JPH0861008A - Automatic load controller - Google Patents

Automatic load controller

Info

Publication number
JPH0861008A
JPH0861008A JP20172794A JP20172794A JPH0861008A JP H0861008 A JPH0861008 A JP H0861008A JP 20172794 A JP20172794 A JP 20172794A JP 20172794 A JP20172794 A JP 20172794A JP H0861008 A JPH0861008 A JP H0861008A
Authority
JP
Japan
Prior art keywords
signal
gain
governor
generator
function generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20172794A
Other languages
Japanese (ja)
Other versions
JP3542174B2 (en
Inventor
Kazumichi Inahashi
和通 稲橋
Takumi Kawai
巧 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP20172794A priority Critical patent/JP3542174B2/en
Publication of JPH0861008A publication Critical patent/JPH0861008A/en
Application granted granted Critical
Publication of JP3542174B2 publication Critical patent/JP3542174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE: To provide an automatic load controller capable of correcting the nonlinearity of a regulating valve and securing a stable followup ability, its control method and power generating system. CONSTITUTION: A governer (synchronous main spindle) position detector 10 detects a signal equivalent to a regulating valve stroke and outputs its detected signal to a corrected value function generator 19. The corrected value function generator 19 outputs a proportion integrator (control loop) gain correction signal to a multiplier 14 based on the detected signal from the governer (synchronous main spindle) position detector 10. Further, the multiplier 14 takes in the corrected signal from the corrrected value function generator 19 and a deviation signal from a deviation calculator 13 for performing deviation calaculation by using signals from a load setter 12 and a power generator detector 21, calculates proportion integration based on these signals and oututs its result to a comparison detection amplifier 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負荷変化時に安定した
タービン負荷追従性を有する自動負荷制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic load control device having a stable turbine load followability when the load changes.

【0002】[0002]

【従来の技術】一般に火力又は原子力の発電システム
は、図5に示すように、発電機1を有するタービン2と
ボイラ4とが接続され、その間に加減弁3が配設されて
いる。
2. Description of the Related Art Generally, in a thermal power or nuclear power generation system, as shown in FIG. 5, a turbine 2 having a generator 1 is connected to a boiler 4, and a regulator valve 3 is arranged between them.

【0003】加減弁3はボイラ4からタービン2に流入
する主蒸気流量を制御するもので、カム機構と油圧機構
を介してガバナ8に接続されている。
The regulator valve 3 controls the flow rate of main steam flowing from the boiler 4 into the turbine 2, and is connected to the governor 8 via a cam mechanism and a hydraulic mechanism.

【0004】またガバナ8はガバナモータ9で駆動さ
れ、その時の位置がガバナ位置検出器10により検出さ
れる。
The governor 8 is driven by a governor motor 9, and the position at that time is detected by a governor position detector 10.

【0005】上記発電システムには、ガバナ8で駆動さ
れる加減弁3の開度指令を決めるための負荷設定器12
と発電機出力検出器21との偏差演算を行う偏差演算器
13、それをさらに比例積分演算を行う比例積分演算器
15、及び自動負荷制御装置11には、加減弁蒸気流量
特性補正関数発生器17、加減弁蒸気流量特性補正逆関
数発生器18および比較検出増幅器16が内蔵されてい
る。ここで、この関数発生器17,逆関数発生器18は
図2の加減弁ストロークに対するタービン出力比特性の
ループ制御ゲインを一定にて安定した負荷追従を行うた
めのものである。加減弁は、通常1〜4弁の組合せ弁と
なっており、これらの弁の開個数を増減させたり切替た
りして蒸気流量を制御する。そして、ストロークに対す
る主蒸気流量比すなわちタービン出力比は非直線特牲と
なる。例は、ポイントAでは弁の切替点であるため出力
変化が少なくなり急に大きくなる。
In the power generation system, the load setter 12 for determining the opening degree command of the regulator valve 3 driven by the governor 8.
The deviation calculator 13 that performs the deviation calculation between the generator output detector 21 and the generator output detector 21, the proportional-plus-integral calculator 15 that further performs the proportional-plus-integral calculation, and the automatic load control device 11 include a regulator valve steam flow rate characteristic correction function generator. 17, a regulator valve vapor flow rate characteristic correction inverse function generator 18 and a comparison detection amplifier 16 are incorporated. Here, the function generator 17 and the inverse function generator 18 are for performing stable load follow-up with a constant loop control gain of the turbine output ratio characteristic with respect to the control valve stroke in FIG. The regulator valve is usually a combination valve of 1 to 4 valves, and the steam flow rate is controlled by increasing or decreasing the number of these valves to be opened or switching. The main steam flow rate ratio with respect to the stroke, that is, the turbine output ratio, has a non-linear characteristic. In the example, since the point A is the switching point of the valve, the output change is small and suddenly increases.

