JPH085927A - Confocal microscope - Google Patents

Confocal microscope

Info

Publication number
JPH085927A
JPH085927A JP6156370A JP15637094A JPH085927A JP H085927 A JPH085927 A JP H085927A JP 6156370 A JP6156370 A JP 6156370A JP 15637094 A JP15637094 A JP 15637094A JP H085927 A JPH085927 A JP H085927A
Authority
JP
Japan
Prior art keywords
fluorescence
scanning
sample
point
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6156370A
Other languages
Japanese (ja)
Other versions
JP3413970B2 (en
Inventor
Hiroyuki Hakozaki
博之 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP15637094A priority Critical patent/JP3413970B2/en
Publication of JPH085927A publication Critical patent/JPH085927A/en
Application granted granted Critical
Publication of JP3413970B2 publication Critical patent/JP3413970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To increase the efficiency of incidence on a detector for a generated fluorescent light quantity without lowering the resolution by forming a thin hole in the focal plane of a condenser lens in a thin and long shape which is extended in the scanning direction of a scanning means. CONSTITUTION:Assuming that exciting light is converged on a point 4a on the focal plane when an X-Y scanner 2 is at a specific position, the fluorescent light from the point 4a is converged on a point 7a on an image formation surface. The X-Y scanner 2 is at a position 2b a specific time later. A circular hole 16a provided corresponding to the point 7a is a hole through which the fluorescent light excited with the excitation light passes when the X-Y scanner 2 is at the specific position, and a circular hole 16b provided corresponding to the point 7b is a hole through which the afterglow of the fluorescent light passes when the X-Y scanner 2 is at the position 2b. A long hole 16 is formed by connecting the circular holes 16a and 16b with two straight lines, and the fluorescent light includes the afterglow from the generation time to the specific time and passes through the long hole 16 and is detected by a detecting device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンフォーカル顕微鏡に
関するものである。更に詳しくはレーザ走査型コンフォ
ーカル蛍光顕微鏡に関するものである。
FIELD OF THE INVENTION The present invention relates to a confocal microscope. More specifically, it relates to a laser scanning confocal fluorescence microscope.

【0002】[0002]

【従来の技術】コンフォーカル顕微鏡の光学的構成は図
6に示すようなものであった。励起光はダイクロイック
ミラー1で反射され、X−Yスキャナ2で走査された
後、対物レンズ3により焦点面4上に収束される。試料
5は蛍光色素で標識されている。試料5の焦点面4上の
点5aで励起光の照射により励起された蛍光は、逆進し
て、対物レンズ3、X−Yスキャナ2を介し、ダイクロ
イックミラー1を透過して集光レンズ6によって集光さ
れる。点5aから発生した蛍光が集光される結像面7に
は円形のピンホール8が配置されていて、点5aから発
生した蛍光はピンホール8を通過して検出装置11に入
射する。
2. Description of the Related Art The optical configuration of a confocal microscope is as shown in FIG. The excitation light is reflected by the dichroic mirror 1, scanned by the XY scanner 2, and then converged on the focal plane 4 by the objective lens 3. Sample 5 is labeled with a fluorescent dye. The fluorescence excited by the irradiation of the excitation light at the point 5a on the focal plane 4 of the sample 5 goes backward, passes through the objective lens 3 and the XY scanner 2, passes through the dichroic mirror 1, and passes through the condensing lens 6. Is collected by. A circular pinhole 8 is arranged on the image plane 7 on which the fluorescence emitted from the point 5a is condensed, and the fluorescence emitted from the point 5a passes through the pinhole 8 and enters the detection device 11.

