, and
A pumping pipe 5 and a discharge elbow 6 which are a part of the pump casing 4 are connected to the upper side. Also,
An intake hole 9 is provided near the lower part of the impeller 1, and the intake hole 9
The intake pipe 10 is connected to the intake pipe 10, and the intake pipe 10 is provided with an intake amount adjusting valve 11. In addition, 20 is a bottom wall of the water absorption tank.
【0010】特に、各ポンプNo.1〜No.3の羽根
車1の位置は、それぞれ異なる高さ位置に配置されてい
る。In particular, each pump No. 1-No. The positions of the impellers 3 of 3 are arranged at different height positions.
【0011】このように構成されるポンプ機場の動作に
ついて以下に説明する。立軸ポンプは水位が羽根車1の
位置近傍に達すると排水(揚水)を開始するから、図示
のNo.1ポンプ、No.2ポンプ、No.3ポンプの
排水開始水位は、それぞれWL51,WL52,WL5
3となる。The operation of the pumping station constructed as above will be described below. The vertical shaft pump starts draining (pumping) when the water level reaches the vicinity of the position of the impeller 1. 1 pump, No. 1 2 pumps, no. The drainage starting water levels of the 3 pumps are WL51, WL52, and WL5, respectively.
It becomes 3.
【0012】つまり、出水により水位が上昇しWL51
に達すると、まずNo.1ポンプが排水を開始する。こ
の時No.2,No.3ポンプは依然空転状態を維持し
ている。さらに水位が上昇しWL52に達するとNo.
2ポンプが排水を開始し、WL53に達するとNo.3
ポンプが排水を開始する。このように順次に空転運転状
態から排水運転に移行することから、急激な排水開始を
阻止でき、急激な水位低下を回避でき、サージ現象を緩
和できる。また、負荷の急激な変動も避けられる。That is, the water level rises due to the water discharge and WL51
No. 1 Pump starts draining. At this time, No. 2, No. The three pumps are still idling. When the water level further rises and reaches WL52, No.
No. 2 pump starts draining and reaches No. 53 when it reaches WL53. Three
Pump starts draining. Since the idling operation state is sequentially shifted to the drainage operation in this way, a rapid drainage start can be prevented, a rapid drop in water level can be avoided, and a surge phenomenon can be mitigated. In addition, rapid changes in load can be avoided.
【0013】次に、本発明の特徴部ではないが、吸気孔
9,吸気管10及び吸気量調節弁11の動作について図
2を用いて説明しておく。Next, although not a characteristic part of the present invention, the operation of the intake hole 9, the intake pipe 10 and the intake amount control valve 11 will be described with reference to FIG.
【0014】吸気孔9は、従来の最低水位レベル、すな
わち、この水位以下では吸込ベル3から空気を吸込む最
低水位レベルWL1においては、その吸気孔9から吸気
されない位置に設けられている。この最低水位レベル
は、一般に、吸込ベルの吸込口から、その径の1.4〜
1.7倍とされ、それよりも低い水位では、空気吸込み
渦が発生して安定な排水運転ができないとされている。
吸気孔9における静圧P(m)は、次式で表わされる。The intake hole 9 is provided at a position where the intake hole 9 is not inhaled at the conventional lowest water level level, that is, at the lowest water level WL1 for sucking air from the suction bell 3 below this water level. This minimum water level is generally from the suction port of the suction bell to 1.4
It is said to be 1.7 times, and at a water level lower than that, stable suction operation cannot be performed due to the generation of air suction vortices.
The static pressure P (m) at the intake hole 9 is expressed by the following equation.
