JPH0859766A - Production of high-rigidity propylene-ethylene block copolymer - Google Patents

Production of high-rigidity propylene-ethylene block copolymer

Info

Publication number
JPH0859766A
JPH0859766A JP21786594A JP21786594A JPH0859766A JP H0859766 A JPH0859766 A JP H0859766A JP 21786594 A JP21786594 A JP 21786594A JP 21786594 A JP21786594 A JP 21786594A JP H0859766 A JPH0859766 A JP H0859766A
Authority
JP
Japan
Prior art keywords
mfr
propylene
ethylene
polymerization
polymerization step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21786594A
Other languages
Japanese (ja)
Other versions
JP3355806B2 (en
Inventor
Takahiro Oka
隆弘 岡
Shunji Kawazoe
俊次 川添
Yasuhiro Yamane
康宏 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP21786594A priority Critical patent/JP3355806B2/en
Priority to KR1019950020056A priority patent/KR100341040B1/en
Priority to DE69502784T priority patent/DE69502784T2/en
Priority to EP95112296A priority patent/EP0700943B1/en
Priority to US08/516,089 priority patent/US5672658A/en
Publication of JPH0859766A publication Critical patent/JPH0859766A/en
Application granted granted Critical
Publication of JP3355806B2 publication Critical patent/JP3355806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the subject copolymer excellent in both rigidity and impact resistance, useful for various molded products, by two-stage copolymerization between ethylene and propylene using a specific catalyst so that its melt index and melt flow rate satisfy a specific relationship. CONSTITUTION: A polymerization is carried out between ethylene and propylene using a catalytic system composed of a solid catalyst comprising Ti, Mg, a halogen and a polycarboxylic ester, an organoaluminum compound and a compound of formula I (R<4> and R<5> are each a hydrocarbon group; R<6> is the same as R<4> , etc.; (x+y+z)=4; (x) is 0-2; (y) and (z) are each 1-3) to produce a polymer P1 with its maximum melt flow rate [MFR(h)] and minimum melt flow rate [MFR(1)] satisfying the relationship II so as to account for 60-95wt.% of the amount of the whole polymer, followed by feeding further ethylene and propylene to the system to produce a polymer P2 so as to account for 5-40wt.% of the amount of the whole polymer so that the melt index of P2 [MFR(ii)] and that of P1 [MFR(i)] satisfy the relationship of formula III, and then the objective copolymer is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高剛性の成形用プロピ
レン・エチレンブロック共重合体の製造法に関する。さ
らに詳しくは、本発明はなんら特別な添加剤を添加しな
くとも高剛性で、かつ高耐衝撃性を有する成形品が得ら
れる該重合体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly rigid molding propylene / ethylene block copolymer. More specifically, the present invention relates to a method for producing the polymer, which gives a molded article having high rigidity and high impact resistance without adding any special additive.

【0002】[0002]

【従来の技術とその問題点】汎用樹脂としての結晶性ポ
リプロピレン(以下単にポリプロピレンということがあ
る)は、高い剛性、硬度、引っ張り強度および耐熱性等
を有する。しかしながら、耐衝撃性が不十分であり、機
械的衝撃を受け若しくは低温で使用される成形品には使
用され難い問題点がある。また、他の汎用樹脂例えばA
BS樹脂若しくはハイインパクトポリスチレン樹脂と比
較した場合、耐衝撃性のみならず剛性も劣る。ポリプロ
ピレンの具体的用途ひいては需要拡大のためには、前述
の耐衝撃性のみならず、剛性を今一段と向上させること
が要望される。立体規則性触媒を用いて製造される結晶
性ポリプロピレンは、剛性、耐熱性などに優れた性質を
有する反面、衝撃強度、特に低温における衝撃性が低い
という問題点があり、実用上その利用範囲が制約されて
いた。そこでこの問題点を解決する方法として、プロピ
レンを他のα−オレフィン例えばエチレンとランダム若
しくはブロック共重合させる方法が知られている。得ら
れたランダム共重合体はポリプロピレンと比較して特に
低温衝撃性の改良が不十分であり、エチレン含量を高め
るに伴って剛性、強度、耐熱性等が急激に低下する。同
じく、ブロック共重合体はポリプロピレンと比較して低
温衝撃性は著しく向上する反面、剛性、硬度および耐熱
性等は低下する。ブロック共重合体の上述の欠点を改善
する方法が数多く提案されている。
2. Description of the Related Art Crystalline polypropylene (hereinafter sometimes simply referred to as polypropylene) as a general-purpose resin has high rigidity, hardness, tensile strength and heat resistance. However, the impact resistance is insufficient, and there is a problem that it is difficult to use for a molded product that is subjected to a mechanical shock or is used at a low temperature. In addition, other general-purpose resins such as A
When compared with BS resin or high impact polystyrene resin, not only impact resistance but also rigidity is poor. For specific applications of polypropylene and further for expanding demand, it is required to further improve not only the above-mentioned impact resistance but also rigidity. Crystalline polypropylene produced using a stereoregular catalyst has excellent properties such as rigidity and heat resistance, but on the other hand, it has a problem that impact strength, especially impact resistance at low temperature, is low. It was restricted. Therefore, as a method for solving this problem, a method of randomly or block copolymerizing propylene with another α-olefin such as ethylene is known. The obtained random copolymer has insufficient improvement in low-temperature impact resistance as compared with polypropylene, and its rigidity, strength, heat resistance and the like are rapidly lowered as the ethylene content is increased. Similarly, the block copolymer has significantly improved low-temperature impact resistance as compared with polypropylene, but has reduced rigidity, hardness, heat resistance and the like. Many methods have been proposed to improve the above-mentioned drawbacks of block copolymers.

【0003】例えば、特開昭50−115296号、同
52−4588号、同53−35879号においては、
プロピレンとエチレンのブロック共重合を多段で実施す
る方法を提案している。また、例えば、特公昭47−8
207号、同49−13231号、同49−13514
号は、触媒に第3成分を添加する改良方法を提案してい
る。さらに特開昭55−764号、同54−15209
5号、同53−29390号、特公昭55−8011号
は特定の触媒を用いる改良方法を提案している。しかし
ながら、前記諸提案は、ポリプロピレン(単独重合体)
に比較して得られるブロック共重合体の剛性の低下の程
度を可能な限り少なくしようとする問題点緩和の為の技
術であり、未だ該単独重合体と同等以上の剛性値を可能
にするには至っていない。また、特開昭58−2018
16号にポリプロピレン同等以上の剛性を有する高剛性
プロピレン・エチレンブロック共重合体の製造法が提案
されているが、耐衝撃性の改善が不十分であった。
For example, in JP-A Nos. 50-115296, 52-4588 and 53-35879,
A method for carrying out block copolymerization of propylene and ethylene in multiple stages is proposed. Also, for example, Japanese Patent Publication No. 47-8
No. 207, No. 49-13231, No. 49-13514
No. 1 proposes an improved method of adding a third component to the catalyst. Further, JP-A-55-764 and 54-15209
No. 5, No. 53-29390, and Japanese Patent Publication No. 55-8011 propose an improved method using a specific catalyst. However, the above proposals are based on polypropylene (homopolymer).
Is a technique for alleviating the problem of reducing the degree of decrease in the rigidity of the block copolymer obtained as compared with the above method, and still enables the rigidity value equal to or higher than that of the homopolymer. Has not arrived. In addition, JP-A-58-2018
No. 16 proposes a method for producing a high-rigidity propylene / ethylene block copolymer having rigidity equal to or higher than that of polypropylene, but improvement in impact resistance was insufficient.

【0004】[0004]

【発明が解決しようとする課題】前述の公知技術の現状
に鑑み、特殊な添加剤を加える事なしに高剛性で、かつ
高耐衝撃性の成形品を得ることの可能なプロピレン・エ
チレンブロック共重合体の製造法を発明すべく鋭意検討
した結果、以下に述べる限定された条件で製造すること
により該共重合体が得られることを見出し本発明に至っ
た。以上の説明から明らかなように本発明の目的は、高
剛性でかつ高耐衝撃性の成形品に適したプロピレン・エ
チレンブロック共重合体の製造法を提供することにあ
る。
In view of the state of the art described above, a propylene / ethylene block copolymer which can obtain a molded product having high rigidity and high impact resistance without adding a special additive. As a result of extensive studies to invent a method for producing a polymer, the inventors have found that the copolymer can be obtained by producing the polymer under the limited conditions described below, and have reached the present invention. As is apparent from the above description, an object of the present invention is to provide a method for producing a propylene / ethylene block copolymer suitable for a molded article having high rigidity and high impact resistance.