【0003】このような装置では、試料5の焦点面外の
点5bから発生した蛍光は結像面7外の点9に集光さ
れ、ピンホール8の置かれた結像面7では発散して広が
ってしまい、ピンホール8を通過する光の量は少なくな
る。また、試料5の焦点面外の点5cから発せられる蛍
光は結像面7外の点10に集光されるので、結像面7で
は未だ集光が不充分で広がっており、ピンホール8を通
過する光の量は少ない。このため、検出装置11に入射
する蛍光は、励起光が対物レンズ3により収束される点
5aからの蛍光がほとんどである。
In such an apparatus, the fluorescence generated from the point 5b outside the focal plane of the sample 5 is condensed on the point 9 outside the image plane 7 and diverges on the image plane 7 where the pinhole 8 is placed. As a result, the amount of light passing through the pinhole 8 is reduced. Further, since the fluorescence emitted from the point 5c outside the focal plane of the sample 5 is condensed at the point 10 outside the image forming plane 7, the light is still insufficiently condensed on the image forming plane 7 and the pinhole 8 is formed. The amount of light passing through is small. Therefore, most of the fluorescence that enters the detection device 11 is from the point 5 a where the excitation light is converged by the objective lens 3.

【0004】そして、ダイクロイックミラー1と対物レ
ンズ3との間に配置されたX−Yスキャナ2により、励
起光で焦点面4を走査し、焦点面4による断面上にある
試料5の部分の情報のみを取り出すことができるから、
対物レンズ3の光軸方向であるZ方向の分解能は良好で
あり、またピンホールの大きさを適当に設定すると、通
過する光量と、X方向及びY方向の分解能とのバランス
を適切に確保することができる。
Then, the XY scanner 2 arranged between the dichroic mirror 1 and the objective lens 3 scans the focal plane 4 with excitation light, and the information of the portion of the sample 5 on the cross section by the focal plane 4 is scanned. Because you can only take out
The resolution in the Z direction, which is the optical axis direction of the objective lens 3, is good, and when the size of the pinhole is set appropriately, the balance between the amount of passing light and the resolution in the X and Y directions is properly secured. be able to.

【0005】[0005]

【発明が解決しようとする課題】従来のピンホールを用
いたコンフォーカル顕微鏡では、励起光で試料を走査
し、又発生した蛍光はピンホールで所望の物体面以外か
らの部分を通過させないために、検出される蛍光の強度
が小さいと言う問題があった。これを解決するために、
走査速度を遅くしたり、ピンホールの直径を大きくした
りして入射する蛍光の光量を増大して検出することが行
われていた。
In the conventional confocal microscope using a pinhole, the sample is scanned with excitation light, and the generated fluorescence does not pass through a portion other than the desired object plane by the pinhole. However, there is a problem that the detected fluorescence intensity is low. To solve this,
It has been performed that the scanning speed is slowed down or the diameter of the pinhole is increased to increase the amount of incident fluorescent light for detection.

【0006】例えば、励起光を点状に集光せずに横線状
に集光させ、開口としてピンホールの代りにX方向に延
伸したスリットを用い、走査を縦のY方向にのみ行うも
のもあった。これは、横のX方向の走査を行わないの
で、ピンホールを用いたものよりも速く走査することが
できるから時間分解能は大きいが、開口がスリットであ
るから、X方向及びZ方向の分解能は劣るものであっ
た。
For example, there is also one in which the excitation light is not condensed in a point shape but is condensed in a horizontal line shape, and a slit extending in the X direction is used as an opening instead of a pinhole, and scanning is performed only in the vertical Y direction. there were. Since this does not perform horizontal X-direction scanning, it can be scanned faster than that using a pinhole, so the time resolution is large, but since the aperture is a slit, the resolution in the X-direction and Z-direction is It was inferior.