【0015】[0015]
【数1】 [Equation 1]
【0016】ここで、 Po:大気圧(10.3m)、 Ba:飽和蒸気圧(0.3m)、 L:水面から吸気孔までの距離(m)、 hs:ポンプケーシング吸込部損失水頭(m)、 v:吸気孔部の取扱液の流速(m) 数1において、吸気孔9における静圧PがPo−Baよ
り大きくなれば吸気はしない。よって、数2の関係に設
定すれば吸気はしない。Where Po: atmospheric pressure (10.3 m), Ba: saturated vapor pressure (0.3 m), L: distance from water surface to intake hole (m), hs: head loss of pump casing suction part (m) ), V: Flow velocity (m) of the handled liquid in the intake hole portion In the number 1, if the static pressure P in the intake hole 9 is larger than Po-Ba, intake is not performed. Therefore, if the relationship of the equation 2 is set, intake is not performed.
【0017】[0017]
【数2】 [Equation 2]
【0018】つまり、従来の最低水位レベルWL1よ
り、下式の数3だけ下方に吸気孔9を設ければ水位が、
WL1以上の範囲Aでは吸気をしないので、所定のポン
プ能力で排水運転を行うことができる。That is, if the intake holes 9 are provided below the conventional minimum water level WL1 by the number 3 in the following equation, the water level becomes
Since intake is not performed in the range A of WL1 or more, drainage operation can be performed with a predetermined pump capacity.
【0019】[0019]
【数3】 (Equation 3)
【0020】一方、水位がWL1より低い範囲Bでは数
1においてLが減少するので、Pが大気圧より小さくな
り吸気を行う。吸気量は吸気量調節弁11により、適切
な損失が与えられているので、水位に伴い、適切な量の
吸気を行い流量制御を行う。範囲Bにおいて、水位が、
WL2の場合は、Pは大気圧より若干低い程度であるの
で吸気量が少く、ポンプの流量も若干減少する。この場
合、ポンプの没水深さS1はこの時のポンプ流量に対し
て十分であるので渦は発生しない。水位がWL3の場
合、Pは水位の低下にほぼ比例して低下するので、大気
圧よりその分小さくなり、吸気量が増大し、ポンプの流
量も大幅に少くなり、没水深さS2でも渦が発生しない
流量とすることができる。水位がWL4の場合、吸気量
はポンプ流量の15%〜20%となり揚水不能となって
空転運転状態となる。この時の没水深さS3は、揚水不
能となる直前の流量において渦の発生しない長さになる
ように、吸込ベル入口のレベルを設計する。尚水位の変
動する全範囲において、吸気量調節弁11の開度は一定
である。従来の最低水位レベルWL1以下でも渦が発生
せず、異常な振動や騒音のでない安全な運転が可能とな
る。また空転運転から排水運転に移行する羽根車1が若
干没水する水位及び排水運転から空転運転に移行する水
位WL4より若干高い水位において、ポンプの流量は吸
気により所定の流量の約半分程度に制御されているの
で、排水開始及び排水停止時の流量変化が少く、サージ
現象が緩和できポンプの安定な運転が可能である。On the other hand, in the range B where the water level is lower than WL1, L decreases in the equation 1, so that P becomes smaller than atmospheric pressure and intake is performed. Since an appropriate amount of intake air is given by the intake air amount control valve 11, an appropriate amount of intake air is taken in accordance with the water level to control the flow rate. In range B, the water level is
In the case of WL2, since P is slightly lower than the atmospheric pressure, the intake amount is small and the flow rate of the pump is also slightly decreased. In this case, since the submersion depth S1 of the pump is sufficient for the pump flow rate at this time, no vortex occurs. When the water level is WL3, P decreases almost in proportion to the decrease in the water level, so P becomes smaller than atmospheric pressure by that amount, the intake amount increases, the flow rate of the pump also decreases significantly, and vortices also occur at the submersion depth S2. A flow rate that does not occur can be used. When the water level is WL4, the amount of intake air is 15% to 20% of the pump flow rate, and pumping is impossible, resulting in idling operation. The submersion depth S3 at this time is designed such that the suction bell inlet level is such that a vortex does not occur at the flow rate immediately before the pumping is disabled. The opening degree of the intake air amount control valve 11 is constant in the entire range where the water level changes. Vortices do not occur even at the conventional minimum water level WL1 or less, and safe operation without abnormal vibration or noise becomes possible. The flow rate of the pump is controlled to about half of the predetermined flow rate by intake air at a water level at which the impeller 1 is slightly submerged from idle operation to drain operation and at a water level slightly higher than the water level WL4 at which drain operation is changed to idle operation. Therefore, there is little change in the flow rate at the start and stop of drainage, the surge phenomenon can be alleviated, and stable operation of the pump is possible.