【0005】[0005]

【課題を解決するための手段】本発明は下記(1)、
(2)より構成される。 (1)チタン、マグネシウム、ハロゲン及び多価カルボ
ン酸エステルを必須成分として含有する固体触媒成分
(A)と有機アルミニウム化合物(B)と一般式R4 x
5 ySi(OR6z (式中R4 ,R6 は炭化水素基、R
5 は炭化水素基あるいはヘテロ原子を含む炭化水素基を
しめし、x+y+z=4,0≦x≦2,1≦y≦3,1
≦z≦3である。)で表される有機ケイ素化合物(C)
を組み合わせた触媒系を用い、第1段階として2槽以上
の重合器を直列に用い、エチレン/(エチレン+プロピ
レン)=0〜5重量%のモノマーを供給してプロピレン
を主体とした重合工程(I)を実施して全重合量の60
〜95%を製造し、第2段階として1槽以上の重合器を
用い、エチレン/(エチレン+プロピレン)=10〜1
00重量%のモノマーを供給して、エチレンを比較的多
量に含む重合工程(II)を全重合量の5〜40重量%を
製造することを特徴とするプロピレン・エチレンブロッ
ク共重合体の製造法において、重合工程(I)の各槽で
得られる重合体のメルトフローレートの最高値(以下M
FR(h)と言う)と最小値(以下MFR(l)と言
う)とが 0.1≦Log(MFR(h)/MFR(l))≦1 なる関係を有し、かつ、プロピレンを主体とした重合工
程(I)で得られる重合体のMFR(i)とエチレンを
比較的多量に含む重合工程(II)で得られる重合体のM
FR(ii)とが 3≦Log(MFR(i)/MFR(ii))≦7 なる関係を有する如く製造することを特徴とする高剛性
プロピレン・エチレンブロック共重合体の製造法。 (2)有機ケイ素化合物(C)と有機アルミニウム化合
物(B)のモル比を (B)/(C)=1〜15 とする前記第1項に記載の製造法。
Means for Solving the Problems The present invention includes the following (1):
It is composed of (2). (1) Solid catalyst component (A) containing titanium, magnesium, halogen, and polycarboxylic acid ester as essential components, an organoaluminum compound (B), and a general formula R 4 x R
5 y Si (OR 6 ) z (wherein R 4 and R 6 are hydrocarbon groups, R
5 represents a hydrocarbon group or a hydrocarbon group containing a hetero atom, and x + y + z = 4,0 ≦ x ≦ 2,1 ≦ y ≦ 3,1
≦ z ≦ 3. ) An organosilicon compound (C) represented by
Polymerization process mainly comprising propylene by using a catalyst system in which two or more polymerization vessels are connected in series as the first stage, and supplying a monomer of ethylene / (ethylene + propylene) = 0 to 5% by weight ( I) is carried out to obtain a total polymerization amount of 60
.About.95% is produced, and as the second stage, one or more tanks of polymerization reactor are used, and ethylene / (ethylene + propylene) = 10 to 1
A method for producing a propylene / ethylene block copolymer, characterized in that a polymerization step (II) containing a relatively large amount of ethylene is produced in an amount of 5 to 40% by weight based on the total amount of polymerization by supplying 00% by weight of a monomer. In, the maximum value of the melt flow rate of the polymer obtained in each tank of the polymerization step (I) (hereinafter M
FR (h)) and the minimum value (hereinafter referred to as MFR (l)) have a relationship of 0.1 ≦ Log (MFR (h) / MFR (l)) ≦ 1, and mainly propylene. MFR (i) of the polymer obtained in the polymerization step (I) and M of the polymer obtained in the polymerization step (II) containing a relatively large amount of ethylene.
A process for producing a high-rigidity propylene / ethylene block copolymer, which is characterized in that it is produced so as to have a relationship of 3 ≦ Log (MFR (i) / MFR (ii)) ≦ 7 with FR (ii). (2) The production method according to the above item 1, wherein the molar ratio of the organosilicon compound (C) to the organoaluminum compound (B) is (B) / (C) = 1 to 15.

【0006】本発明の構成と効果につき、以下に詳述す
る。本発明においては、重合触媒として少なくともマグ
ネシウム原子、チタン原子、ハロゲン原子、及び多価カ
ルボン酸エステルを含む固体触媒成分(A)と、有機ア
ルミニウム化合物(B)と電子供与性化合物(C)を用
いて得られる高立体規則性触媒系を用いるが、これら触
媒について特に制限はなく、公知の種々の高立体規則性
のポリプロピレンを与える触媒系を使用することが可能
である。このような固体触媒成分(A)を製造する方法
としては、例えば特開昭50−108385号、同50
−126590号、同51−20297号、同51−2
8189号、同51−64586号、同51−9288
5号、同51−136625号、同52−87489
号、同52−100596号、同52−147688
号、同52−104593号、同53−2580号、同
53−40093号、同53−40094号、同55−
135102号、同55−135103号、同55−1
52710号、同56−811号、同56−11908
号、同56−18606号、同58−83006号、同
58−138705号、同58−138706号、同5
8−138707号、同58−138708号、同58
−138709号、同58−138710号、同58−
138715号、同60−23404号、同61−21
109号、同61−37802号、同61−37803
号、同62−104810号、同62−104811
号、同62−104812号、同62−104813
号、同63−54405号等の各公報に開示された方法
に準じて製造することができる。
The structure and effect of the present invention will be described in detail below. In the present invention, a solid catalyst component (A) containing at least a magnesium atom, a titanium atom, a halogen atom, and a polyvalent carboxylic acid ester, an organoaluminum compound (B) and an electron donating compound (C) are used as a polymerization catalyst. Although the resulting highly stereoregular catalyst system is used, there is no particular limitation on these catalysts, and it is possible to use a known catalyst system which gives various highly stereoregular polypropylenes. Examples of the method for producing such a solid catalyst component (A) include, for example, JP-A-50-108385 and JP-A-50-38585.
-12590, 51-20297, 51-2
8189, 51-64586, 51-9288
No. 5, No. 51-136625, No. 52-87489
No. 52-100596, No. 52-147688
No. 52-104593, No. 53-2580, No. 53-40093, No. 53-40094, No. 55-.
135102, 55-135103, 55-1
52710, 56-811, 56-11908.
No. 56, No. 56-18606, No. 58-83006, No. 58-138705, No. 58-138706, No. 5
8-138707, 58-138708, 58
138709, 58-138710, 58-
No. 138715, No. 60-23404, No. 61-21
No. 109, No. 61-37802, No. 61-37803
No. 62-104810 and No. 62-104811.
No. 62-104812 and No. 62-104813.
No. 63-54405 and the like.

【0007】上記固体触媒成分(A)において使用され
る多価カルボン酸エステルとしてはその具体例として、
フタル酸、マレイン酸、置換マロン酸などと炭素数2以
上のアルコールとのエステルである。本発明において上
記(A)に用いられるマグネシウム化合物は種々ある
が、還元能を有するまたは有しないマグネシウム化合物
が用いられる。前者の例としては、ジメチルマグネシウ
ム、ジエチルマグネシウム、ジプロピルマグネシウム、
ジブチルマグネシウム、エチル塩化マグネシウム、プロ
ピル塩化マグネシウム、ブチル塩化マグネシウムなどが
挙げられる。また後者の例としては、塩化マグネシウ
ム、臭化マグネシウム、ヨウ化マグネシウムのようなハ
ロゲン化マグネシウム、メトキシ塩化マグネシウム、エ
トキシ塩化マグネシウムのようなアルコキシ塩化マグネ
シウム、エトキシマグネシウム、イソプロポキシマグネ
シウム、ブトキシマグネシウムのようなアルコキシマグ
ネシウム、ラウリン酸マグネシウム、ステアリン酸マグ
ネシウムのようなカルボン酸マグネシウムなどを挙げる
ことができる。これらの中で特に好ましい化合物はハロ
ゲン化マグネシウム、アルコキシ塩化マグネシウム、ア
ルコキシマグネシウムである。
Specific examples of the polyvalent carboxylic acid ester used in the solid catalyst component (A) include:
It is an ester of phthalic acid, maleic acid, substituted malonic acid, etc. and an alcohol having 2 or more carbon atoms. In the present invention, there are various magnesium compounds used in the above (A), but magnesium compounds with or without reducing ability are used. Examples of the former include dimethyl magnesium, diethyl magnesium, dipropyl magnesium,
Dibutyl magnesium, ethyl magnesium chloride, propyl magnesium chloride, butyl magnesium chloride and the like can be mentioned. Examples of the latter include magnesium halides such as magnesium chloride, magnesium bromide and magnesium iodide, magnesium methoxy chloride, alkoxy magnesium chloride such as ethoxy magnesium chloride, ethoxy magnesium, isopropoxy magnesium and butoxy magnesium. Mention may be made of alkoxy magnesium, magnesium laurate, magnesium carboxylates such as magnesium stearate and the like. Of these, particularly preferred compounds are magnesium halide, alkoxy magnesium chloride and alkoxy magnesium.

