JPH0859250A - Glass melting furnace - Google Patents

Glass melting furnace

Info

Publication number
JPH0859250A
JPH0859250A JP19498994A JP19498994A JPH0859250A JP H0859250 A JPH0859250 A JP H0859250A JP 19498994 A JP19498994 A JP 19498994A JP 19498994 A JP19498994 A JP 19498994A JP H0859250 A JPH0859250 A JP H0859250A
Authority
JP
Japan
Prior art keywords
glass
melting furnace
heating element
resistance heating
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19498994A
Other languages
Japanese (ja)
Inventor
Osamu Asano
修 浅野
Masahiro Mitsuya
昌弘 三津谷
Seiji Okubo
誠司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP19498994A priority Critical patent/JPH0859250A/en
Publication of JPH0859250A publication Critical patent/JPH0859250A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/033Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by using resistance heaters above or in the glass bath, i.e. by indirect resistance heating
    • C03B5/0336Shaft furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE: To provide a glass melting furnace, improved in heat transmission efficiency from heating elements to a melting tank and capable of readily carrying out the exchange of the heating elements. CONSTITUTION: This glass melting furnace is equipped with a raw material charging port in the upper part, a takeout port 8 for a molten glass in the lower part and further electrical resistance heating elements 6 as a heating mechanism for melting the glass. The glass melting furnace is further provided with a cover layer 2, laminated and formed so as to cover the inner wall of the melting tank 1 and an extendedly installed discharge nozzle 9 having a riser part in the takeout port 8. Cavities are bored among the bottom wall 3 and/or a sidewall 4 and the electrical resistance heating elements 6 in the thickness direction of the bottom wall 3 and/or the sidewall 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス溶融炉に関する
ものである。
FIELD OF THE INVENTION The present invention relates to a glass melting furnace.

【0002】[0002]

【従来の技術】従来より、溶融槽内の上表面がガラスの
バッチ原料で覆われた状態で溶融を行なうガラスの連続
溶融炉(いわゆるコールドトップ溶融炉)が広く用いら
れている。この溶融炉を上部加熱方式のタンク窯と比較
すると、溶融ガラス表面からの放熱が小さいために熱効
率が高い、溶融ガラスの表面を冷たいバッチ原料で覆い
ながらガラスを溶融するため揮発成分の揮発量を抑える
ことができる、溶融炉の構造が簡単である等の優位性を
有している。また、比較的少量の生産に適している。
2. Description of the Related Art Conventionally, a continuous glass melting furnace (so-called cold top melting furnace) for melting glass in a state where the upper surface of a melting tank is covered with a batch material of glass has been widely used. Comparing this melting furnace with the tank furnace of the upper heating method, the heat radiation from the surface of the molten glass is small, so the thermal efficiency is high.The amount of volatile components volatilized to melt the glass while covering the surface of the molten glass with cold batch raw material. It has the advantages that it can be suppressed and that the structure of the melting furnace is simple. It is also suitable for relatively small volume production.

【0003】従来のコールドトップ溶融炉として、図8
に示す構造のものが知られている。すなわち、電気抵抗
発熱体6を溶融槽1の底壁3および側壁4に埋設し、溶
融槽1の内壁を白金・白金合金等の貴金属またはモリブ
デン等の耐熱金属製のカバー層2により被覆する構造で
ある。
FIG. 8 shows a conventional cold top melting furnace.
The structure shown in is known. That is, a structure in which the electric resistance heating element 6 is embedded in the bottom wall 3 and the side wall 4 of the melting tank 1 and the inner wall of the melting tank 1 is covered with a cover layer 2 made of a noble metal such as platinum / platinum alloy or a heat-resistant metal such as molybdenum. Is.

【0004】同図のガラス溶融炉は、バッチ原料Bが投
入機構(図示せず)により溶融槽1の全面に供給され、
バッチ原料Bが溶融ガラスA表面の全面を覆った状態で
溶融される。溶融槽1の底壁3および側壁4を構成する
耐火物5には、電気抵抗発熱体6を設置するための埋設
孔7が設けられている。前記埋設孔7は耐火物5を水平
方向に貫通しており、埋設孔7の寸法は電気抵抗発熱体
6を抜き差しするのに十分な大きさを有している。
In the glass melting furnace shown in FIG. 1, the batch raw material B is supplied to the entire surface of the melting tank 1 by a charging mechanism (not shown).
The batch raw material B is melted while covering the entire surface of the molten glass A. The refractory 5 forming the bottom wall 3 and the side wall 4 of the melting tank 1 is provided with a buried hole 7 for installing an electric resistance heating element 6. The buried hole 7 penetrates the refractory 5 in the horizontal direction, and the size of the buried hole 7 is large enough to insert and remove the electric resistance heating element 6.