【0006】従って、比例積分器15の出力に加減弁蒸
気流量特牲補正関数発生器17により、見かけ上の加減
弁開度指令に対するタービン出力変化を一定としてい
る。
Therefore, the turbine output change with respect to the apparent control valve opening command is made constant by the control valve steam flow characteristic correction function generator 17 to the output of the proportional integrator 15.

【0007】上記の従来技術に関連するものとしては、
例えば特開平1−125503 号「タービン制御装置」に加減
弁の非線形特性を推定し、弁開度指令の補正をする内容
が記載されている。
Related to the above prior art,
For example, Japanese Patent Application Laid-Open No. 1-125503 “Turbine Controller” describes the content of estimating a nonlinear characteristic of a control valve and correcting a valve opening command.

【0008】[0008]

【発明が解決しようとする課題】ところで、タービン発
電機の出力Pgは、 Pg=k・w・Δi ここで、 k:定数 w:主蒸気流量(タービン抽気流量除く) Δi:熱落差エンタルピ で表すことができ、熱落差エンタルピΔiは復水器真空
度により左右される。
By the way, the output Pg of the turbine generator is expressed as follows: Pg = k.w.Δi where k: constant w: main steam flow rate (excluding turbine extraction flow rate) Δi: heat drop enthalpy And the heat drop enthalpy Δi depends on the condenser vacuum.

【0009】そして、加減弁蒸気流量特性の実機確認
は、ガバナモータ9を駆動しガバナ(同期主軸)位置検
出器10と発電機出力検出器21により行われるが、上
記復水器真空度による影響、系統周波数変動による発電
機出力への影響、毎年の定期点検分解によるカム機構、
油圧機構のズレによるガバナ(同期主軸)位置への影響
等があり正確さを欠き、また、毎年の定期点検時の試運
転確認が必要となり煩雑さを極める。
The actual confirmation of the control valve steam flow rate characteristic is performed by the governor motor 9 by the governor (synchronous spindle) position detector 10 and the generator output detector 21. The influence of the condenser vacuum degree, Effect on generator output due to system frequency fluctuation, cam mechanism by annual periodic inspection and disassembly,
Deviation of the hydraulic mechanism may affect the position of the governor (synchronous spindle), resulting in inaccuracy. Moreover, it is necessary to confirm the trial run at the time of annual regular inspection, which is extremely complicated.

【0010】さらに正確さを欠き、特性がずれることに
より図3に示すように、負荷指令(MWD)に対する発
電機出力(MW)の追従性が悪くなりポイントA通過付
近でハンチングを生ずることになる。
Further, due to lack of accuracy and deviation of characteristics, as shown in FIG. 3, responsiveness of the generator output (MW) to the load command (MWD) deteriorates and hunting occurs near the point A passage. .

【0011】本発明の目的は、このような事情に鑑みて
なされたものであり、負荷変化時に安定したタービン負
荷追従性を有する自動負荷制御装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic load control device having a stable turbine load followability when the load changes, in view of such circumstances.