【0008】本発明において固体触媒成分(A)に用い
られるチタン化合物としては、通常Ti(OR)A
4-A (Rは炭化水素基、Xはハロゲン、0≦A≦4)で
しめされる化合物が最適である。具体的には、TiCl
4 ,TiBr4 などのテトラハロゲン化チタン、Ti
(OCH3 )Cl3 ,Ti(OC25 )Cl3 などの
トリハロゲン化アルコキシチタン、Ti(OCH32
Cl2 ,Ti(OC252 Cl2 などのジハロゲン
化ジアルコキシチタン、Ti(OCH33 Cl,Ti
(OC253 Clなどのモノハロゲン化トリアルコ
キシチタン、Ti(OCH34 ,Ti(OC25
4 などのテトラアルコキシチタンであり、特に好ましい
ものはTiCl4 である。固体触媒成分(A)の調製に
おいて上記チタン化合物、マグネシウム化合物及び多価
カルボン酸エステルの他、更に必要に応じて他の電子供
与体例えばアルコール、エーテル、フェノール、ケイ素
化合物、アルミニウム化合物などを共存させることがで
きる。
The titanium compound used as the solid catalyst component (A) in the present invention is usually Ti (OR) A X.
A compound represented by 4-A (R is a hydrocarbon group, X is a halogen, and 0≤A≤4) is most suitable. Specifically, TiCl
4 , Titanium tetrahalide such as TiBr 4 , Ti
Trihalogenated alkoxytitanium such as (OCH 3 ) Cl 3 and Ti (OC 2 H 5 ) Cl 3 , Ti (OCH 3 ) 2
Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 and other dihalogenated dialkoxy titanium, Ti (OCH 3 ) 3 Cl, Ti
Monohalogenated trialkoxy titanium such as (OC 2 H 5 ) 3 Cl, Ti (OCH 3 ) 4 , Ti (OC 2 H 5 )
Tetraalkoxytitanium such as 4 , and particularly preferred is TiCl 4 . In the preparation of the solid catalyst component (A), other electron donors such as alcohol, ether, phenol, silicon compound, aluminum compound and the like are made to coexist as necessary, in addition to the above titanium compound, magnesium compound and polyvalent carboxylic acid ester. be able to.

【0009】本発明において使用される有機アルミニウ
ム化合物(B)としては、一般式がAlR2 m3 n
3-(m+n) (式中R2 及びR3 は炭化水素基またはアルコ
キシ基を示し、Xはハロゲンを示し、mおよびnは0≦
m≦3,0≦n≦3,1.5≦m+n≦3の任意の数を
示す。)で表される有機アルミニウム化合物を用いるこ
とができる。具体例としては、トリメチルアルミニウ
ム、トリエチルアルミニウム、トリ−n−プロピルアル
ミニウム、トリ−n−ブチルアルミニウム、トリ−i−
ブチルアルミニウム、ジエチルアルミニウムクロライ
ド、ジn−プロピルアルミニウムモノクロライド、ジエ
チルアルミニウムアイオダイド、メチルアルミニウムセ
スキクロライド、エチルアルミニウムセスキクロライ
ド、エトキシジエチルアルミニウムなどを挙げることが
できる。これら有機アルミニウム化合物(B)は単独あ
るいは2種類以上を混合して使用することができる。
The organoaluminum compound (B) used in the present invention has a general formula of AlR 2 m R 3 n X.
3- (m + n) (wherein R 2 and R 3 represent a hydrocarbon group or an alkoxy group, X represents a halogen, and m and n are 0 ≦
An arbitrary number of m ≦ 3, 0 ≦ n ≦ 3, 1.5 ≦ m + n ≦ 3 is shown. ) An organoaluminum compound represented by Specific examples include trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, tri-n-butyl aluminum, and tri-i-.
Examples thereof include butyl aluminum, diethyl aluminum chloride, di-n-propyl aluminum monochloride, diethyl aluminum iodide, methyl aluminum sesquichloride, ethyl aluminum sesquichloride, ethoxydiethyl aluminum and the like. These organoaluminum compounds (B) can be used alone or in combination of two or more.

【0010】本発明において使用される電子供与体成分
(C)としては、一般式R4 x5 ySi(OR6z (式
中R4 ,R6 は炭化水素基、R5 は炭化水素基あるいは
ヘテロ原子を含む炭化水素基をしめし、x+y+z=
4,0≦x≦2,1≦y≦3,1≦z≦3である。)で
表される有機ケイ素化合物が使用できる。その具体例と
してはメチルトリメトキシシラン、メチルトリエトキシ
シラン、メチルトリプロポキシシラン、エチルトリメト
キシシラン、エチルトリエトキシシラン、エチルトリプ
ロポキシシラン、n−プロピルトリメトキシシラン、n
−プロピルトリエトキシシラン、i−プロピルトリメト
キシシラン、i−プロピルトリエトキシシラン、n−ブ
チルトリメトキシシラン、n−ブチルトリエトキシシラ
ン、i−ブチルトリメトキシシラン、i−ブチルトリエ
トキシシラン、t−ブチルトリメトキシシラン、t−ブ
チルトリエトキシシラン、n−ペンチルトリメトキシシ
ラン、n−ペンチルトリエトキシシラン、ネオペンチル
トリメトキシシラン、ネオペンチルトリエトキシシラ
ン、ヘキサデシルトリメトキシシラン、ヘキサデシルト
リエトキシシラン、ジメチルジメトキシシラン、ジメチ
ルジエトキシシラン、ジエチルジメトキシシラン、ジエ
チルジエトキシシラン、ジ−n−プロピルジメトキシシ
ラン、ジ−i−プロピルジメトキシシラン、ジ−n−ブ
チルジメトキシシラン、ジ−i−ブチルジメトキシシラ
ン、ジ−t−ブチルジメトキシシラン、ジ−n−ペンチ
ルジメトキシシラン、ジネオペンチルジメトキシシラ
ン、フェニルトリメトキシシラン、フェニルトリエトキ
シシラン、ジフェニルジメトキシシラン、ジフェニルジ
エトキシシラン、シクロヘキシルトリメトキシシラン、
シクロヘキシルトリエトキシシラン、ジシクロヘキシル
ジメトキシシラン、ジシクロヘキシルジエトキシシラ
ン、3−メルカプトプロピルメチルジメトキシシラン、
3−イソシアナトプロピルトリエトキシシシラン、2−
(3−シクロヘキセニル)エチルトリメトキシシラン等
を例示することができる。これら有機ケイ素化合物は単
独あるいは2種類以上を任意の割合で混合し使用するこ
とができる。この中で特に好ましい有機ケイ素化合物は
ジ−i−プロピルジメトキシシラン、t−ブチルトリエ
トキシシラン、t−ブチルトリメトキシシラン、i−ブ
チルトリメトキシシラン、シクロヘキシルトリメトキシ
シランである。有機ケイ素化合物(C)の好ましい添加
量は該有機アルミニウム化合物(B)に対しモル比
(B)/(C)=1〜15で、添加量が少ないと剛性の
向上が不十分で、多過ぎると触媒活性が低下し実用的で
ない。
The electron donor component (C) used in the present invention is represented by the general formula R 4 x R 5 y Si (OR 6 ) z (wherein R 4 and R 6 are hydrocarbon groups, and R 5 is carbonized). Indicating a hydrogen group or a hydrocarbon group containing a hetero atom, x + y + z =
4, 0 ≦ x ≦ 2, 1 ≦ y ≦ 3, 1 ≦ z ≦ 3. ) Organosilicon compounds represented by Specific examples thereof include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane, n.
-Propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, i-butyltrimethoxysilane, i-butyltriethoxysilane, t- Butyltrimethoxysilane, t-butyltriethoxysilane, n-pentyltrimethoxysilane, n-pentyltriethoxysilane, neopentyltrimethoxysilane, neopentyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, Dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-i-propyldimethoxysilane, di-n-butyldimethoxysilane , Di-i-butyldimethoxysilane, di-t-butyldimethoxysilane, di-n-pentyldimethoxysilane, dineopentyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, Cyclohexyltrimethoxysilane,
Cyclohexyltriethoxysilane, dicyclohexyldimethoxysilane, dicyclohexyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane,
3-isocyanatopropyltriethoxysilane, 2-
(3-Cyclohexenyl) ethyltrimethoxysilane etc. can be illustrated. These organosilicon compounds can be used alone or in admixture of two or more kinds at any ratio. Among these, particularly preferred organosilicon compounds are di-i-propyldimethoxysilane, t-butyltriethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane and cyclohexyltrimethoxysilane. The preferable addition amount of the organosilicon compound (C) is a molar ratio (B) / (C) of 1 to 15 with respect to the organoaluminum compound (B). If the addition amount is small, the improvement of rigidity is insufficient and too large. And the catalytic activity is reduced, which is not practical.