【0005】また、電気抵抗発熱体6が長期間の使用に
より劣化した場合は、電気抵抗発熱体6の端部に接続さ
れた結線(不図示)をはずし、埋設孔7から電気抵抗発
熱体6を抜き出し、新しい電気抵抗発熱体6を埋設孔7
に挿入して端部を結線することにより交換を行う。
When the electric resistance heating element 6 is deteriorated due to long-term use, the wire (not shown) connected to the end of the electric resistance heating element 6 is removed, and the electric resistance heating element 6 is inserted from the buried hole 7. And a new electric resistance heating element 6 is buried in the hole 7
It is replaced by inserting it in and connecting the ends.

【0006】[0006]

【発明が解決しようとする課題】前記従来の加熱方式で
は、電気抵抗発熱体が溶融槽の耐火物内に埋設されてい
るため、電極による通電方式に比較して発熱体から溶融
ガラスへの伝熱効率が悪く、溶融槽内の温度が上がり難
い。
In the above conventional heating method, since the electric resistance heating element is embedded in the refractory of the melting tank, the heat transfer from the heating element to the molten glass is higher than that in the energization method using electrodes. The thermal efficiency is poor and it is difficult for the temperature in the melting tank to rise.

【0007】ガラス溶融炉内の温度は、発熱体の温度、
発熱体の設置間隔、溶融炉の寸法、耐火物の材質、溶融
するガラスの組成等により異なるが、発熱体の温度と溶
融炉内の溶融ガラスの温度差は通常約500〜700℃
である。
The temperature in the glass melting furnace is the temperature of the heating element,
The temperature difference between the heating element and the temperature of the molten glass in the melting furnace is usually about 500 to 700 ° C, although it varies depending on the installation interval of the heating element, the size of the melting furnace, the material of the refractory, the composition of the glass to be melted, etc.
Is.

【0008】このため、溶融温度で約1000℃程度ま
でしか上がらず、高温溶融ができない。従って、前記温
度範囲では溶融可能なガラスの種類が限定されてしまう
という問題点があった。
Therefore, the melting temperature rises only up to about 1000 ° C., and high temperature melting cannot be performed. Therefore, there is a problem that the types of glass that can be melted are limited in the above temperature range.

【0009】一方、溶融ガラスの温度に比較して発熱体
の温度が非常に高くなるため、発熱体として高温に耐え
る高価な材料を選定しなければならない。また、高温状
態で使用するため発熱体の劣化による交換頻度が上が
り、コスト高になってしまうとい問題点があった。さら
に、発熱体が高温になるので炉の外壁からの放熱が大き
く、電気エネルギーコストが上昇するという問題点もあ
った。
On the other hand, since the temperature of the heating element becomes much higher than the temperature of the molten glass, it is necessary to select an expensive material that can withstand high temperatures as the heating element. In addition, since it is used in a high temperature state, there is a problem that the frequency of replacement increases due to deterioration of the heating element, resulting in high cost. Further, since the heating element becomes high in temperature, the heat radiation from the outer wall of the furnace is large, and the electric energy cost is increased.

【0010】本発明は、上記従来の問題点を解決し、発
熱体から溶融槽への伝熱効率が向上したガラス溶融炉を
提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a glass melting furnace with improved heat transfer efficiency from a heating element to a melting tank.

【0011】[0011]

【課題を解決するための手段】すなわち本発明は、上部
に原料投入口を有し、下部に溶融ガラスの抜き出し口を
備え、かつ、ガラスを溶融させるための加熱機構として
溶融槽の底壁および/または側壁に電気抵抗発熱体が埋
設され、溶融槽の内面を覆ってカバー層が積層形成され
ており、抜き出し口に立ち上がり部分を有する排出ノズ
ルが延設されたガラス溶融炉であり、前記底壁および/
または側壁の厚み方向に沿って、底壁および/または側
壁と電気抵抗発熱体の間に空洞が穿設されたことを特徴
とするガラス溶融炉である。
That is, according to the present invention, a raw material inlet is provided in an upper portion, a molten glass outlet is provided in a lower portion, and a bottom wall of a melting tank is provided as a heating mechanism for melting glass. A glass melting furnace in which an electric resistance heating element is embedded in a side wall, a cover layer is laminated to cover an inner surface of a melting tank, and a discharge nozzle having a rising portion is extended in an extraction port. Wall and /
Alternatively, the glass melting furnace is characterized in that a cavity is provided between the bottom wall and / or the side wall and the electric resistance heating element along the thickness direction of the side wall.