【0012】[0012]

【課題を解決するための手段】請求項1に記載の自動負
荷制御装置は、タービンに供給される主蒸気流量を調整
する加減弁と、該加減弁の開度を調整するガバナの位置
を検出するガバナ位置検出器とを有し、ガバナ位置検出
器からの検出信号と加減弁開度指令とに基づいてガバナ
位置を自動的に制御する自動負荷制御装置において、加
減弁開度指令を求める比例積分器のゲインを、ガバナ位
置に基づいて補正する補正手段を設けたことを特徴とす
る。
An automatic load control system according to a first aspect of the present invention detects the position of a regulator valve that regulates the flow rate of main steam supplied to a turbine and a governor that regulates the opening degree of the regulator valve. In an automatic load control device that has a governor position detector that automatically controls the governor position based on the detection signal from the governor position detector and the control valve opening / closing command, It is characterized in that a correction means for correcting the gain of the integrator based on the governor position is provided.

【0013】また、前記補正手段は、ガバナ位置検出器
の検出信号に基づいてゲイン補正信号を出力するゲイン
補正関数発生器と、発電機出力の負荷指令と発電機出力
との偏差に、前記補正関数発生器により出力されたゲイ
ン補正信号を乗算する乗算器とを有してなることを特徴
とする。
Further, the correction means includes a gain correction function generator which outputs a gain correction signal based on a detection signal of the governor position detector, and a deviation between the load command of the generator output and the generator output, which is used for the correction. And a multiplier that multiplies the gain correction signal output by the function generator.

【0014】更に、前記ゲイン補正関数発生器は、前記
加減弁の切替が行われている時に、前記比例積分器のゲ
インが通常時よりも低くなるような補正信号を出力する
ことを特徴とする。
Further, the gain correction function generator outputs a correction signal such that the gain of the proportional integrator becomes lower than that in a normal time when the control valve is switched. .

【0015】[0015]

【作用】上記構成の自動負荷制御装置、あるいは発電シ
ステムにおいては、負荷変化時に加減弁の非直線特性に
より発電機負荷がハンチングするような場合でも簡便に
制御ゲインを修正、安定したタービン負荷追従性を維持
することができる。
In the automatic load control device or the power generation system having the above structure, the control gain can be easily corrected and stable turbine load followability even when the generator load hunts due to the nonlinear characteristic of the regulator valve when the load changes. Can be maintained.

【0016】特に、加減弁の切替が行われている時に、
比例積分器のゲインを通常時よりも低くするため、加減
弁の切替時に発生する負荷変化に併う過大なオーバーシ
ュート及びアンダーシュートを低減させることができ
る。
In particular, when the control valve is being switched,
Since the gain of the proportional integrator is set to be lower than that in the normal time, it is possible to reduce excessive overshoot and undershoot that accompany a load change that occurs when the control valve is switched.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明に係る自動負荷制御装置が適
用された発電システムの一実施例の構成である。図1に
示すように、本発明の特徴部分は、自動負荷制御装置1
1内に乗算器14とゲイン補正値関数発生器19を設
け、該補正値関数発生器19により比例積分演算器15
のゲイン補正をし、加減弁蒸気流量特性補正関数発生器
17,18をやめたことであり、他の構成は図5に示し
た従来例と同様である。上記構成において、ガバナ(同
期主軸)位置検出器10は加減弁ストローク相当の信号
を検出し、その検出信号を補正値関数発生器19に出力
する。
FIG. 1 shows the configuration of an embodiment of a power generation system to which an automatic load control device according to the present invention is applied. As shown in FIG. 1, the characteristic part of the present invention is that an automatic load control device 1
1, a multiplier 14 and a gain correction value function generator 19 are provided, and the correction value function generator 19 causes the proportional-plus-integral calculator 15 to operate.
The gain correction is performed and the regulator valve steam flow rate characteristic correction function generators 17 and 18 are stopped, and other configurations are the same as those of the conventional example shown in FIG. In the above configuration, the governor (synchronous main shaft) position detector 10 detects a signal corresponding to the adjusting valve stroke and outputs the detection signal to the correction value function generator 19.