【0011】該固体触媒成分(A)は、ついで有機アル
ミニウム化合物(B)および前述の有機ケイ素化合物
(C)と組み合わせて触媒としてプロピレンの重合に用
いるか、更に好ましくは、α−オレフィンを反応させて
予備活性化した触媒として用いる予備活性化は固体触媒
成分(A)中のチタン1モルに対して有機アルミニウム
(B)を0.3〜20モルを用い、0〜50℃で1分〜
20時間、α−オレフィンを0.1〜10モル、好まし
くは0.3〜3モルを反応させることが望ましい。予備
活性化のためのα−オレフィンの反応は脂肪族または芳
香族炭化水素溶媒中でも、また溶媒を用いないで液化プ
ロピレン、液化ブテン−1等の液化α−オレフィン中で
も行え、エチレン、プロピレン等を気相で反応させるこ
ともできる。また、予め得られたα−オレフィン重合体
または水素を共存させることもできる。さらに、予備活
性化に於いて予め有機シラン化合物(C)を添加するこ
ともできる。予備活性化するために用いるα−オレフィ
ンは、エチレン、プロピレン、ブテン−1、ヘキセン−
1、ヘプテン−1、その他の直鎖モノオレフィン類、4
−メチルーペンテン−1、2−メチル−ペンテン−1、
3−メチル−ブテン−1等の枝鎖モノオレフィン類、ス
チレン等である。これらのα−オレフィンは重合対象で
あるα−オレフィンを混合して用いても良い。予備活性
化終了後は、溶媒、有機アルミニウム化合物および未反
応α−オレフィン、有機アルミニウム化合物をろ別、デ
カンテーションで除いたり、乾燥して粉粒体として用い
ることもできる。
The solid catalyst component (A) is then used in combination with the organoaluminum compound (B) and the aforementioned organosilicon compound (C) as a catalyst for the polymerization of propylene, or more preferably, an α-olefin is reacted. The pre-activation used as a pre-activated catalyst is 0.3 to 20 mol of organoaluminum (B) with respect to 1 mol of titanium in the solid catalyst component (A), and 1 minute to 0 to 50 ° C.
It is desirable to react the α-olefin with 0.1 to 10 mol, preferably 0.3 to 3 mol for 20 hours. The reaction of α-olefin for preactivation can be performed in an aliphatic or aromatic hydrocarbon solvent, or in a liquefied α-olefin such as liquefied propylene or liquefied butene-1 without using a solvent, and vaporized ethylene, propylene or the like. It is also possible to react in phases. Further, the α-olefin polymer or hydrogen obtained in advance can be made to coexist. Furthermore, the organic silane compound (C) can be added in advance in the preliminary activation. The α-olefin used for preactivating is ethylene, propylene, butene-1, hexene-
1, heptene-1, other linear monoolefins, 4
-Methyl-pentene-1, 2-methyl-pentene-1,
Branched chain monoolefins such as 3-methyl-butene-1, styrene and the like. These α-olefins may be used as a mixture of α-olefins to be polymerized. After the completion of the preliminary activation, the solvent, the organoaluminum compound and the unreacted α-olefin and the organoaluminum compound can be filtered off, removed by decantation, or dried to be used as a powder or granular material.

【0012】このようにして得られた予備活性化された
触媒は、プロピレンをn−ヘキサン、n−ヘプタン、n
−オクタン、ベンゼン、トルエン等の炭化水素溶媒中で
行うスラリー重合、または液化プロピレン中で行うバル
ク重合および気相重合で行うことができる。スラリー重
合の場合、通常重合温度は20〜90℃、好ましくは5
0〜80℃であり、重合圧力は0.1〜5MPaで実施
させる。また、気相重合の場合、通常重合温度は20〜
150℃であり、重合圧力は0.3〜5MPaで実施さ
れる。分子量コントロールのために通常水素が使用さ
れ、得られる重合体のMFRが0.1〜1000の範囲
で実施される。
The pre-activated catalyst thus obtained contains propylene as n-hexane, n-heptane, n
-Slurry polymerization carried out in a hydrocarbon solvent such as octane, benzene or toluene, or bulk polymerization and gas phase polymerization carried out in liquefied propylene. In the case of slurry polymerization, the polymerization temperature is usually 20 to 90 ° C., preferably 5
The temperature is 0 to 80 ° C., and the polymerization pressure is 0.1 to 5 MPa. In the case of gas phase polymerization, the polymerization temperature is usually 20 to
It is 150 degreeC and superposition | polymerization pressure is implemented at 0.3-5 MPa. Hydrogen is usually used to control the molecular weight, and the MFR of the polymer obtained is carried out in the range of 0.1 to 1000.

【0013】重合工程(I)のモノマー供給組成として
は、エチレン/(エチレン+プロピレン)=0〜5重量
%で実施される。5重量%よりエチレンが多すぎるとポ
リプロピレンの特徴である剛性、耐熱性などの物性が低
下する欠点がある。
The composition for supplying the monomer in the polymerization step (I) is ethylene / (ethylene + propylene) = 0 to 5% by weight. If the amount of ethylene is more than 5% by weight, there is a drawback in that the physical properties of polypropylene such as rigidity and heat resistance deteriorate.

【0014】また、モノマーの第3成分として、1−ブ
テン、4−メチルペンテン−1、スチレン、非共役ジエ
ン類などをプロピレンに対し、0〜10%添加供給する
ことができる。
As the third component of the monomer, 1-butene, 4-methylpentene-1, styrene, non-conjugated dienes and the like can be added to propylene in an amount of 0 to 10%.

【0015】最終的に得られるプロピレン・エチレンブ
ロック共重合体全量に対し重合工程(I)の重合量は6
0〜95重量%である。重合量が上記範囲より少なすぎ
る場合は製品の剛性面の低下が発生し、多すぎる場合は
低温衝撃強度の改善が不十分となる。重合工程(I)の
重合は、直列に連結した重合器2台以上を用いて実施
し、各槽で得られる重合体のメルトフローインデックス
の最高値(MFR(h))と最小値(MFR(l))と
の関係は、 0.1≦Log(MFR(h)/MFR(l))≦1 が好ましく、より好ましくは 0.2≦Log(MFR(h)/MFR(l))≦0.
5 である。該MFRの比が上記範囲より小さい場合は製品
の剛性面の低下が発生し、大きい場合は最終的に得られ
るプロピレン・エチレンブロック共重合体の引っ張り伸
度と対衝撃性が低下し好ましくない。
The polymerization amount in the polymerization step (I) is 6 with respect to the total amount of the propylene / ethylene block copolymer finally obtained.
It is 0 to 95% by weight. If the amount of polymerization is less than the above range, the rigidity of the product will be deteriorated, and if it is too large, the improvement of low temperature impact strength will be insufficient. The polymerization in the polymerization step (I) is carried out using two or more polymerization vessels connected in series, and the maximum (MFR (h)) and minimum (MFR (MFR (h)) of the melt flow index of the polymer obtained in each tank are obtained. The relationship with l)) is preferably 0.1 ≦ Log (MFR (h) / MFR (l)) ≦ 1, and more preferably 0.2 ≦ Log (MFR (h) / MFR (l)) ≦ 0. .
It is 5. When the MFR ratio is smaller than the above range, the rigidity of the product is lowered, and when it is large, the tensile elongation and impact resistance of the finally obtained propylene / ethylene block copolymer are lowered, which is not preferable.

【0016】重合工程(II)は、通常重合温度が20〜
80℃、好ましくは40〜70℃、圧力0.1〜5MP
aで実施される。分子量コントロールのため通常水素が
用いられ、気相中の濃度で0.1〜10モル%で実施さ
れる。重合工程(II)にフィードされるエチレンとプロ
ピレンの比は、エチレン/(エチレン+プロピレン)=
10〜100重量%、好ましくは20〜70重量%であ
り、重合量は、最終のプロピレン・エチレンブロック共
重合体に対し、5〜40重量%である。またエチレン、
プロピレンに更に他のα−オレフィン、非共役ジエンな
ども併用してもよい。重合工程(I)で得られる重合体
のMFR(i)と重合工程(II)で得られる重合体のM
FR(ii)の関係は 3≦Log(MFR(i)/MFR(ii))≦7 が好ましく、より好ましくは 4≦Log(MFR(i)/MFR(ii))≦6 である。MFR(i)は重合工程(I)の重合体のみの
実測値であり、MFR(ii)は第2段階終了後のMF
R実測値{MFR(i+ii)とする}と重合工程
(I)の重合体分率(W1)と重合工程(II)の重合体
分率(W2)からの下式(2)、(3)による計算値で
ある。 LogMFR(T)=W1×LogMFR(i)+W2
×LogMFR(ii)W1+W2=1 Log(MFR(i)/MFR(ii))<3の場合、
得られた重合体は低温衝撃強度、引っ張り伸びなどの点
で劣り好ましくない。また、重合溶媒に可溶な重合体の
生成量が多く発生し、経済性及びプラントの運転性の点
で劣り好ましくない。また、Log(MFR(i)/M
FR(ii))>7の場合、単位触媒当たりの重合体の
収量が小さくなり実用的でない。
In the polymerization step (II), the polymerization temperature is usually 20 to
80 ° C, preferably 40-70 ° C, pressure 0.1-5MP
a. Hydrogen is usually used to control the molecular weight, and the hydrogen concentration is 0.1 to 10 mol% in the gas phase. The ratio of ethylene and propylene fed to the polymerization step (II) is ethylene / (ethylene + propylene) =
It is 10 to 100% by weight, preferably 20 to 70% by weight, and the polymerization amount is 5 to 40% by weight based on the final propylene / ethylene block copolymer. Also ethylene,
Other α-olefins, non-conjugated dienes and the like may be used in combination with propylene. MFR (i) of the polymer obtained in the polymerization step (I) and M of the polymer obtained in the polymerization step (II)
The relationship of FR (ii) is preferably 3 ≦ Log (MFR (i) / MFR (ii)) ≦ 7, and more preferably 4 ≦ Log (MFR (i) / MFR (ii)) ≦ 6. MFR (i) is the measured value of only the polymer in the polymerization step (I), and MFR (ii) is the MF after completion of the second stage.
The following equations (2) and (3) based on the measured R value {MFR (i + ii)}, the polymer fraction (W1) in the polymerization step (I) and the polymer fraction (W2) in the polymerization step (II) It is a calculated value by. LogMFR (T) = W1 × LogMFR (i) + W2
× LogMFR (ii) W1 + W2 = 1 When Log (MFR (i) / MFR (ii)) <3,
The obtained polymer is inferior in terms of low temperature impact strength, tensile elongation and the like, which is not preferable. Further, a large amount of a polymer soluble in the polymerization solvent is generated, which is not preferable in terms of economy and plant operability. In addition, Log (MFR (i) / M
When FR (ii))> 7, the yield of the polymer per unit catalyst becomes small, which is not practical.