【0012】本発明において、前記空洞はその進行方向
に垂直な断面形状がスリット形状、円形状または矩形状
とすることが好ましい。
In the present invention, it is preferable that the cavity has a sectional shape perpendicular to the direction of travel thereof in a slit shape, a circular shape or a rectangular shape.

【0013】また、前記カバー層を構成する高耐食金属
の材質や厚み、溶融槽の深さ、ガラス比重、溶融温度等
の条件により、カバー層が溶融槽内の溶融ガラスの圧力
によって溶融槽の外側に変形する。このため、この変形
を抑制するために溶融槽内壁とカバー層外壁の間に板状
体を配設することも可能である。
Further, depending on conditions such as the material and thickness of the highly corrosion-resistant metal forming the cover layer, the depth of the melting tank, the specific gravity of the glass, the melting temperature, etc., the cover layer is formed by the pressure of the molten glass in the melting tank. Deforms to the outside. Therefore, in order to suppress this deformation, it is possible to dispose a plate-shaped body between the inner wall of the melting tank and the outer wall of the cover layer.

【0014】前記板状体は、カバー層の外壁に接触させ
て耐火物との間に設置する。また、前記板状体は電気抵
抗発熱体からカバー層である高耐食金属への熱伝導を良
好にするために、できるだけ厚みが小さいことが好まし
いが、他方カバー層の変形を抑制する構造材として用い
るため、十分な強度を有していることが必要である。前
記板状体の材質は、熱伝導性の良好なアルミナや炭化珪
素等を主成分とするものが好適である。また、前記板状
体の厚みは伝熱効率と強度を考慮して1〜10mm程度
とするのが好ましい。
The plate-like body is placed in contact with the outer wall of the cover layer between the plate-like body and the refractory. Further, the plate-like body is preferably as thin as possible in order to improve heat conduction from the electric resistance heating element to the highly corrosion-resistant metal that is the cover layer, but on the other hand, as a structural material that suppresses deformation of the cover layer. In order to be used, it is necessary to have sufficient strength. It is preferable that the material of the plate-shaped body is mainly composed of alumina, silicon carbide, or the like having good thermal conductivity. Further, the thickness of the plate-shaped body is preferably about 1 to 10 mm in consideration of heat transfer efficiency and strength.

【0015】また、本発明においては前記板状体に多数
の貫通孔を設けることもでき、これにより伝熱効率がさ
らに向上する。なお、前記貫通穴としては円形状、矩形
状等いずれの形状も適用できる。
Further, in the present invention, a large number of through holes may be provided in the plate-like body, which further improves the heat transfer efficiency. Any shape such as a circular shape or a rectangular shape can be applied to the through hole.

【0016】[0016]

【作用】本発明のガラス溶融炉では、電気抵抗発熱体か
らの熱が溶融槽の内壁へ輻射により伝熱されるため伝熱
効率が向上し、溶融槽内温度が上昇する。
In the glass melting furnace of the present invention, the heat from the electric resistance heating element is transferred to the inner wall of the melting tank by radiation, so that the heat transfer efficiency is improved and the temperature inside the melting tank is increased.

【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0017】図1は、本発明のガラス溶融炉の一実施例
を示す断面図であり、図2、図3、図5および図6は底
壁近傍における電気抵抗発熱体とその周辺部分を示す要
部断面図である。
FIG. 1 is a sectional view showing an embodiment of the glass melting furnace of the present invention, and FIGS. 2, 3, 5 and 6 show an electric resistance heating element near the bottom wall and its peripheral portion. FIG.