【0019】補正値関数発生器19は、ガバナ(同期主
軸)位置検出器10からの検出信号を基にして、比例積
分器(制御ループ)ゲイン補正信号を乗算器14に出力
する。
The correction value function generator 19 outputs a proportional integrator (control loop) gain correction signal to the multiplier 14 based on the detection signal from the governor (synchronous spindle) position detector 10.

【0020】さらに、演算器14では、補正値関数発生
器19からの補正信号と負荷設定器12と発電器出力検
出器21からの信号により偏差演算を行う偏差演算器1
3からの偏差信号とを取り込み、それらの信号を基にし
て比例積分演算行い、その結果を比較検出増幅器16へ
出力する。なお、本実施例では、乗算器14,補正値関
数発生器19およびガバナ(同期主軸)位置検出器10
補正手段を構成している。
Further, in the arithmetic unit 14, the deviation arithmetic unit 1 for performing the deviation calculation based on the correction signal from the correction value function generator 19 and the signals from the load setting unit 12 and the generator output detector 21.
The deviation signal from 3 is taken in, proportional-integral calculation is performed based on these signals, and the result is output to the comparison detection amplifier 16. In this embodiment, the multiplier 14, the correction value function generator 19 and the governor (synchronous spindle) position detector 10 are used.
It constitutes a correction means.

【0021】以上のような構成の自動負荷制御装置によ
れば、加減弁蒸気流量特性の変化に応じて制御ループの
ゲインの最適設定を行うことができる。以下にその原理
について説明する。
According to the automatic load control device having the above-mentioned configuration, the gain of the control loop can be optimally set according to the change in the control valve steam flow rate characteristic. The principle will be described below.

【0022】図6は、ガバナ(同期主軸)位置に対する
比例積分器(制御ループ)のゲイン補正の特性図であ
る。図2の加減弁スピードリレーストローク対タービン
出力比の特性表に記載の通り加減弁の切替るポイントA
付近では、タービン出力が変動するための制御ゲインを
低くし負荷変化時のハンチングを抑える効果がある。
FIG. 6 is a characteristic diagram of the gain correction of the proportional integrator (control loop) with respect to the governor (synchronous spindle) position. As shown in the characteristic table of control valve speed relay stroke to turbine output ratio in Fig. 2, point A at which control valve is switched
In the vicinity, the control gain for varying the turbine output is lowered to effectively suppress hunting when the load changes.