【0017】なお、後述の実施例に係る諸物性の分析、
測定法などについて以下に示した。 ・MFR;ASTM D−1238(単位;g/10m
in)230℃、2.16kg荷重 ・エチレン含量;赤外線吸収スペクトル法による。(単
位;重量%) ・重合工程(I)と重合工程(II)の重合量比(W1,
W2);エチレン/プロピレンの反応量比を変化させた
共重合体を予め作り、これを標準サンプルとし、赤外線
吸収スペクトルで検量線を作り、重合工程(II)のエチ
レン/プロピレン反応量比を求め、更に全ポリマー中の
エチレン含量から計算した。(重量/重量) ・曲げ弾性率;JIS K7203(単位;MPa)に
準拠。 ・引張強度;JIS K7113(単位;MPa)に準
拠。 ・引張伸度;JIS K7113(単位;%)に準拠。 ・HDT;JIS K7207(単位;℃)に準拠。 ・アイゾット衝撃強度(II);JIS K7110(単
位;J/m)に準拠。 以上に記述したように本発明は、特定の重合条件を用い
ることにより公知技術を大幅に越える効果を達成するこ
とを可能とした製造法であり、更に具体的に実施例によ
り説明するが本発明はこれに限定されない。
Incidentally, analysis of various physical properties according to Examples described later,
The measurement methods and the like are shown below.・ MFR; ASTM D-1238 (unit: g / 10 m
in) 230 ° C, 2.16 kg load-Ethylene content; by infrared absorption spectroscopy. (Unit: wt%)-Polymerization ratio (W1, of the polymerization step (I) and the polymerization step (II)
W2); A copolymer in which the reaction amount ratio of ethylene / propylene is changed is prepared in advance, and this is used as a standard sample, and a calibration curve is prepared by infrared absorption spectrum to obtain the reaction amount ratio of ethylene / propylene in the polymerization step (II). Furthermore, it was calculated from the ethylene content in the total polymer. (Weight / weight) ・ Flexural modulus; based on JIS K7203 (unit: MPa). -Tensile strength; conforms to JIS K7113 (unit: MPa). -Tensile elongation; conforms to JIS K7113 (unit:%).・ HDT; conforms to JIS K7207 (unit: ° C). -Izod impact strength (II); conforms to JIS K7110 (unit: J / m). As described above, the present invention is a production method capable of achieving an effect significantly exceeding the known art by using specific polymerization conditions, and the present invention will be described in more detail with reference to Examples. Is not limited to this.

【0018】実施例1 (触媒の調製〜固体チタン触媒成分の調製)150gの
マグネシウムエトキサイド、275mlの2−エチルヘ
キシルアルコール及び300mlのトルエン混合物を
0.3MPaの二酸化炭素雰囲気のもとで93℃で3時
間攪はんした後、さらに400mlのトルエンと400
mlのn−デカンを加えた。以下この溶液を炭酸マグネ
シウム溶液と称する。100mlのトルエン、30ml
のクロロベンゼン、9mlのテトラエトキシシラン、
8.5mlの四塩化チタン及び100mlのイソパール
G(平均炭素数10のイソパラフィン系炭化水素、沸点
156〜176℃)を30℃で5分間攪はんし、前記炭
酸マグネシウムを50ml添加した。これを5分間攪は
んした後、22mlのテトラヒドロフランを添加し、6
0℃で1時間攪はんした。攪はんを停止し上澄み液を除
去後、生成した固体を50mlのトルエンで洗浄した。
得られた固体に100mlのクロロベンゼンと100m
lの四塩化チタンを添加し135℃で1時間攪はんし
た。攪はんを停止し、上澄み液を除去後、250mlの
クロロベンゼン、100mlの四塩化チタン及び2.1
mlのフタル酸ジ−n−ブチルを添加し135℃で1.
5時間攪はんした。上澄み液を除去後、600mlのト
ルエン、800mlのイソパールG、400mlのヘキ
サンで順次固体を洗浄して固体触媒成分を採取した。こ
の固体触媒成分の組成はチタン2.3重量%、塩素55
重量%、マグネシウム17重量%及びフタル酸ジ−n−
ブチル7.5重量%であった。
Example 1 (Catalyst Preparation-Solid Titanium Catalyst Component Preparation) 150 g of magnesium ethoxide, 275 ml of 2-ethylhexyl alcohol and 300 ml of a mixture of toluene at 93 ° C. under a carbon dioxide atmosphere of 0.3 MPa. After stirring for 3 hours, 400 ml of toluene and 400
ml n-decane was added. Hereinafter this solution is referred to as a magnesium carbonate solution. 100 ml of toluene, 30 ml
Chlorobenzene, 9 ml tetraethoxysilane,
8.5 ml of titanium tetrachloride and 100 ml of Isopar G (isoparaffin hydrocarbon having an average carbon number of 10, boiling point 156 to 176 ° C.) were stirred at 30 ° C. for 5 minutes, and 50 ml of the magnesium carbonate was added. After stirring this for 5 minutes, 22 ml of tetrahydrofuran was added,
The mixture was stirred at 0 ° C for 1 hour. After the stirring was stopped and the supernatant was removed, the produced solid was washed with 50 ml of toluene.
100 ml of chlorobenzene and 100 m were added to the obtained solid.
l of titanium tetrachloride was added, and the mixture was stirred at 135 ° C. for 1 hour. After stopping the stirring and removing the supernatant, 250 ml of chlorobenzene, 100 ml of titanium tetrachloride and 2.1 ml of
1. Add ml of di-n-butyl phthalate and add 1.
Stir for 5 hours. After removing the supernatant, the solid was washed successively with 600 ml of toluene, 800 ml of Isopar G, and 400 ml of hexane to collect a solid catalyst component. The composition of this solid catalyst component is 2.3% by weight titanium and 55% chlorine.
% By weight, 17% by weight of magnesium and di-n-phthalate
Butyl was 7.5% by weight.

【0019】予備活性化触媒の調整 内容積50Lの傾斜羽根付きステンレス製反応器を窒素
ガスで置換した後、n−ヘキサン40Lを投入し、前記
の固体生成物75g、トリエチルアルミニウム13gを
室温で加えた後、プロピレン100gを120分間かけ
て供給し、未反応プロピレン及びn−ヘキサンを減圧で
除去し、150gの予備活性化触媒を得た。
Preparation of pre-activated catalyst After replacing a stainless steel reactor with an inclined blade with an internal volume of 50 L with nitrogen gas, 40 L of n-hexane was charged, and 75 g of the above solid product and 13 g of triethylaluminum were added at room temperature. After that, 100 g of propylene was supplied over 120 minutes to remove unreacted propylene and n-hexane under reduced pressure to obtain 150 g of preactivated catalyst.