【0018】図1において、溶融槽1の底壁3および側
壁4を構成する耐火物5の内部には加熱用の電気抵抗発
熱体6が、前記底壁3および側壁4の面と各々平行に配
置されている。電気抵抗発熱体6としては、炭化珪素、
フェライト系合金または二酸化モリブデンを用いること
ができ、形状は棒状またはコイル状が好ましい。
In FIG. 1, an electric resistance heating element 6 for heating is provided inside a refractory 5 constituting the bottom wall 3 and the side wall 4 of the melting tank 1 in parallel with the surfaces of the bottom wall 3 and the side wall 4, respectively. It is arranged. As the electric resistance heating element 6, silicon carbide,
A ferritic alloy or molybdenum dioxide can be used, and the shape is preferably a rod shape or a coil shape.

【0019】溶融槽1の内壁の全面を覆って白金製のカ
バー層2が積層形成されている。前記カバー層2は、ガ
ラス組成や溶融温度により白金合金等の貴金属やモリブ
デン等の耐熱金属を使用することもできる。
A cover layer 2 made of platinum is laminated to cover the entire inner wall of the melting tank 1. The cover layer 2 may be made of a noble metal such as a platinum alloy or a heat-resistant metal such as molybdenum depending on the glass composition and melting temperature.

【0020】図2において、耐火物5には底壁3の厚み
方向に沿って電気抵抗発熱体6が露呈するように空洞1
0が穿設され、かつ、この空洞10は電気抵抗発熱体6
の長さ方向に沿って連続して形成されており、全体とし
て溝形状をなしている。この構造により、電気抵抗発熱
体6からの輻射伝熱により溶融槽1の内壁が加熱される
ため、伝熱効率が向上する。
In FIG. 2, the refractory 5 has a cavity 1 so that the electric resistance heating element 6 is exposed along the thickness direction of the bottom wall 3.
0 is bored, and this cavity 10 has an electric resistance heating element 6
Are continuously formed along the length direction of the, and have a groove shape as a whole. With this structure, the inner wall of the melting tank 1 is heated by the radiant heat transfer from the electric resistance heating element 6, so that the heat transfer efficiency is improved.

【0021】図3は別の実施例であり、図4は図3のA
−A線断面図である。図3および図4において、耐火物
5には底壁3の厚み方向に沿って電気抵抗発熱体6が露
呈するように空洞10が穿設され、かつ、この空洞10
は電気抵抗発熱体の長さ方向に沿って不連続に多数形成
されている。また、前記空洞10の底壁3の厚み方向に
垂直な断面形状は、同図に示す円形状をはじめ、矩形状
等も適用できる。この構造により、カバー層2の変形を
抑制することができる。
FIG. 3 shows another embodiment, and FIG. 4 shows A of FIG.
FIG. 3 and 4, a cavity 10 is formed in the refractory 5 along the thickness direction of the bottom wall 3 so as to expose the electric resistance heating element 6, and the cavity 10 is formed.
Are discontinuously formed along the length direction of the electric resistance heating element. Further, the cross-sectional shape perpendicular to the thickness direction of the bottom wall 3 of the cavity 10 may be a circular shape shown in FIG. With this structure, deformation of the cover layer 2 can be suppressed.

【0022】図5は、さらに別の実施例である。同図に
おいて、耐火物5は図2で示した構造と同様に、底壁3
の厚み方向に沿って電気抵抗発熱体6が露呈するように
空洞10が穿設され、かつ、この空洞10は電気抵抗発
熱体6の長さ方向に沿って連続して形成され、全体とし
て溝形状をなしている。そして、カバー層2と耐火物5
の間(同図では耐火物5の上面)に板状体11が配設さ
れている。
FIG. 5 shows still another embodiment. In the figure, the refractory material 5 has a bottom wall 3 similar to the structure shown in FIG.
A cavity 10 is formed along the thickness direction of the electric resistance heating element 6 so that the electric resistance heating element 6 is exposed, and the cavity 10 is formed continuously along the length direction of the electric resistance heating element 6 and has a groove as a whole. It has a shape. Then, the cover layer 2 and the refractory 5
A plate-like body 11 is arranged between the two (in the figure, the upper surface of the refractory 5).