【0023】この動作は、負荷設定器12により負荷設
定を行い、この目標値に発電機出力検出器21からの帰
還信号が一致するように偏差演算器13及び比例積分演
算器15により制御を行うことを基本制御方式としてい
る。しかし、この比例積分演算器の最適制御ゲインは、
図2の特性表の対タービン出力比ゲイン(傾き)や応答
特性から平均的な値で決定されているが、ポイントA付
近のように対タービン出力比ゲイン(傾き)が急激に変
動するところでは、偏差演算器13からの偏差信号ΔM
Wを乗算器14によりゲインを低めに補正する必要があ
る。この乗算器の補正ゲインを設定するのが、ガバナ位
置検出器 +減弁用スピードリレーストローク)10か
らの信号を入力しているゲイン補正関数発生器19であ
る。ゲイン補正手段の構成と内容は、偏差演算器13か
らの偏差信号ΔMWとゲイン補正関改発生器19からの
補正信号出力Kを乗算器14により乗算し補正後の偏差
信号K・ΔMWとすることによる。この信号を比例積分
演算器15により比例積分演算し、補正後のガバナ位置
(加減弁開度)指令(KP・K・ΔMW+∫K・ΔMWd
t/TI)としている。この効果をタイムチャートで表
すと図4の通りとなり、従来技術の図3に比して改善さ
れていることが分かる。この補正手段は、図4にもある
ように蒸気加減弁の開度を制御する制御信号のオーバー
シュート及びアンダーシュートを抑制するものであるが
比例積分演算を基本制御方式としてる制御方式では外乱
又は設定変更時にはどうしてもオーバーシュート及びア
ンダーシュートが生ずる。またこのオーバーシュート及
びアンダーシュートの量を決定するのは偏差信号ΔMW
と比例積分演算器の比例ゲイン設定であり積分ゲイン
(時間)設定である。これからの設定値は、ZIEGLER NI
CHOLS により実験的にステップ変化に対する応答より最
適解が求められているが、これを実機で細かい運転範囲
で行うことは困難となる。
In this operation, the load is set by the load setter 12, and the deviation calculator 13 and the proportional-plus-integral calculator 15 perform control so that the feedback signal from the generator output detector 21 matches the target value. This is the basic control method. However, the optimum control gain of this proportional-plus-integral calculator is
Although it is determined as an average value from the turbine output ratio gain (slope) and response characteristics in the characteristic table of FIG. 2, where the turbine output ratio gain (slope) suddenly fluctuates, such as around point A. , Deviation signal ΔM from deviation calculator 13
It is necessary to correct the gain of W to a low level by the multiplier 14. It is the gain correction function generator 19 that inputs the signal from the governor position detector + valve reduction speed relay stroke) 10 that sets the correction gain of this multiplier. The configuration and contents of the gain correction means are such that the deviation signal ΔMW from the deviation calculator 13 and the correction signal output K from the gain correction function modification generator 19 are multiplied by the multiplier 14 to obtain the corrected deviation signal K · ΔMW. by. This signal is proportional-integrally calculated by the proportional-plus-integral calculator 15 to obtain the corrected governor position.
(Adjustment valve opening) command (KP ・ K ・ ΔMW + ∫K ・ ΔMWd
t / TI). This effect is shown in a time chart of FIG. 4, and it can be seen that the effect is improved as compared with FIG. 3 of the conventional technique. As shown in FIG. 4, this correction means suppresses overshoot and undershoot of the control signal for controlling the opening degree of the steam control valve. However, in the control method in which the proportional integral calculation is the basic control method, disturbance or Overshoot and undershoot always occur when the setting is changed. The deviation signal ΔMW determines the amount of overshoot and undershoot.
And the proportional gain setting of the proportional-plus-integral calculator and the integral gain (time) setting. The setting value from now on is ZIEGLER NI
Although CHOLS has experimentally determined the optimal solution from the response to step changes, it is difficult to do this in a small operating range with an actual machine.

【0024】そこで偏差信号ΔMWに着目し前述の通り
ポイントA付近のように対タービン出力比ゲイン(傾
き)が急激に変動するところではオーバーシュート及び
アンダーシュートが大きくなると予想される為、補正ゲ
インKを低めに設定し見かけ上の補正後の偏差信号K・
ΔMWを抑制しオーバーシュート及びアンダーシュート
を抑制している。また、加減弁の非直線特性が正確に測
定できない場合でも、毎年の定期点検等による経年変化
で特性がズレた場合でもハンチングの状況を見てそのガ
バナ(同期主軸)位置のゲインをオンラインで簡便に調
整できる。
Therefore, paying attention to the deviation signal ΔMW, as described above, the overshoot and the undershoot are expected to become large in a portion where the turbine output ratio gain (slope) changes rapidly as in the vicinity of the point A. Therefore, the correction gain K Is set to a low value and the deviation signal K
ΔMW is suppressed and overshoot and undershoot are suppressed. In addition, even if the nonlinear characteristics of the control valve cannot be measured accurately, even if the characteristics deviate due to aging due to annual inspections etc., the gain of the governor (synchronous spindle) position can be easily monitored online by checking the hunting situation. Can be adjusted to