【0021】一方、図1のポンプ機場において水位が低
下する状況下を考える。水位がWL43になるとNo.
3ポンプのみがまず排水運転から空転状態へと移行し、
以下WL42,WL41と水位が低下するにつれ、N
o.2ポンプ、No.1ポンプと空転運転状態へと移行
する。したがって、急激な排水停止を阻止でき、急激な
水位上昇が生じなくなり、サージ現象を緩和でき、負荷
変動も緩和できる。On the other hand, consider a situation in which the water level drops at the pumping station of FIG. When the water level reaches WL43, No.
Only 3 pumps first shift from drainage to idle
As the water level decreases below WL42 and WL41, N
o. 2 pumps, no. 1 Pump and shift to idle operation. Therefore, it is possible to prevent a sudden stop of drainage, prevent a sudden rise in the water level, reduce the surge phenomenon, and reduce the load fluctuation.
【0022】上述したように、図1実施例によれば、同
一の吸水槽に複数台の立軸ポンプが設置される場合、そ
れぞれ立軸ポンプの羽根車の位置を上下にずらして配置
し、排水運転開始水位に差をつけるようにしたので、出
水により水位が上昇すると水位上昇に従って順次1台ず
つ排水を開始し、一方、水位が低下し待機運転へ移行す
る際も順次空転運転待機へと移行する。したがって、全
台のポンプが同時に排水運転を行ったり、空転運転待機
へと移行することがなくなるので、吸水槽のサージ現象
を防止でき、負荷変動も軽減できるので、安定な運転を
行うことができるという効果がある。As described above, according to the embodiment shown in FIG. 1, when a plurality of vertical pumps are installed in the same water tank, the impellers of the vertical pumps are arranged with their positions vertically shifted to perform drainage operation. Since the starting water level is set to be different, when the water level rises due to flooding, drainage starts one by one as the water level rises.On the other hand, when the water level drops and shifts to standby operation, it also sequentially shifts to idle operation standby. . Therefore, since all the pumps do not perform drainage operation at the same time or shift to idling operation standby, surge phenomenon in the water absorption tank can be prevented and load fluctuation can be reduced, so stable operation can be performed. There is an effect.
【0023】[0023]
【発明の効果】本発明によれば、同一の吸水槽に設置す
る複数台の立軸ポンプの羽根車の位置を、上下にずらし
て配置して排水運転開始水位に差をつけるようにしたこ
とから、それらの立軸ポンプを先行待機運転しても、水
位の上昇に従って順次1台ずつ排水を開始し、全台のポ
ンプが同時に排水運転を開始することがないので、吸水
槽のサージ現象を防止でき、かつ電源設備に対する負荷
変動を軽減できる。According to the present invention, the positions of the impellers of a plurality of vertical pumps installed in the same water absorption tank are vertically shifted so as to make a difference in the drainage operation start water level. Even if those vertical pumps are operated in advance standby, drainage is started one by one as the water level rises, and all pumps do not start draining operation at the same time, so surge phenomenon in the water absorption tank can be prevented. In addition, it is possible to reduce load fluctuations on the power supply equipment.
【図1】本発明の一実施例のポンプ機場を示す側面図で
ある。FIG. 1 is a side view showing a pumping station according to an embodiment of the present invention.
【図2】図1実施例の立軸ポンプの動作を説明する図で
ある。FIG. 2 is a diagram for explaining the operation of the vertical pump of FIG. 1 embodiment.
