JPH085796A - X-ray projection aligner - Google Patents

X-ray projection aligner

Info

Publication number
JPH085796A
JPH085796A JP6141728A JP14172894A JPH085796A JP H085796 A JPH085796 A JP H085796A JP 6141728 A JP6141728 A JP 6141728A JP 14172894 A JP14172894 A JP 14172894A JP H085796 A JPH085796 A JP H085796A
Authority
JP
Japan
Prior art keywords
mask
projection exposure
exposure apparatus
condenser mirror
ray projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6141728A
Other languages
Japanese (ja)
Other versions
JP3305119B2 (en
Inventor
Souichi Katagiri
創一 片桐
Masaaki Ito
昌昭 伊東
Takashi Matsuzaka
尚 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14172894A priority Critical patent/JP3305119B2/en
Publication of JPH085796A publication Critical patent/JPH085796A/en
Application granted granted Critical
Publication of JP3305119B2 publication Critical patent/JP3305119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide an X-ray aligner to improve the efficiency of mass production in the semiconductor manufacturing technology (lithography) for copying minute patterns. CONSTITUTION:A condenser mirror 1 and a mask 2 are laid out in such a configuration as the condenser mirror 1 with a rotary elliptic face is divided into areas 4 and 5 and X rays reflected on the areas 4 and 5 of each rotary elliptic face overlap at the illuminating position of the mask 2 to condense the rays. Therefore, this makes it possible to use a set of two mirrors in an imaging optical system used for an X-ray projection aligner and to make an effective use of illumination light, thereby making an effect for improving the throughput of the aligner. Moreover, it has a secondary effect for making it possible to make incoherent the illumination to improve the quality of images in the imaging optical system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線投影露光装置、さ
らに詳しくいえば、微細パターンを転写する半導体製造
技術(リソグラフィ)等に使用され、光源から発散する
X線をコンデンサミラーで集光して投影すべきパターン
を持つマスクを照明し、上記マスクからの反射光又は透
過光を結像光学手段を介して基板上に投影露光して上記
パターンを転写するX線投影露光装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an X-ray projection exposure apparatus, and more specifically in a semiconductor manufacturing technique (lithography) for transferring a fine pattern, and collects X-rays emitted from a light source by a condenser mirror. The present invention relates to an X-ray projection exposure apparatus for illuminating a mask having a pattern to be projected, projecting and exposing reflected light or transmitted light from the mask onto a substrate through an imaging optical means to transfer the pattern. is there.

【0002】[0002]

【従来の技術】X線投影露光装置では高い精度でパター
ンを転写すると共に光源からのX線のうち実際に露光に
寄与する割合を高め、単位時間あたりの転写回数、すな
わちスループットを向上することが重要である。
2. Description of the Related Art In an X-ray projection exposure apparatus, it is possible to transfer a pattern with high accuracy and increase the proportion of X-rays from a light source that actually contributes to exposure, thereby improving the number of transfers per unit time, that is, the throughput. is important.

【0003】X線投影露光装置では、露光波長が13n
m程度の軟X線領域の光を用いるために、X線投影露光
装置の結像光学手段は、透過型レンズが使えなくなり反
射鏡で構成される。この軟X線領域の露光波長の光を反
射するために反射鏡の表面は多層膜で構成されるが、反
射率は高々60%程度である。そこで、スループットを
向上させるにはコンデンサミラー及び結像光学系を構成
する反射鏡の枚数を少なくすることが望ましい。
In the X-ray projection exposure apparatus, the exposure wavelength is 13n.
Since the light in the soft X-ray region of about m is used, the image-forming optical means of the X-ray projection exposure apparatus is constructed of a reflecting mirror because the transmission type lens cannot be used. The surface of the reflecting mirror is composed of a multilayer film for reflecting the light having the exposure wavelength in the soft X-ray region, but the reflectance is about 60% at the most. Therefore, in order to improve the throughput, it is desirable to reduce the number of condenser mirrors and the number of reflecting mirrors forming the imaging optical system.