【0020】重合工程(I) 窒素置換をした内容積500Lのタービン型撹拌羽根付
ステンレス製重合器にn−ヘキサン250Lついでトリ
エチルアルミニウム89g、有機ケイ素化合物としてジ
−i−プロピルジメトキシシラン69gを仕込み、つい
で前記予備活性化触媒15gを添加し、器内温度を70
℃に昇温後、全圧0.8MPa、気相部の水素/プロピ
レン濃度比を0.24に維持しながら、プロピレンと水
素を供給して1時間第1段目の重合を行った後、プロピ
レンの供給を停止し、器内温度を30℃まで冷却し、水
素と未反応のプロピレンを放出した。ついで重合スラリ
ーの一部を抜き出し、MFRの測定および重合体中のM
g分の誘導結合プラズマ発光分光分析(ICP法)を行
い触媒単位重量あたりの重合体収量を求めるのに供し
た。器内を70℃に昇温後、プロピレンと水素を供給し
て、全圧を1.0MPa、気相部の水素/プロピレンの
濃度比を0.24に維持しながら1時間第2段目の重合
を行った後、プロピレンの供給を停止し、器内温度を3
0℃まで冷却し、水素と未反応のプロピレンを放出し
た。ついで重合スラリーの一部を抜き出し、MFRの測
定を行うとともに、重合体中のMg分をICP法により
求め、第2段目の重合体収量を求めた。ついで前述の1
段目の該収量値を用いて第1段目と第2段目の重合量の
比率を求めた。さらに logMFR=a×logMFR+(1−a)×log
MFR2 a:第1段の重合比率、MFR:第2段終了抜き出し品
のMFR MFR1 、MFR2 :第1段目、第2段目のMFR にMFR1 およびMFRの値を代入し第2段目のMFR
2 を求めた。ついで、器内を70℃に昇温後、プロピレ
ンと水素を供給して、全圧を1.2MPa、気相部の水
素/プロピレン濃度比を24%に維持しながら1時間第
3段目の重合を行った後、プロピレンの供給を停止し、
器内温度を30℃まで冷却し、水素と未反応のプロピレ
ンを放出した。ついで重合スラリーの一部を抜き出し、
MFRの測定を行うとともに、重合体中のMg分をIC
P法により求め、第3段目の重合の比率を求めた。さら
に logMFR=a×logMFR1 +b×logMFR
2 +c×logMFR3 a+b+c=1 a:第1段の重合比率、b:第2段の重合比率、c:第
3段の重合比率 MFR:第3段終了抜き出し品のMFR MFR1 、MFR2 、MFR3 :第1段目、第2段目、
第3段目のMFRにMFR1 、MFR2 およびMFRの
値と代入し第3段目のMFR3 を求めた。
Polymerization Step (I) Into a nitrogen-substituted stainless steel polymerization vessel having an internal volume of 500 L and equipped with a turbine type stirring blade, 250 L of n-hexane, 89 g of triethylaluminum and 69 g of di-i-propyldimethoxysilane as an organosilicon compound were charged, Then, 15 g of the pre-activated catalyst was added and the temperature inside the vessel was adjusted to 70
After the temperature was raised to 0 ° C., propylene and hydrogen were supplied to carry out the first-stage polymerization for 1 hour while maintaining the total pressure at 0.8 MPa and the hydrogen / propylene concentration ratio in the gas phase portion at 0.24. The supply of propylene was stopped, the temperature inside the vessel was cooled to 30 ° C., and hydrogen and unreacted propylene were discharged. Then, a part of the polymerized slurry was taken out, MFR was measured, and M in the polymer was measured.
An inductively coupled plasma emission spectroscopic analysis (ICP method) of g was performed to determine the polymer yield per unit weight of the catalyst. After the temperature inside the vessel was raised to 70 ° C., propylene and hydrogen were supplied to maintain the total pressure at 1.0 MPa and the hydrogen / propylene concentration ratio in the gas phase portion at 0.24 for 1 hour in the second stage. After the polymerization was completed, the propylene supply was stopped and the temperature inside the vessel was reduced to 3
After cooling to 0 ° C., hydrogen and unreacted propylene were released. Then, a part of the polymerized slurry was extracted, the MFR was measured, and the Mg content in the polymer was determined by the ICP method to determine the second-stage polymer yield. Then the above 1
The yield value of the first stage was used to determine the ratio of the polymerization amounts of the first stage and the second stage. Furthermore, logMFR = a × logMFR + (1-a) × log
MFR 2 a: 1st stage polymerization ratio, MFR: 2nd stage final extraction product MFR MFR 1 , MFR 2 : 1st stage and 2nd stage MFR Substitute the values of MFR 1 and MFR for the 2nd stage Stage MFR
I asked for 2 . Then, after the temperature inside the vessel was raised to 70 ° C., propylene and hydrogen were supplied to maintain the total pressure at 1.2 MPa and the hydrogen / propylene concentration ratio in the gas phase portion at 24% for 1 hour in the third stage. After carrying out the polymerization, the supply of propylene was stopped,
The temperature inside the vessel was cooled to 30 ° C., and hydrogen and unreacted propylene were discharged. Then, pull out a part of the polymerization slurry,
MFR is measured and the Mg content in the polymer is measured by IC
It was determined by the P method, and the ratio of the third stage polymerization was determined. Furthermore, logMFR = a × logMFR 1 + b × logMFR
2 + c × log MFR 3 a + b + c = 1 a: 1st stage polymerization ratio, b: 2nd stage polymerization ratio, c: 3rd stage polymerization ratio MFR: 3rd stage end extracted product MFR MFR 1 , MFR 2 , MFR 3 : 1st stage, 2nd stage,
The values of MFR 1 , MFR 2 and MFR were substituted into the third stage MFR to obtain the third stage MFR 3 .

【0021】重合工程(2) 器内温度を60℃に昇温後、エチレンの供給比率が35
重量%となるようにエチレンとプロピレンを2時間連続
的に供給した。エチレンの全供給量は4.5kgであっ
た。重合中は気相水素濃度が1モル%となるように水素
を供給した。2時間重合後エチレンおよびプロピレンの
供給を停止し、器内温度を30℃まで冷却した後未反応
のエチレンおよびプロピレンを放出した。ついで重合器
内にメタノールを50L供給し、器内温度を60℃に昇
温した。30分後、更に20重量%のカセイソーダ水を
0.5L加え20分間撹拌し、純水100L加えた後、
器内温度を30℃に冷却した。水槽を抜き出した後、更
に300Lの純水を加え10分間撹拌水洗し水槽を抜き
出した。ついでヘキサンスラリーを抜き出し、ろ過、乾
燥した。得られたプロピレン・エチレンブロック共重合
体を分析し、それらの値を表1に示した。
Polymerization step (2) After the internal temperature was raised to 60 ° C., the ethylene feed ratio was changed to 35
Ethylene and propylene were continuously supplied for 2 hours so that the weight% was adjusted. The total supply of ethylene was 4.5 kg. During the polymerization, hydrogen was supplied so that the gas phase hydrogen concentration was 1 mol%. After the polymerization for 2 hours, the supply of ethylene and propylene was stopped, the temperature inside the vessel was cooled to 30 ° C., and then unreacted ethylene and propylene were discharged. Then, 50 L of methanol was supplied into the polymerization vessel, and the temperature inside the vessel was raised to 60 ° C. After 30 minutes, 0.5 L of caustic soda water of 20% by weight was further added and stirred for 20 minutes, and 100 L of pure water was added.
The internal temperature was cooled to 30 ° C. After extracting the water tank, 300 L of pure water was further added, and the mixture was washed with stirring water for 10 minutes, and then the water tank was extracted. Then, the hexane slurry was extracted, filtered, and dried. The propylene / ethylene block copolymer obtained was analyzed, and the values are shown in Table 1.

【0022】射出成形品の製造 上記で得られた製品パウダー3.0kgにフェノール系
熱安定剤0.003kg、ステアリン酸カルシウム0.
003kgを加え高速攪拌式混合機(註ヘンシェルミキ
サー、商品名)で室温下に10分混合し、該混合物をス
クリュウ−径40mmの押出造粒機を用いて造粒した。
ついで該造粒物を射出成形機で溶融樹脂温度230℃、
金形温度50℃でJIS形のテストピースを作成し、該
テストピースにつき湿度50%室温23℃の室内で72
時間状態調整した。ついで後述、1表のように物性値を
測定した。
Manufacture of injection-molded product To 3.0 kg of the product powder obtained above, 0.003 kg of a phenolic heat stabilizer, calcium stearate 0.
003 kg was added, and the mixture was mixed for 10 minutes at room temperature with a high-speed stirring mixer (Note Henschel mixer, trade name), and the mixture was granulated using an extruder with a screw diameter of 40 mm.
Then, the granulated product was melted at a resin temperature of 230 ° C. by an injection molding machine.
A JIS type test piece was prepared at a mold temperature of 50 ° C., and the humidity of the test piece was 50%.
Time adjusted. Then, the physical property values were measured as shown in Table 1 below.

【0023】実施例2,3、比較例1,2 重合工程(I)でジ−i−プロピルジメトキシシランの
添加量を27.4g、13.7g、6.9g、172g
に変更した以外は実施例1と同様に行った結果を表1に
示す。有機ケイ素化合物(C)と有機アルミニウム化合
物(B)のモル比(B/C)が本発明より大きい場合は
得られる成形品の剛性が劣り、また小さい場合は単位触
媒当たりの重合体の収量が低下し実用的ではない。
Examples 2 and 3 and Comparative Examples 1 and 2 In the polymerization step (I), the amounts of di-i-propyldimethoxysilane added were 27.4 g, 13.7 g, 6.9 g and 172 g.
Table 1 shows the results obtained in the same manner as in Example 1 except that When the molar ratio (B / C) of the organosilicon compound (C) to the organoaluminum compound (B) is larger than that of the present invention, the rigidity of the obtained molded article is poor, and when it is small, the yield of the polymer per unit catalyst is low. It deteriorates and is not practical.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例4 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比をそれぞれ0.3、0.23、
0.16に変更した以外は実施例2と同様に行った結果
を表2に示す。
Example 4 In the polymerization step (I), the hydrogen / propylene concentration ratios in the gas phase portions of the first, second and third stages were 0.3, 0.23, respectively.
Table 2 shows the results obtained in the same manner as in Example 2 except that the content was changed to 0.16.

【0026】実施例5 重合工程(I)で1段目、2段目の気相部の水素/プロ
ピレン濃度比をそれぞれ0.22に、各段の重合時間を
1.5時間に変更し、第3段目の重合を省略した以外は
実施例4と同様に行った結果を表2に示す。
Example 5 In the polymerization step (I), the hydrogen / propylene concentration ratio of the gas phase portions of the first and second stages was changed to 0.22, and the polymerization time of each stage was changed to 1.5 hours. Table 2 shows the results obtained in the same manner as in Example 4 except that the third-stage polymerization was omitted.

【0027】比較例3 重合工程(I)で1段目、2段目の気相部の水素/プロ
ピレン濃度比をそれぞれ0.21、0.23に、各段の
重合時間を1.5時間に変更した変更した以外は実施例
5と同様に行った結果を表2に示す。log(MFR
(h)/MFR(1))の値が本発明より小さいため、
成形品の剛性が本発明品より劣る。
Comparative Example 3 In the polymerization step (I), the hydrogen / propylene concentration ratios of the gas phase portions of the first and second stages were 0.21 and 0.23, respectively, and the polymerization time of each stage was 1.5 hours. Table 2 shows the results obtained in the same manner as in Example 5 except that the above was changed. log (MFR
Since the value of (h) / MFR (1)) is smaller than that of the present invention,
The rigidity of the molded product is inferior to that of the product of the present invention.