【0023】図6はさらに別の実施例であり、図7は図
6のA−A線断面図である。図6および図7において、
耐火物5は図3で示した構造と同様に、底壁3の厚み方
向に沿って電気抵抗発熱体6が露呈するように空洞10
が穿設され、かつ、この空洞10は電気抵抗発熱体の長
さ方向に沿って不連続に多数形成された構造である。そ
して、カバー層2と耐火物5の間(同図では耐火物5の
上面)に板状体11が配設されており、この板状体11
には厚み方向に多数の貫通孔が孔設されている。前記貫
通孔の形状は、同図に示す円形状をはじめ、矩形状等他
の形状も適用できる。
FIG. 6 shows still another embodiment, and FIG. 7 is a sectional view taken along the line AA of FIG. 6 and 7,
Similar to the structure shown in FIG. 3, the refractory 5 has a cavity 10 so that the electric resistance heating element 6 is exposed along the thickness direction of the bottom wall 3.
And a plurality of cavities 10 are formed discontinuously along the length direction of the electric resistance heating element. A plate-like body 11 is disposed between the cover layer 2 and the refractory 5 (the upper surface of the refractory 5 in the figure).
A large number of through holes are formed in the thickness direction. As for the shape of the through hole, other shapes such as a rectangular shape can be applied in addition to the circular shape shown in FIG.

【0024】[0024]

【発明の効果】以上詳述した通り、本発明のガラス溶融
炉によれば、電気抵抗発熱体から溶融槽への伝熱効率が
向上して溶融槽内の温度が上昇する。従って、溶融可能
なガラス組成の幅が広がり、より実用的なものである。
As described in detail above, according to the glass melting furnace of the present invention, the heat transfer efficiency from the electric resistance heating element to the melting tank is improved and the temperature in the melting tank is increased. Therefore, the range of glass compositions that can be melted is broadened, which is more practical.

【0025】また、溶融温度と電気抵抗発熱体の温度差
が従来構造の場合よりも小さくなるため、低温で使用す
る安価な電気抵抗発熱体を選定することができる。
Further, since the difference between the melting temperature and the temperature of the electric resistance heating element is smaller than that of the conventional structure, an inexpensive electric resistance heating element used at a low temperature can be selected.

【0026】電気抵抗発熱体の使用温度が比較的低いた
め、劣化による電気抵抗発熱体の交換頻度が下がりコス
トが低減する。また、溶融炉の外壁からの放熱が小さく
なるために、電気エネルギーコストが低減する。
Since the operating temperature of the electric resistance heating element is relatively low, the frequency of replacement of the electric resistance heating element due to deterioration is reduced and the cost is reduced. Further, since the heat radiation from the outer wall of the melting furnace is reduced, the electric energy cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラス溶融炉を示す断面図である。FIG. 1 is a sectional view showing a glass melting furnace of the present invention.

【図2】本発明の一実施例を示す底壁近傍の要部断面図
である。
FIG. 2 is a cross-sectional view of essential parts near a bottom wall showing an embodiment of the present invention.

【図3】本発明の別の実施例を示す底壁近傍の要部断面
図である。
FIG. 3 is a cross-sectional view of essential parts near a bottom wall showing another embodiment of the present invention.

【図4】図3のA−A線断面図である。4 is a cross-sectional view taken along the line AA of FIG.

【図5】本発明のさらに別の実施例を示す底壁近傍の要
部断面図である。
FIG. 5 is a sectional view of an essential part near a bottom wall showing still another embodiment of the present invention.

【図6】本発明のさらに別の実施例を示す底壁近傍の要
部断面図である。
FIG. 6 is a sectional view of an essential part near a bottom wall showing still another embodiment of the present invention.

【図7】図6のA−A線断面図である。FIG. 7 is a sectional view taken along line AA of FIG. 6;

【図8】従来のガラス溶融炉を示す断面図である。FIG. 8 is a sectional view showing a conventional glass melting furnace.

【符号の説明】[Explanation of symbols]