【0004】高い転写精度で、かつスループットを向上
させることを目的としたX線投影露光装置として、公開
特許公報、特開平4−225215号に記載されている
ようにコンデンサミラーとして回転楕円面ミラー1枚と
結像光学系として3枚の非球面ミラーを組合せたものが
知られている。上記従来技術は、光源の光強度を有効に
利用するために、一個の回転楕円面の反射面を持つコン
デンサミラーを用いてマスク照明領域を円弧状にするも
のである。即ち、図9に示すように3枚組の反射型ミラ
ー10−1、10−2及び10−3の結像光学系10に
よって、マスク2のパターンをウエハ9に転写する場
合、結像光学系10を構成する各反射型ミラー同志が影
となり露光光を蹴って、有効な結像領域(マスク照明領
域)は円弧状になる。そこで、光源のX線ビームを有効
に利用するために、回転楕円面の反射面をもつコンデン
サミラーを用いてマスク上の照明光の照射領域を上記円
弧状にするものである。
As an X-ray projection exposure apparatus for the purpose of improving the throughput with high transfer accuracy, as described in Japanese Patent Laid-Open Publication No. 4-225215, a spheroidal mirror 1 is used as a condenser mirror. It is known that a combination of three aspherical mirrors is used as the image forming optical system. In the above-mentioned conventional technique, in order to effectively utilize the light intensity of the light source, the mask illumination area is formed into an arc shape by using a condenser mirror having one spheroidal reflecting surface. That is, as shown in FIG. 9, when the pattern of the mask 2 is transferred to the wafer 9 by the imaging optical system 10 of the three reflective mirrors 10-1, 10-2 and 10-3, the imaging optical system is used. The respective reflection type mirrors constituting 10 form a shadow and block the exposure light, so that an effective image forming area (mask illumination area) becomes an arc shape. Therefore, in order to effectively use the X-ray beam of the light source, a condenser mirror having a spheroidal reflecting surface is used to make the irradiation area of the illumination light on the mask into the arc shape.

【0005】また、他のX線投影露光装置として、結像
光学系を構成しているミラーに欠陥があっても、その欠
陥による悪影響を小さくするため、コンデンサミラーを
2枚のミラーの組み合わせによって構成し、マスク上の
照明光の照射領域を上記円弧状とすると共に、光源から
のX線を、光源位置でのX線像の垂直方向の結像位置及
び水平方向の結像位置がそれぞれマスクの近傍及び縮小
結像光学系の入射瞳位置に集束させるように構成したも
のが提案されている(公開特許公報、特開平4−225
215号)。
Further, as another X-ray projection exposure apparatus, even if there is a defect in the mirror forming the imaging optical system, in order to reduce the adverse effect due to the defect, a condenser mirror is combined with two mirrors. In addition, the irradiation area of the illumination light on the mask is formed into the arc shape, and the X-ray from the light source is masked at the vertical image forming position and the horizontal image forming position of the X-ray image at the light source position. Has been proposed in which the light is focused near an entrance pupil of the reduction imaging optical system (Japanese Patent Laid-Open No. 4-225).
215).

【0006】[0006]

【発明が解決しようとする課題】上記従来知られている
コンデンサミラーとして回転楕円面ミラーを使用したX
線投影露光装置は次の2つ問題がある。第1の問題は光
源からの光を有効に使用するため、コンデンサミラーの
回転楕円面を広くすると、図10に示すように、光軸z
を含む平面における光源3からのビームは広がりvをも
ち、コンデンサミラー1で反射されたビームは光軸zに
ある焦点に収束する。そのため、マスク2が焦点から離
れているときは、マスク2上のマスク照明幅が広がり、
周辺部は無効なビームとなり、ビームの利用効率を低下
させると共に、解像度を低下させる。第2の問題は、結
像光学系の反射鏡の損失を少なくし、さらに、スループ
ットをさらに改善するため、結像光学系を構成できる最
小の2枚組の反射鏡で構成ことが考えられるが、2枚組
の反射鏡で構成した結像光学系にすると、後で詳細に説
明するように、物点高さ(結像光学系の光軸からマスク
上の照射ビームの位置までの距離)に伴う倍率変動(像
歪)の補正が困難になるという不可避の問題が生じる。
An X using a spheroidal mirror as the conventionally known condenser mirror described above.
The line projection exposure apparatus has the following two problems. The first problem is that the light from the light source is used effectively, so if the spheroid of the condenser mirror is widened, as shown in FIG.
The beam from the light source 3 in the plane including the beam has a divergence v, and the beam reflected by the condenser mirror 1 converges on a focal point on the optical axis z. Therefore, when the mask 2 is away from the focus, the mask illumination width on the mask 2 is widened,
The peripheral portion becomes an ineffective beam, which reduces the beam utilization efficiency and the resolution. The second problem is that, in order to reduce the loss of the reflecting mirror of the imaging optical system and further improve the throughput, the reflecting mirror may be composed of a minimum of two reflecting mirrors that can form the imaging optical system. In the case of an imaging optical system composed of two sets of reflecting mirrors, the object point height (the distance from the optical axis of the imaging optical system to the position of the irradiation beam on the mask) will be described in detail later. There is an unavoidable problem that it becomes difficult to correct the magnification variation (image distortion) due to.

【0007】この像歪の影響を軽減するにはマスク照明
幅を狭めれば良いが、2枚組の結像光学系は3枚組の結
像光学系に比べて有効照明幅が狭くなるので、コンデン
サミラーにより集光された光を有効に使うことが出来な
くなり、結局2枚組又は3枚組のどちらの結像光学系を
用いてもスループットが向上しないという問題があっ
た。
In order to reduce the influence of this image distortion, the mask illumination width may be narrowed, but the effective illumination width of the two-lens image forming optical system is narrower than that of the three-lens image forming optical system. However, there is a problem that the light condensed by the condenser mirror cannot be effectively used, and eventually the throughput cannot be improved by using either the two-lens group or the three-lens group imaging optical system.