【0025】[0025]

【発明の効果】以上に説明したように、本発明によれ
ば、ガバナ(同期主軸)位置信号に基づいて、制御ルー
プゲインを補正するように構成したので、加減弁の非直
線特性が正確に把握できない場合や、経年変化で特性が
ズレた場合、調整が簡便であり負荷変化に安定したター
ビン負荷追従性を確保することができる。
As described above, according to the present invention, the control loop gain is corrected on the basis of the governor (synchronous main shaft) position signal, so that the nonlinear characteristic of the regulator valve can be accurately determined. When the characteristics cannot be grasped or the characteristics deviate due to aging, adjustment is simple and stable turbine load followability with load changes can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る自動負荷制御装置が適用された発
電システムの一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a power generation system to which an automatic load control device according to the present invention is applied.

【図2】図1に示した自動負荷制御装置の加減弁用スピ
ードリレーストロークに対する組み合せ加減弁の開度特
性,主蒸気量比,タービン出力比特性を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing an opening characteristic, a main steam amount ratio, and a turbine output ratio characteristic of a combination regulating valve with respect to a speed relay stroke for regulating valve of the automatic load control system shown in FIG.

【図3】図5に示した従来の自動負荷制御装置の負荷指
令(MWD)に対する発電機出力(MW)の追従性の関
係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship of followability of a generator output (MW) with respect to a load command (MWD) of the conventional automatic load control device shown in FIG.

【図4】図1に示した本発明の自動負荷制御装置の負荷
指令(MWD)に対する発電機出力(MW)の追従性の
関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship of followability of a generator output (MW) with respect to a load command (MWD) of the automatic load control device of the present invention shown in FIG.

【図5】従来の自動負荷制御装置を設置した発電システ
ムを示す構成図である。
FIG. 5 is a configuration diagram showing a power generation system in which a conventional automatic load control device is installed.

【図6】本発明の自動負荷制御装置のガバナ(同期主
軸)位置に対する比例積分器のゲイン補正の関係を示す
特性図である。
FIG. 6 is a characteristic diagram showing the relationship of the gain correction of the proportional integrator with respect to the governor (synchronous spindle) position of the automatic load control system of the invention.

【符号の説明】[Explanation of symbols]