1 溶融槽 2 カバー層 3 底壁 4 側壁 5 耐火物 6 電気抵抗発熱体 7 埋設孔 8 抜き出し口 9 排出ノズル 10 空洞 11 板状体 DESCRIPTION OF SYMBOLS 1 Melting tank 2 Cover layer 3 Bottom wall 4 Side wall 5 Refractory 6 Electric resistance heating element 7 Buried hole 8 Extraction port 9 Discharge nozzle 10 Cavity 11 Plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 上部に原料投入口を有し、下部に溶融ガ
ラスの抜き出し口を備え、かつ、ガラスを溶融させるた
めの加熱機構として溶融槽の底壁および/または側壁に
電気抵抗発熱体が埋設され、該溶融槽の内面を覆ってカ
バー層が積層形成されており、該抜き出し口に立ち上が
り部分を有する排出ノズルが延設されたガラス溶融炉で
あって、 前記底壁および/または側壁の厚み方向に沿って、該底
壁および/または側壁と前記電気抵抗発熱体の間に空洞
が穿設されたことを特徴とするガラス溶融炉。
1. An electric resistance heating element is provided on a bottom wall and / or a side wall of a melting tank as a heating mechanism for melting a glass, which has a raw material charging port at an upper part and a molten glass discharging port at a lower part. A glass melting furnace in which a cover layer is embedded and covers the inner surface of the melting tank, and a discharge nozzle having a rising portion at the extraction port is extended. A glass melting furnace, characterized in that a cavity is provided between the bottom wall and / or side wall and the electric resistance heating element along the thickness direction.
【請求項2】 前記空洞の進行方向に垂直な断面形状が
スリット形状を有する請求項1に記載のガラス溶融炉。
2. The glass melting furnace according to claim 1, wherein a cross-sectional shape perpendicular to the traveling direction of the cavity has a slit shape.
【請求項3】 前記空洞の進行方向に垂直な断面形状が
円形状または矩形状を有する請求項1に記載のガラス溶
融炉。
3. The glass melting furnace according to claim 1, wherein a cross-sectional shape perpendicular to the traveling direction of the cavity has a circular shape or a rectangular shape.
【請求項4】 前記溶融槽内壁と前記カバー層外壁の間
に板状体が配設されいる請求項1ないし3のいずれかに
記載のガラス溶融炉。
4. The glass melting furnace according to claim 1, wherein a plate-shaped body is provided between the inner wall of the melting tank and the outer wall of the cover layer.
JP19498994A 1994-08-19 1994-08-19 Glass melting furnace Pending JPH0859250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19498994A JPH0859250A (en) 1994-08-19 1994-08-19 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19498994A JPH0859250A (en) 1994-08-19 1994-08-19 Glass melting furnace

Publications (1)

Publication Number Publication Date
JPH0859250A true JPH0859250A (en) 1996-03-05

Family

ID=16333696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19498994A Pending JPH0859250A (en) 1994-08-19 1994-08-19 Glass melting furnace

Country Status (1)

Country Link
JP (1) JPH0859250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897997A (en) * 2012-11-09 2013-01-30 江苏元升太阳能集团有限公司 Electric melting furnace of circular bottom inserted electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897997A (en) * 2012-11-09 2013-01-30 江苏元升太阳能集团有限公司 Electric melting furnace of circular bottom inserted electrode

Similar Documents

Publication Publication Date Title
EP1691945B1 (en) Heated trough for molten metal
CN101019208B (en) Wafer heating apparatus and semiconductor manufacturing method
EP2618086B1 (en) Cold crucible induction melter integrating induction coil and melting furnace
CN102427621A (en) Immersive electrical heating pipe for melting and insulating aluminum/zinc metal
JP5441106B2 (en) Water cooling mold
CN111854431B (en) Heating system in immersive stove
JPH0859250A (en) Glass melting furnace
CN202310153U (en) Immersion electric heating tube for aluminum/zinc melting and heat insulation
JP4741217B2 (en) Glass melt refining equipment
JP4803991B2 (en) Heat transfer container and manufacturing method thereof
CN103134318A (en) Crucible resistance furnace body capable of achieving internal heating
US20090250453A1 (en) Electric conduction heating device
JPH0446901B2 (en)
KR100790788B1 (en) Continuous glass melting furnace
CN114956524B (en) Tin bath equipment, float glass production line and float glass production process
US6226312B1 (en) Device to cool and protect a cathode in an electric arc furnace
CN211527078U (en) Novel electromagnetic melting furnace
JP2003234131A (en) Heating device of collective battery composed of sodium- sulfur cell
CN110595216B (en) Heating furnace
JPH0859248A (en) Glass melting furnace
RU2212379C1 (en) Vessel for producing of glass fiber
JP2895065B2 (en) Immersion heater for non-ferrous metal melt
US20050129085A1 (en) Arrangement for fastening heating elements to a furnace
US20090193850A1 (en) Heating apparatus and glass manufacturing method
JP2000271722A (en) Low pressure casting apparatus