【0007】又図7に示すように、Y方向スキャナ12
とX方向スキャナ13の間にダイクロイックミラー1を
配置し、蛍光がX方向スキャナ13を通過しないものが
あった。これでは結像面7においてX方向スキャナ13
により蛍光の集光する位置が実線14と点線15で示す
ように移動してしまう。このため、開口として円形のピ
ンホールは使用できず、X方向に延伸したスリットを使
用するようになっている。これによると、蛍光の検出器
へ入射する割合を大きくすることができるが、開口がス
リットであるから、X方向、Z方向の分解能は劣るもの
であった。
Further, as shown in FIG. 7, a Y-direction scanner 12 is provided.
In some cases, the dichroic mirror 1 was placed between the X-direction scanner 13 and the X-direction scanner 13 and fluorescence did not pass through the X-direction scanner 13. With this, the X-direction scanner 13 is formed on the image plane 7.
As a result, the position where the fluorescence is condensed moves as shown by the solid line 14 and the dotted line 15. Therefore, a circular pinhole cannot be used as an opening, and a slit extending in the X direction is used. According to this, although the ratio of the fluorescence incident on the detector can be increased, the resolution in the X and Z directions was poor because the aperture was a slit.

【0008】本発明はこのような従来の問題に鑑みてな
されたもので、コンフォーカル顕微鏡において、Z方向
の分解能及び時間分解能を低下することなく、発生蛍光
量の検出器への入射効率を増大するものである。
The present invention has been made in view of such a conventional problem, and in a confocal microscope, the incident efficiency of the generated fluorescence amount to the detector is increased without lowering the resolution in the Z direction and the time resolution. To do.

【0009】[0009]

【課題を解決するための手段】本発明は、光源から出射
する励起光と前記励起光が標本を照射して発生させる蛍
光とを分離する光分離手段と、前記光源から出射した励
起光で試料面を走査する走査手段と、前記励起光を前記
標本に収束する対物レンズと、前記標本から発生し、前
記対物レンズを介し、前記光分離手段により分離された
前記蛍光を集光する集光レンズと、前記集光レンズの焦
点面に配置された細孔と、前記細孔を通過した前記蛍光
を検出する検出手段とを具備するコンフォーカル顕微鏡
において、前記細孔は、前記走査手段が所定の位置にあ
る時、前記標本から発生する蛍光、及び前記走査手段が
前記蛍光の所定の残光時間後に移動した位置にある時、
前記蛍光の残光が通過可能な、前記走査手段の走査方向
に延伸した細長形状を有することを特徴とするものであ
る。
According to the present invention, there is provided light separation means for separating excitation light emitted from a light source and fluorescence generated by the excitation light irradiating a sample, and a sample by the excitation light emitted from the light source. Scanning means for scanning a surface, an objective lens for converging the excitation light on the sample, and a condenser lens for condensing the fluorescence generated from the sample and separated by the light separating means via the objective lens. In a confocal microscope comprising: a fine hole arranged on the focal plane of the condenser lens; and a detecting means for detecting the fluorescence that has passed through the fine hole, the fine hole has a predetermined scanning means. When in a position, the fluorescence emitted from the sample, and when the scanning means is in a position moved after a predetermined afterglow time of the fluorescence,
It is characterized by having an elongated shape extending in the scanning direction of the scanning means, through which the afterglow of the fluorescence can pass.

【0010】前記細長形状は長円形状であることが好ま
しい。
The elongated shape is preferably an elliptical shape.

【0011】前記細長形状は矩形であることが好まし
い。
The elongated shape is preferably rectangular.

【0012】前記細長形状の前記走査方向の長さは前記
走査手段の走査速度と標本から発生する蛍光物質の蛍光
寿命に応じて決定されることが好ましい。
It is preferable that the length of the elongated shape in the scanning direction is determined according to the scanning speed of the scanning means and the fluorescence lifetime of the fluorescent substance generated from the sample.

【0013】[0013]

【作用】集光レンズの焦点面に配置された細孔は、走査
手段の走査方向に延伸した細長形状を有し、走査手段が
所定の位置にある時標本から発生する蛍光、及び走査手
段が蛍光の所定の残光時間後に移動した位置にある時ま
での蛍光の残光が細孔を通過する。
The pores arranged on the focal plane of the condenser lens have an elongated shape extending in the scanning direction of the scanning means, and the fluorescence generated from the sample when the scanning means is at a predetermined position and the scanning means After a predetermined afterglow time of the fluorescent light, the afterglow of the fluorescent light passes through the pores up to the time when it is in the moved position.