【0028】比較例4 重合工程(I)で1段目の水素/プロピレン濃度比をそ
れぞれ0.18に、重合時間を3時間に変更し、2段
目、3段目の重合を省略した以外は実施例4と同様に行
った結果を表2に示す。本発明に比べ成形品の剛性が劣
る。
Comparative Example 4 In the polymerization step (I), the hydrogen / propylene concentration ratio in the first step was changed to 0.18, the polymerization time was changed to 3 hours, and the second and third steps were omitted. Table 2 shows the results obtained in the same manner as in Example 4. The rigidity of the molded product is inferior to that of the present invention.

【0029】[0029]

【表2】 [Table 2]

【0030】比較例5 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比をそれぞれ0.45、0.23、
0.10に変更した以外は実施例4と同様に行った結果
を表2に示す。log(MFR(h)/MFR(1))
の値が本発明より大きいため、成形品の耐衝撃性が劣
る。
Comparative Example 5 In the polymerization step (I), the hydrogen / propylene concentration ratios of the gas phase portions of the first, second and third stages were 0.45 and 0.23, respectively.
Table 2 shows the results obtained in the same manner as in Example 4 except that the value was changed to 0.10. log (MFR (h) / MFR (1))
Value is larger than that of the present invention, the impact resistance of the molded product is poor.

【0031】実施例6 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.35に、重合工程(II)気
相水素濃度を0.2モル%に変更した以外は実施例2と
同様に行った結果を表3に示す。
Example 6 In the polymerization step (I), the hydrogen / propylene concentration ratio of the first, second and third vapor phase parts was set to 0.35, and the hydrogen concentration in the vapor phase of the polymerization step (II) was set to 0. Table 3 shows the results obtained in the same manner as in Example 2 except that the content was changed to 0.2 mol%.

【0032】実施例7 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.20に、重合工程(II)気
相水素濃度を3モル%に変更した以外は実施例2と同様
に行った結果を表3に示す。
Example 7 In the polymerization step (I), the hydrogen / propylene concentration ratio in the first, second, and third vapor phase portions was set to 0.20, and the hydrogen concentration in the vapor phase in the polymerization step (II) was set to 3 Table 3 shows the results obtained in the same manner as in Example 2 except that the content was changed to mol%.

【0033】比較例6 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.60に、重合工程(II)の
気相水素濃度を0.05モル%に変更した以外は実施例
2と同様に行った結果を表3に示す。重合工程(I)と
重合工程(II)のMFR比(log(MFR(i)/M
FR(ii))が本発明より大きいため耐衝撃性が劣る
とともに単位触媒当たりの重合体の収量が低下し実用的
でない。
Comparative Example 6 In the polymerization step (I), the hydrogen / propylene concentration ratio in the first, second, and third gas phase portions was set to 0.60, and the gas phase hydrogen concentration in the polymerization step (II) was changed. Table 3 shows the results obtained in the same manner as in Example 2 except that the content was changed to 0.05 mol%. MFR ratio of polymerization step (I) and polymerization step (II) (log (MFR (i) / M
Since FR (ii)) is larger than that of the present invention, the impact resistance is inferior and the yield of the polymer per unit catalyst is reduced, which is not practical.

【0034】比較例7 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比をそれぞれ0.18に、重合工程
(II)の気相水素濃度を10モル%に変更した以外は実
施例2と同様に行った結果を表3に示す。重合工程
(I)と重合工程(II)のMFR比(log(MFR
(i)/MFR(ii))が本発明より小さいため剛
性、耐衝撃性、引っ張り伸度が本発明より劣るととも
に、重合溶媒に可溶な重合体の生成量が多く好ましくな
い。
Comparative Example 7 In the polymerization step (I), the hydrogen / propylene concentration ratios of the first, second and third gas phase portions were respectively set to 0.18, and the gas phase hydrogen concentration in the polymerization step (II) was changed. Table 3 shows the results obtained in the same manner as in Example 2 except that the content was changed to 10 mol%. MFR ratio of polymerization step (I) and polymerization step (II) (log (MFR
Since (i) / MFR (ii)) is smaller than that of the present invention, rigidity, impact resistance and tensile elongation are inferior to those of the present invention, and the amount of a polymer soluble in a polymerization solvent is large, which is not preferable.

【0035】[0035]

【表3】 [Table 3]

【0036】実施例8 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.08に、重合工程(II)の
気相水素濃度を0.5モル%に、エチレンの全供給量を
2kgに変更した以外は実施例3と同様に行った結果を
表4に示す。
Example 8 In the polymerization step (I), the hydrogen / propylene concentration ratio in the gas phase portions of the first, second and third steps was set to 0.08, and the gas phase hydrogen concentration in the polymerization step (II) was changed to Table 4 shows the results obtained in the same manner as in Example 3 except that the total amount of ethylene fed was changed to 0.5 mol% and 2 kg.

【0037】実施例9 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.17に、重合工程(II)の
気相水素濃度を0.5モル%に、エチレンの供給比率を
65重量%に、エチレンの全供給量を7kgに変更した
以外は実施例3と同様に行った結果を表4に示す。
Example 9 In the polymerization step (I), the hydrogen / propylene concentration ratio of the first, second and third vapor phase parts was set to 0.17, and the gas phase hydrogen concentration in the polymerization step (II) was changed to Table 4 shows the results obtained in the same manner as in Example 3 except that the amount of ethylene fed was changed to 0.5% by weight, the amount of ethylene fed was changed to 65% by weight, and the total amount of ethylene fed was changed to 7 kg.

【0038】比較例8 固体触媒成分(A)の調整で電子供与体としてエチルベ
ンゾエートを使用した以外は実施例9と同様に行った結
果を表4に示す。本発明に比べ剛性及び耐衝撃性が著し
く劣る。
Comparative Example 8 Table 4 shows the results obtained in the same manner as in Example 9 except that ethylbenzoate was used as an electron donor in the preparation of the solid catalyst component (A). The rigidity and impact resistance are significantly inferior to those of the present invention.

【0039】比較例9 固体触媒成分(A)として特開昭58−201816の
実施例に記載されている還元型触媒を、有機アルミニウ
ム化合物(B)としてジエチエルアルミニウムクロライ
ドを、有機ケイ素化合物(C)の代わりにp−トルイル
酸メチルを使用した以外は実施例9と同様に行った結果
を表4に示す。本発明に比べ剛性および耐衝撃性が劣る
とともに、触媒単位当たりの重合体の収量が低い。
Comparative Example 9 As the solid catalyst component (A), the reduced catalyst described in the examples of JP-A-58-201816, as the organoaluminum compound (B), diethyl aluminum chloride, and the organosilicon compound (C) were used. Table 4 shows the results obtained in the same manner as in Example 9 except that methyl p-toluate was used instead of). The rigidity and impact resistance are inferior to those of the present invention, and the yield of the polymer per catalyst unit is low.

【0040】[0040]

【表4】 [Table 4]

【0041】実施例10〜14 有機ケイ素化合物としてt−ブチルトリメトキシシラ
ン、t−ブチルトリエトキシシラン、i−ブチルトリメ
トキシシラン、シクロヘキシルトリメトキシシラン、ジ
−i−ブチルジメトキシシランを使用した以外は実施例
2と同様に行った結果を表5に示す。
Examples 10 to 14 Except that t-butyltrimethoxysilane, t-butyltriethoxysilane, i-butyltrimethoxysilane, cyclohexyltrimethoxysilane and di-i-butyldimethoxysilane were used as the organosilicon compound. The results obtained in the same manner as in Example 2 are shown in Table 5.

【0042】[0042]

【表5】 [Table 5]

【0043】比較例10〜13 有機ケイ素化合物の代わりに電子供与体としてp−トル
イル酸メチル、トリエチルアミン、アセトフェノン、ジ
エチレングリコールジメチルエーテルを使用した以外は
実施例2と同様に行った結果を表6に示す。本発明に比
べ剛性が劣るとともに、重合溶媒に可溶性な重合体の生
成量が多く好ましくない。
Comparative Examples 10 to 13 Table 6 shows results obtained in the same manner as in Example 2 except that methyl p-toluate, triethylamine, acetophenone and diethylene glycol dimethyl ether were used as electron donors instead of the organosilicon compound. The rigidity is inferior to that of the present invention and the amount of the polymer soluble in the polymerization solvent is large, which is not preferable.