1 羽根車 2 ケーシングライナ 3 吸込ベル 4 ポンプケーシング 5 揚水管 6 吐出エルボ 9 吸気孔 10 吸気管 11 吸気量調整弁 12 吸込口 1 Impeller 2 Casing Liner 3 Suction Bell 4 Pump Casing 5 Pumping Pipe 6 Discharge Elbow 9 Intake Hole 10 Intake Pipe 11 Intake Volume Control Valve 12 Suction Port
Claims (1)
側が連通され他端側が大気に開放される吸気管を備え、
揚水運転中の水位がそれ以下では吸込ベルマウスから空
気を吸込んでしまう最低水位レベルに相当する水位より
低い水位から先行待機運転を行う立軸ポンプを、同一吸
水槽内に複数台設置し、かつ該複数の立軸ポンプの羽根
車位置を互いに上下方向にずらし、前記複数の立軸ポン
プの排水開始水位を互いに異ならせたことを特徴とする
ポンプ機場。1. An intake pipe having one end communicating with the casing below the pump impeller and the other end being open to the atmosphere,
If the water level during pumping operation is lower than that, a plurality of vertical pumps that perform a preliminary standby operation from a water level lower than the water level corresponding to the lowest water level that sucks air from the suction bell mouth are installed in the same water absorption tank, and A pumping station, wherein the vane wheel positions of a plurality of vertical shaft pumps are vertically displaced from each other so that the drainage starting water levels of the plurality of vertical shaft pumps are different from each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6817295A JPH0861283A (en) | 1995-03-27 | 1995-03-27 | Pumping plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6817295A JPH0861283A (en) | 1995-03-27 | 1995-03-27 | Pumping plant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63228736A Division JPH0794834B2 (en) | 1988-09-14 | 1988-09-14 | Pumping station |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0861283A true JPH0861283A (en) | 1996-03-08 |
Family
ID=13366096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6817295A Pending JPH0861283A (en) | 1995-03-27 | 1995-03-27 | Pumping plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0861283A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017227203A (en) * | 2016-06-24 | 2017-12-28 | 株式会社酉島製作所 | Pump facility |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63189688A (en) * | 1987-01-31 | 1988-08-05 | Kubota Ltd | Facilities for operating plural vertical shaft pumps |
JPS63189691A (en) * | 1987-01-30 | 1988-08-05 | Kubota Ltd | Facilities for operating plural vertical shaft pumps |
-
1995
- 1995-03-27 JP JP6817295A patent/JPH0861283A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63189691A (en) * | 1987-01-30 | 1988-08-05 | Kubota Ltd | Facilities for operating plural vertical shaft pumps |
JPS63189688A (en) * | 1987-01-31 | 1988-08-05 | Kubota Ltd | Facilities for operating plural vertical shaft pumps |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017227203A (en) * | 2016-06-24 | 2017-12-28 | 株式会社酉島製作所 | Pump facility |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0861283A (en) | Pumping plant | |
JP3191102B2 (en) | Vertical pump | |
JPH0794834B2 (en) | Pumping station | |
JP3191104B2 (en) | Vertical pump | |
JP2909497B2 (en) | Pump station | |
JP3191099B2 (en) | Vertical pump and pumping station | |
JP2678203B2 (en) | Vertical pump | |
JP3091998B2 (en) | Vertical pump | |
JPH059640B2 (en) | ||
JP3341240B2 (en) | Vertical pump | |
JP2977948B2 (en) | Vertical pump | |
JP2881197B2 (en) | Vertical pump | |
JP3215835B2 (en) | Siphon type water discharge device | |
JPH05172084A (en) | Vertical shaft pump | |
JP2678203C (en) | ||
JP3385511B2 (en) | Vertical pump | |
JP2997874B2 (en) | Vertical pump | |
JP3881364B2 (en) | Horizontal axis pump equipment for drainage | |
JP3306472B2 (en) | Vertical pump | |
JP3306469B2 (en) | Vertical pump | |
JPS6390698A (en) | Vertical shaft pump | |
JPH05272486A (en) | Storage pump operating method | |
JP2538662Y2 (en) | Pumping pump equipment | |
JP3133116B2 (en) | Vertical pump | |
JPH0826875B2 (en) | Vertical pump |