【0014】[0014]

【実施例】本発明の一実施例を図1〜図5により説明す
る。図1においてダイクロイックミラー1は、光源(不
図示)から出射する励起光を反射し、励起光の照射によ
り試料5から発生する蛍光を透過する波長分離器であ
る。X−Yスキャナ2は横のX方向及び縦のY方向に、
励起光及び蛍光を二次元走査するスキャナである。本実
施例においては、走査は先ず横のX方向に行われ、順次
縦のY方向に行われる。対物レンズ3は励起光を試料5
に収束して照射し、試料5から発生する蛍光をX−Yス
キャナ2に入射させる光学系である。集光レンズ6は蛍
光を集光する光学系であり、集光レンズ6による蛍光の
結像面7には細孔16が配置され、細孔16の後方には
蛍光を検出する検出装置11が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the dichroic mirror 1 is a wavelength separator that reflects the excitation light emitted from a light source (not shown) and transmits the fluorescence generated from the sample 5 by the irradiation of the excitation light. The XY scanner 2 has a horizontal X direction and a vertical Y direction.
It is a scanner that two-dimensionally scans excitation light and fluorescence. In this embodiment, scanning is first performed in the horizontal X direction, and then sequentially performed in the vertical Y direction. The objective lens 3 transmits the excitation light to the sample 5
Is an optical system that converges the light onto the X-Y scanner 2 and irradiates the X-Y scanner 2 with the fluorescence emitted from the sample 5. The condensing lens 6 is an optical system that condenses the fluorescence, and a fine hole 16 is arranged on an image forming surface 7 of the fluorescence by the condensing lens 6, and a detection device 11 for detecting the fluorescence is provided behind the fine hole 16. It is arranged.

【0015】光源(不図示)から出射された励起光はダ
イクロイックミラー1で反射され、X−Yスキャナ2で
走査されて、対物レンズ3により焦点面4に収束され
る。試料5の蛍光物質は励起光で照射されると励起され
て蛍光を発生する。蛍光は対物レンズ3を介し、X−Y
スキャナ2で走査され、ダイクロイックミラー1を透過
し、集光レンズ6で結像面7上の1点に集光され、細孔
16を通過して検出装置11で検出され、検出装置11
からはX方向の走査に対応する画像信号が順次出力す
る。
Excitation light emitted from a light source (not shown) is reflected by a dichroic mirror 1, scanned by an XY scanner 2, and focused on a focal plane 4 by an objective lens 3. When the fluorescent substance of the sample 5 is irradiated with excitation light, it is excited and emits fluorescence. Fluorescence passes through the objective lens 3
The image is scanned by the scanner 2, transmitted through the dichroic mirror 1, condensed by a condenser lens 6 at one point on the image forming surface 7, passed through the pores 16, and detected by the detection device 11.
Image signals corresponding to scanning in the X direction are sequentially output.

【0016】さて、蛍光は、試料5に含まれている蛍光
色素が励起光が照射して発生するが、照射終了して瞬間
的に消滅するものではなく、一般的に数nsec〜数十
nsecの長さ減衰しながら持続している。発生した蛍
光の強度は、図2に示すように変化する。図2で横軸は
時間(t)、縦軸は蛍光の強度(I)である。ある時間
t1にパルス光を照射する時、蛍光色素が励起されて発
する蛍光の強度は、I1であり、時間の経過と共に減少
し、時間t2では蛍光の強度はI2となる。蛍光の強度
の時間変化は、式I=exp(−t/τ)で表され、指
数関数的に減少する。尚ここに、τは蛍光寿命であり、
一般的に数nsec〜数十nsecの大きさである。
The fluorescence is generated when the fluorescent dye contained in the sample 5 is irradiated with the excitation light, but is not instantaneously extinguished after the irradiation is completed, and is generally several nsec to several tens nsec. The length is decaying and lasting. The intensity of the generated fluorescence changes as shown in FIG. In FIG. 2, the horizontal axis represents time (t) and the vertical axis represents fluorescence intensity (I). When the pulsed light is irradiated at a certain time t1, the intensity of the fluorescence emitted by the excitation of the fluorescent dye is I1, which decreases with the passage of time, and the intensity of the fluorescence becomes I2 at the time t2. The time change of fluorescence intensity is represented by the formula I = exp (−t / τ), and decreases exponentially. Here, τ is the fluorescence lifetime,
Generally, the size is several nsec to several tens nsec.