1…発電機、2…タービン、3…加減弁、4…ボイラ、
8…ガバナ、9…ガバナモータ、10…ガバナ位置検出
器、11…自動負荷制御装置、12…負荷設定器、13
…偏差演算器、14…乗算器、15…比例積分演算器、
16…比較検出増幅器、17…加減弁蒸気流量特性補正
関数発生器、18…加減弁蒸気流量特性補正逆関数発生
器、19…ゲイン補正関数発生器、21…発電機出力検
出器。
1 ... Generator, 2 ... Turbine, 3 ... Control valve, 4 ... Boiler,
8 ... Governor, 9 ... Governor motor, 10 ... Governor position detector, 11 ... Automatic load control device, 12 ... Load setting device, 13
... deviation calculator, 14 ... multiplier, 15 ... proportional-plus-integral calculator,
Reference numeral 16 is a comparative detection amplifier, 17 is a regulator valve steam flow rate characteristic correction function generator, 18 is a control valve vapor flow rate characteristic correction inverse function generator, 19 is a gain correction function generator, 21 is a generator output detector.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】発電機出力の負荷指令とその発電機出力と
の偏差を比例積分演算によりタービンに供給する主蒸気
流量を調整する加減弁の開度指令を求め、この開放指令
信号を用いて、前記加減弁の開度を調整するガバナの位
置を検出するガバナ位置検出器を有し、該ガバナ位置検
出器からの検出信号に基づいて前記ガバナ位置を制御す
る自動負荷制御装置において、 前記比例積分器のゲインを、ガバナ位置に基づいて補正
する補正手段を設けタことを特徴とする自動負荷制御装
置。
1. An opening command of a regulator valve for adjusting a main steam flow rate to be supplied to a turbine is obtained by a proportional integral calculation of a deviation between a generator output load command and the generator output, and this opening command signal is used. In the automatic load control device that has a governor position detector that detects the position of the governor that adjusts the opening degree of the regulator valve, and controls the governor position based on a detection signal from the governor position detector, the proportional An automatic load control device comprising: a correction unit that corrects a gain of an integrator based on a governor position.
【請求項2】前記補正手段は、前記ガバナ位置検出器の
検出信号に基づいて、ゲイン補正信号を出力するゲイン
補正関数発生器と、前記発電機出力の負荷指令と発電機
出力との偏差に、前記ゲイン補正関数発生器により出力
されたゲイン補正信号を乗算する乗算器とを有してなる
ことを特徴とする請求項1に記載の自動負荷制御装置。
2. The correction means calculates a gain correction function generator that outputs a gain correction signal based on a detection signal of the governor position detector, and a deviation between a load command of the generator output and a generator output. The automatic load control device according to claim 1, further comprising: a multiplier that multiplies the gain correction signal output by the gain correction function generator.
【請求項3】前記ゲイン補正関数発生器は、前記加減弁
の切替が行われている時に、前記比例積分器のゲインが
通常時よりも低くなるような補正信号を出力するように
構成したことを特徴とする請求項2に記載の自動負荷制
御装置。
3. The gain correction function generator is configured to output a correction signal such that the gain of the proportional integrator is lower than that in a normal time when the control valve is switched. The automatic load control device according to claim 2.
JP20172794A 1994-08-26 1994-08-26 Automatic load control device Expired - Lifetime JP3542174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20172794A JP3542174B2 (en) 1994-08-26 1994-08-26 Automatic load control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20172794A JP3542174B2 (en) 1994-08-26 1994-08-26 Automatic load control device

Publications (2)

Publication Number Publication Date
JPH0861008A true JPH0861008A (en) 1996-03-05
JP3542174B2 JP3542174B2 (en) 2004-07-14

Family

ID=16445939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20172794A Expired - Lifetime JP3542174B2 (en) 1994-08-26 1994-08-26 Automatic load control device

Country Status (1)

Country Link
JP (1) JP3542174B2 (en)

Also Published As

Publication number Publication date
JP3542174B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
DK3156646T3 (en) WIND ENERGY INSTALLATION WITH A SPEED AND GENERATOR REGULATOR
JP2010007665A (en) Method for primary control of combined gas and steam turbine arrangement
JP2010007665A5 (en)
JP2001295607A (en) Method and device for controlling load of thermal power plant
EP0004415A1 (en) System for minimizing valve throttling losses in a steam turbine power plant
JPH0861008A (en) Automatic load controller
JP4665842B2 (en) Turbine bypass valve control system and apparatus
EA005895B1 (en) Method and apparatus for steam turbine speed control
JP2006009732A (en) Turbine controller and method of correcting valve opening command to turbine controller
JP3817851B2 (en) Fuel gas pressure control method and apparatus for gas fired boiler
JPH07324603A (en) Controller for water feed turbine
JPH0223684B2 (en)
JPH0540530A (en) Number of revolution controller for turbine
JPH07224610A (en) Load control device for steam turbine
JPH06281106A (en) Water supplying control device of steam generating plant
JPH07281706A (en) Automatic preceding element addition/removal controller
JPH062644A (en) Speed controller
JPH0772487B2 (en) Boiler governor valve controller
JPH0658105A (en) Feed water pump driving turbine control method and device therefor
JPS6337241B2 (en)
JPH1130108A (en) Turbine control device
JPS63129104A (en) Steam turbine governor control switching
JPH08266095A (en) Control method of turbine generator
JPH0731198A (en) System stabilizing system
JPH10159705A (en) Water level regulating device for water tank in run-off-river hydraulic power plant

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20140409

EXPY Cancellation because of completion of term