【0044】[0044]

【表6】 [Table 6]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の製造工程を示すフローシートで
ある。
FIG. 1 is a flow sheet showing manufacturing steps of the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン、マグネシウム、ハロゲン及び多
価カルボン酸エステルを必須成分として含有する固体触
媒成分(A)と有機アルミニウム化合物(B)と一般式
4 x5 ySi(OR6z (式中R4 ,R6 は炭化水素
基、R5 は炭化水素基あるいはヘテロ原子を含む炭化水
素基をしめし、x+y+z=4,0≦x≦2,1≦y≦
3,1≦z≦3である。)で表される有機ケイ素化合物
(C)を組み合わせた触媒系を用い、第1段階として2
槽以上の重合器を直列に用い、エチレン/(エチレン+
プロピレン)=0〜5重量%のモノマーを供給してプロ
ピレンを主体とした重合工程(I)を実施して全重合量
の60〜95%を製造し、第2段階として1槽以上の重
合器を用い、エチレン/(エチレン+プロピレン)=1
0〜100重量%のモノマーを供給して、エチレンを比
較的多量に含む重合工程(II)を全重合量の5〜40重
量%を製造することを特徴とするプロピレン・エチレン
ブロック共重合体の製造法において、重合工程(I)の
各槽で得られる重合体のメルトフローレートの最高値
(以下MFR(h)と言う)と最小値(以下MFR
(l)と言う)とが 0.1≦Log(MFR(h)/MFR(l))≦1 なる関係を有し、かつ、プロピレンを主体とした重合工
程(I)で得られる重合体のメルトインデックス(以下
MFR(i)と言う)とエチレンを比較的多量に含む重
合工程(II)で得られる重合体のメルトインデックス
(以下MFR(iiと言う)とが 3≦Log(MFR(i)/MFR(ii))≦7 なる関係を有する如く製造することを特徴とする高剛性
プロピレン・エチレンブロック共重合体の製造法。
1. A solid catalyst component (A) containing titanium, magnesium, halogen and a polycarboxylic acid ester as essential components, an organoaluminum compound (B) and a general formula R 4 x R 5 y Si (OR 6 ) z. (In the formula, R 4 and R 6 represent a hydrocarbon group, R 5 represents a hydrocarbon group or a hydrocarbon group containing a hetero atom, and x + y + z = 4,0 ≦ x ≦ 2,1 ≦ y ≦
3, 1 ≦ z ≦ 3. 2) is used as the first step by using a catalyst system in which an organosilicon compound (C) represented by
Using a polymerization vessel of more than one tank in series, ethylene / (ethylene +
Propylene) = 0 to 5% by weight of a monomer is supplied to carry out a polymerization step (I) mainly composed of propylene to produce 60 to 95% of the total amount of polymerization, and a second or more polymerization vessel as a second stage. And ethylene / (ethylene + propylene) = 1
A propylene / ethylene block copolymer, characterized in that the polymerization step (II) containing a relatively large amount of ethylene is carried out to prepare 5 to 40% by weight of the total polymerization amount by supplying 0 to 100% by weight of a monomer. In the production method, the maximum value (hereinafter referred to as MFR (h)) and the minimum value (hereinafter referred to as MFR) of the melt flow rate of the polymer obtained in each tank of the polymerization step (I)
(Referred to as (l)) has a relationship of 0.1 ≦ Log (MFR (h) / MFR (l)) ≦ 1 and a polymer obtained in the polymerization step (I) mainly containing propylene. The melt index (hereinafter referred to as MFR (i)) and the melt index of the polymer obtained in the polymerization step (II) containing a relatively large amount of ethylene (hereinafter referred to as MFR (ii)) are 3 ≦ Log (MFR (i)). / MFR (ii)) ≦ 7, a method for producing a high-rigidity propylene / ethylene block copolymer, which is characterized in that it is produced.
【請求項2】 有機ケイ素化合物(C)と有機アルミニ
ウム化合物(B)のモル比を (B)/(C)=1〜15 とする請求項1に記載の製造法。
2. The production method according to claim 1, wherein the molar ratio of the organosilicon compound (C) and the organoaluminum compound (B) is (B) / (C) = 1 to 15.
JP21786594A 1994-08-18 1994-08-18 Method for producing high-rigidity propylene / ethylene block copolymer Expired - Lifetime JP3355806B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21786594A JP3355806B2 (en) 1994-08-18 1994-08-18 Method for producing high-rigidity propylene / ethylene block copolymer
KR1019950020056A KR100341040B1 (en) 1994-08-18 1995-07-08 High Rigidity Propylene-Ethylene Block Copolymer Composition and Its Manufacturing Method
DE69502784T DE69502784T2 (en) 1994-08-18 1995-08-04 A highly rigid composition of "propylene-ethylene block copolymer" and a process for its manufacture
EP95112296A EP0700943B1 (en) 1994-08-18 1995-08-04 A highly stiff propylene-ethylene block copolymer composition and a process for producing the same
US08/516,089 US5672658A (en) 1994-08-18 1995-08-17 Highly stiff propylene-ethylene block copolymer composition and a process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21786594A JP3355806B2 (en) 1994-08-18 1994-08-18 Method for producing high-rigidity propylene / ethylene block copolymer

Publications (2)

Publication Number Publication Date
JPH0859766A true JPH0859766A (en) 1996-03-05
JP3355806B2 JP3355806B2 (en) 2002-12-09

Family

ID=16710985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21786594A Expired - Lifetime JP3355806B2 (en) 1994-08-18 1994-08-18 Method for producing high-rigidity propylene / ethylene block copolymer

Country Status (1)

Country Link
JP (1) JP3355806B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008218A1 (en) * 1995-08-31 1997-03-06 Chisso Corporation Propylene-ethylene copolymer compositions and process for the production thereof
WO1999011685A1 (en) * 1997-08-29 1999-03-11 Chisso Corporation Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof
WO1999011684A1 (en) * 1997-08-29 1999-03-11 Chisso Corporation Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof
WO2000066639A1 (en) * 1999-04-28 2000-11-09 Idemitsu Petrochemical Co., Ltd. Propylene copolymer and molded object obtained by molding the copolymer
JP2002241452A (en) * 2001-02-21 2002-08-28 Chisso Corp Propylene-ethylene block copolymer composition and molded item obtained by using the same
US6716921B1 (en) 1999-09-07 2004-04-06 Chisso Corporation Propylene resin composition
US6783844B2 (en) 2000-07-12 2004-08-31 Chisso Corporation Polypropylene resin foam-molded article
JP2011504543A (en) * 2007-11-26 2011-02-10 トータル・ペトロケミカルズ・リサーチ・フエリユイ Heterophase propylene copolymers for corrugated plates and cast films

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008218A1 (en) * 1995-08-31 1997-03-06 Chisso Corporation Propylene-ethylene copolymer compositions and process for the production thereof
WO1999011685A1 (en) * 1997-08-29 1999-03-11 Chisso Corporation Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof
WO1999011684A1 (en) * 1997-08-29 1999-03-11 Chisso Corporation Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof
US6201069B1 (en) 1997-08-29 2001-03-13 Chisso Corporation Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof
WO2000066639A1 (en) * 1999-04-28 2000-11-09 Idemitsu Petrochemical Co., Ltd. Propylene copolymer and molded object obtained by molding the copolymer
US6423782B1 (en) * 1999-04-28 2002-07-23 Idemitsu Petrochemical Co., Ltd. Propylene copolymer and molded object obtained by molding the copolymer
US6716921B1 (en) 1999-09-07 2004-04-06 Chisso Corporation Propylene resin composition
US6783844B2 (en) 2000-07-12 2004-08-31 Chisso Corporation Polypropylene resin foam-molded article
JP2002241452A (en) * 2001-02-21 2002-08-28 Chisso Corp Propylene-ethylene block copolymer composition and molded item obtained by using the same
JP2011504543A (en) * 2007-11-26 2011-02-10 トータル・ペトロケミカルズ・リサーチ・フエリユイ Heterophase propylene copolymers for corrugated plates and cast films

Also Published As

Publication number Publication date
JP3355806B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
CN1256698A (en) Polybutene-1(CO) polymers and process for their preparation
KR100341040B1 (en) High Rigidity Propylene-Ethylene Block Copolymer Composition and Its Manufacturing Method
WO1996011958A1 (en) Process for producing polyolefin having terminal functional group
JP3508187B2 (en) Continuous production of propylene / ethylene block copolymer
JP3355864B2 (en) Continuous production of high-rigidity propylene / ethylene block copolymer
JP3355806B2 (en) Method for producing high-rigidity propylene / ethylene block copolymer
WO2001081433A1 (en) Catalyst for bulk polymerization, catalyst for vapor phase polymerization, method of polymerization using these, and olefin polymer obtained with these
EP0478117B1 (en) Process for preparing propylene block copolymers
JP3482732B2 (en) Method for producing high-rigidity propylene / ethylene block copolymer
JPH10212315A (en) Olefin polymerization and copolymerization method
JPH0410889B2 (en)
JP3385687B2 (en) Method for producing propylene block copolymer
JPH11228617A (en) Alpha-olefin polymerization catalyst and production of alpha-olefin polymer
JP4843188B2 (en) Polyolefin production method and gas phase polymerization apparatus
JP2003321583A (en) Polyethylene resin composition
JPH0725960A (en) Production of propylene block copolymer
JP3385681B2 (en) Method for producing propylene block copolymer
JP4420527B2 (en) Bulk polymerization catalyst, bulk polymerization method using the same, and olefin polymer
JPH07145220A (en) Production of propylene block copolymer
JP3160944B2 (en) Method for producing low crystalline polypropylene
JP2003160684A (en) Polypropylene resin molding
JP3694929B2 (en) Propylene copolymer composition and method for producing the same
JPH06248019A (en) Catalyst for polymerizing olefin and polymerization of olefin
JPH07103176B2 (en) Method for producing polyethylene by multistage polymerization
JP2001122917A (en) METHOD FOR POLYMERIZING alpha-OLEFIN AND alpha-OLEFIN POLYMER PRODUCED BY THE METHOD

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121004