【0017】今、X−Yスキャナ2の位置が図1の位置
2aにある時、励起光が焦点面4上の点4aに収束され
ているとすると、点4aからの蛍光は結像面7の点7a
に集光されている。時間t2後には、図3に示すように
X−Yスキャナ2の位置は位置2bに変化している。そ
の時、励起光が収束する点は点線で示した点4bに変化
している。点4bから発生する蛍光が点7aに集光する
ように変化したから、点4aからの蛍光の残光は結像面
7の位置7aではなく位置7bに集光するようになる。
Now, assuming that the excitation light is focused on the point 4a on the focal plane 4 when the position of the XY scanner 2 is at the position 2a in FIG. Point 7a
It is focused on. After the time t2, the position of the XY scanner 2 is changed to the position 2b as shown in FIG. At that time, the point where the excitation light converges is changed to the point 4b shown by the dotted line. Since the fluorescence emitted from the point 4b is changed so as to be condensed on the point 7a, the afterglow of the fluorescence from the point 4a is condensed on the position 7b of the image plane 7 instead of the position 7a.

【0018】図4に示すよう点7aに対応して設けられ
た円孔16aは、X−Yスキャナ2が位置2aにある
時、励起光により励起された蛍光が通過する孔であり、
点7bに対応して設けられた円孔16bは、X−Yスキ
ャナ2が位置2bにある時、蛍光の残光が通過する孔で
ある。細孔16は円孔16aと円孔16bとを2本の直
線で連結した長円であり、蛍光は、時間t1で発生した
時から時間t2までの残光を含み、細孔16を通過して
検出装置11で検出される。
As shown in FIG. 4, the circular hole 16a provided corresponding to the point 7a is a hole through which the fluorescence excited by the excitation light passes when the XY scanner 2 is at the position 2a,
The circular hole 16b provided corresponding to the point 7b is a hole through which the afterglow of the fluorescence passes when the XY scanner 2 is at the position 2b. The pore 16 is an ellipse in which the circular hole 16a and the circular hole 16b are connected by two straight lines, and the fluorescence includes the afterglow from the time when it is generated at time t1 to the time t2 and passes through the pore 16. And is detected by the detection device 11.

【0019】細孔の形状は長円に限られず、図5に示す
ような矩形16cでも良い。
The shape of the pores is not limited to an ellipse, and may be a rectangle 16c as shown in FIG.

【0020】上述したように本実施例では、X−Yスキ
ャナにより励起光で試料を二次元走査し、且つ蛍光も二
次元に走査されているから、時間分解能が低下すること
はないし、Z方向の分解能は良好である。又細孔の長手
方向はX方向であるから、Y方向の余計な光は細孔を通
過せず、Y方向の分解能は良好である。
As described above, in this embodiment, the sample is two-dimensionally scanned with the excitation light and the fluorescence is also two-dimensionally scanned by the XY scanner, so that the time resolution is not lowered and the Z direction is not reduced. Has a good resolution. Further, since the longitudinal direction of the pores is the X direction, extra light in the Y direction does not pass through the pores, and the resolution in the Y direction is good.

【0021】本実施例における細孔は細長形状を有して
いるが、蛍光寿命に対応する長さに限定された比較的短
いものであるから、X方向の分解能が大きく低下するこ
とはない。
Although the pores in this embodiment have an elongated shape, they have a relatively short length which is limited to the length corresponding to the fluorescence lifetime, so that the resolution in the X direction does not drop significantly.

【0022】[0022]

【発明の効果】本発明のコンフォーカル顕微鏡により、
集光レンズの焦点面に配置された細孔が走査手段の走査
方向に延伸した細長形状を有し、走査手段が所定の位置
にある時標本から発生する蛍光、及び走査手段が蛍光の
所定の残光時間後に移動した位置にある時までの蛍光の
残光が細孔を通過するから、発生蛍光量の検出器への入
射効率が増大して、且つZ方向の分解能及び時間分解能
を低下することなく、明るい蛍光像を観察することがで
きる。
According to the confocal microscope of the present invention,
The pores arranged on the focal plane of the condenser lens have an elongated shape extending in the scanning direction of the scanning means, and the fluorescence generated from the sample when the scanning means is at a predetermined position and the predetermined fluorescence of the scanning means. The afterglow of the fluorescent light after passing through the afterglow time passes through the pores, so that the incident efficiency of the generated fluorescent light to the detector is increased, and the resolution in the Z direction and the time resolution are reduced. Without this, a bright fluorescent image can be observed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光学構成図。FIG. 1 is an optical configuration diagram of an embodiment of the present invention.

【図2】蛍光の強度の減衰を示す図。FIG. 2 is a diagram showing attenuation of fluorescence intensity.

【図3】本発明の一実施例の光学構成図。FIG. 3 is an optical configuration diagram of an embodiment of the present invention.

【図4】本発明の一実施例にかかる細孔の平面図。FIG. 4 is a plan view of pores according to an example of the present invention.

【図5】本発明の一実施例にかかるたの態様の細孔の平
面図。
FIG. 5 is a plan view of pores according to another embodiment of the present invention.

【図6】従来例の光学構成図。FIG. 6 is an optical configuration diagram of a conventional example.

【図7】他の従来例の光学構成図。FIG. 7 is an optical configuration diagram of another conventional example.

【符号の説明】[Explanation of symbols]

1・・・・ダイクロイックミラー 2・・・・X−Yスキャナ 3・・・・対物レンズ 4・・・・焦点面 5・・・・試料 6・・・・集光レンズ 7・・・・結像面 11・・・・検出装置 16・・・・細孔 1 ... Dichroic mirror 2 ... XY scanner 3 ... Objective lens 4 ... Focal plane 5 ... Sample 6 ... Condensing lens 7 ... Image plane 11 ... Detection device 16 ... Pore

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源から出射する励起光と前記励起光が標
本を照射して発生させる蛍光とを分離する光分離手段
と、前記光源から出射した励起光で試料面を走査する走
査手段と、前記励起光を前記標本に収束する対物レンズ
と、前記標本から発生し、前記対物レンズを介し、前記
光分離手段により分離された前記蛍光を集光する集光レ
ンズと、前記集光レンズの焦点面に配置された細孔と、
前記細孔を通過した前記蛍光を検出する検出手段とを具
備するコンフォーカル顕微鏡において、 前記細孔は、前記走査手段が所定の位置にある時、前記
標本から発生する蛍光、及び前記走査手段が前記蛍光の
所定の残光時間後に移動した位置にある時、前記蛍光の
残光が通過可能な、前記走査手段の走査方向に延伸した
細長形状を有することを特徴とするコンフォーカル顕微
鏡。
1. A light separating means for separating excitation light emitted from a light source and fluorescence generated by irradiating a sample with the excitation light, and scanning means for scanning a sample surface with the excitation light emitted from the light source. An objective lens for converging the excitation light to the sample, a condensing lens for condensing the fluorescent light generated from the sample and separated by the light separating means via the objective lens, and a focus of the condensing lens. Pores arranged on the surface,
In a confocal microscope including a detection unit that detects the fluorescence that has passed through the pores, the pores include fluorescence generated from the specimen when the scanning unit is in a predetermined position, and the scanning unit. A confocal microscope having an elongated shape extending in the scanning direction of the scanning means, which is capable of passing the afterglow of the fluorescence when it is in a position moved after a predetermined afterglow time of the fluorescence.
【請求項2】前記細長形状は長円形状であることを特徴
とする請求項1に記載のコンフォーカル顕微鏡。
2. The confocal microscope according to claim 1, wherein the elongated shape is an elliptical shape.
【請求項3】前記細長形状は矩形であることを特徴とす
る請求項1に記載のコンフォーカル顕微鏡。
3. The confocal microscope according to claim 1, wherein the elongated shape is a rectangle.
【請求項4】前記細長形状の前記走査方向の長さは前記
走査手段の走査速度と標本から発生する蛍光物質の蛍光
寿命に応じて決定されることを特徴とする請求項1、2
又は3に記載のコンフォーカル顕微鏡。
4. The length of the elongated shape in the scanning direction is determined according to the scanning speed of the scanning means and the fluorescence lifetime of the fluorescent substance generated from the sample.
Alternatively, the confocal microscope according to item 3.
JP15637094A 1994-06-16 1994-06-16 Confocal microscope Expired - Lifetime JP3413970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15637094A JP3413970B2 (en) 1994-06-16 1994-06-16 Confocal microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15637094A JP3413970B2 (en) 1994-06-16 1994-06-16 Confocal microscope

Publications (2)

Publication Number Publication Date
JPH085927A true JPH085927A (en) 1996-01-12
JP3413970B2 JP3413970B2 (en) 2003-06-09

Family

ID=15626274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15637094A Expired - Lifetime JP3413970B2 (en) 1994-06-16 1994-06-16 Confocal microscope

Country Status (1)

Country Link
JP (1) JP3413970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170045A (en) * 2013-03-01 2014-09-18 Olympus Corp Scanning type laser microscope device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170045A (en) * 2013-03-01 2014-09-18 Olympus Corp Scanning type laser microscope device

Also Published As

Publication number Publication date
JP3413970B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
JP4688667B2 (en) Scanning imager and imaging method for specimen imaging
JP5850447B1 (en) Inspection device
EP1785761B1 (en) Microscope apparatus
US7915575B2 (en) Laser scanning microscope having an IR partial transmission filter for realizing oblique illumination
JPH073419B2 (en) Method and device for analyzing cells in fluid
US7390998B2 (en) Raster microscope and method for the analysis of biological samples by means of a raster microscope having a manipulation light beam and excitation light beam successively illuminated with a temporal interval
JP2002207007A (en) Biochip reader
US7453567B2 (en) Fluorescence lifetime distribution image measuring system and its measuring method
JP2001142002A (en) Confocal laser scanning microscope
JP2006133499A (en) Confocal scanner and confocal microscope
JP2010102332A (en) Photoactivation localization microscope and photoactivation localization observation method
JP2001194305A (en) Device for fluorescence correlative spectroscopic analysis
JP2001194303A (en) Device for analyzing diffusion motion of fluorescent molecule
JP2004354937A (en) Laser microscope
JP3413970B2 (en) Confocal microscope
US7545498B2 (en) System and method for removing auto-fluorescence through the use of multiple detection channels
JP4470246B2 (en) Laser scanning microscope equipment
JPH0829692A (en) Fluorescence microscope
JP2002310881A (en) Scanning near field microscope
JP2008249804A (en) Confocal fluorescence microscope
JP2001074657A (en) Photometric method and apparatus
JP2002250760A (en) Apparatus and method for measurement of magnetism
JP6517734B2 (en) Scattered light detection head
JP2000146802A (en) Optical near-field microscope
JP2005513489A (en) Scanning X-ray microscope that simultaneously forms multiple X-ray probes on a sample

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150404

Year of fee payment: 12

EXPY Cancellation because of completion of term