【0008】また、前記縮小結像光学系を構成している
ミラーの欠陥の影響を小さくした従来のX線投影露光装
置では、コンデンサミラーが2枚のトロイラルミラー、
2枚のトロイラルミラーと1枚の平面ミラー、あるい
は、2枚のシリンドリカルミラー等の、2枚以上のミラ
ーの組み合わせによって構成されている。そのため、コ
ンデンサミラーで2回以上の反射が行われていることに
なり、結像光学系が、2個の反射鏡で構成されているに
もかかわらず、反射損失は改善されていない。そのため
スループットの低下する原因となっている。
Further, in the conventional X-ray projection exposure apparatus in which the influence of the defects of the mirrors constituting the reduction image-forming optical system is reduced, a condenser mirror is a toroidal mirror,
It is configured by a combination of two or more mirrors such as two toroidal mirrors and one plane mirror, or two cylindrical mirrors. Therefore, the condenser mirror reflects the light more than once, and the reflection loss is not improved even though the imaging optical system is composed of two reflection mirrors. Therefore, this is a cause of a decrease in throughput.

【0009】従って、本発明の主な目的は投影写像の解
像度を低下させることなく、同時に光源からのX線ビー
ムの結像に与する割合を高め、スループットが向上でき
るX線投影露光装置を実現することである。
Therefore, the main object of the present invention is to realize an X-ray projection exposure apparatus capable of improving the throughput by improving the ratio of the X-ray beam from the light source to the image formation without lowering the resolution of the projection mapping. It is to be.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明のX線投影露光装置の1つの形態は、コンデ
ンサミラーで集光してマスクを照明し、上記マスクから
の反射光又は透過光を結像光学手段を介して基板(ウエ
ハ)上に投影露光して上記マスク上のパターンを基板上
に転写する露光装置において、上記コンデンサミラーを
構成する反射面を、X線を一回のみ反射する複数の回転
楕円面で構成し、上記複数の回転楕円面のそれぞれの1
つの焦点は上記光源の位置と一致し、上記複数の回転楕
円面で反射されたX線は上記マスク上の物点高さ方向で
重複して照射するように配置される。すなわち、複数個
のミラーの回転楕円面をマスク上のマスク照明領域の幅
を狭めるように、上記回転楕円面の構成及び位置を特定
した。上記複数の回転楕円面の反射面は単一の固体で構
成しても、複数個のコンデンサミラーで構成してもよ
い。さらに、上記コンデンサミラーを移動するように移
動手段を設けても良い。上記重複は完全に重複する場合
が望ましいが、一部重複でもよい。
In order to achieve the above object, one form of an X-ray projection exposure apparatus of the present invention is one in which a condenser mirror collects light to illuminate a mask, and light reflected or transmitted from the mask is transmitted. In an exposure apparatus for projecting light onto a substrate (wafer) through an image forming optical means to transfer the pattern on the mask onto the substrate, a reflecting surface constituting the condenser mirror is exposed to an X-ray only once. It is composed of a plurality of reflecting spheroids, and one of each of the plurality of spheroids is reflected.
One focal point coincides with the position of the light source, and the X-rays reflected by the plurality of spheroids are arranged so as to overlap and irradiate in the object point height direction on the mask. That is, the configuration and position of the spheroidal surface were specified so that the spheroidal surface of the plurality of mirrors narrows the width of the mask illumination area on the mask. The plurality of spheroidal reflecting surfaces may be formed of a single solid or a plurality of condenser mirrors. Further, moving means may be provided to move the condenser mirror. Although it is desirable that the above-mentioned overlap completely overlaps, it may be partially overlapped.

【0011】本発明のX線投影露光装置の他の形態は、
上記コンデンサミラーを構成する反射面の断面を単一の
楕円とし、上記楕円の一方の焦点に上記光源を配置し、
上記楕円の他方の焦点が上記マスクの照射領域の中心と
し、上記反射面を上記一方の焦点と結像光学系の瞳位置
を結ぶ軸を回転中心とした回転面になるような上記コン
デンサミラーをもちいて構成する。
Another form of the X-ray projection exposure apparatus of the present invention is
A single ellipse has a cross section of a reflecting surface that constitutes the condenser mirror, and the light source is arranged at one focus of the ellipse,
The condenser mirror in which the other focal point of the ellipse is the center of the irradiation area of the mask and the reflective surface is a rotational surface whose rotational center is the axis connecting the one focal point and the pupil position of the imaging optical system. Use and configure.

【0012】[0012]

【作用】光源が水平方向に均等に発散し、厚みは薄いと
いうシート状ビームである場合、シート状ビームを集光
するコンデンサミラーとして回転楕円面を用い、上記光
源を楕円の焦点から発生させると、コンデンサミラーに
よって集光された光は他方の焦点に集光する。従って、
マスクがコンデンサミラーと結像光学系と上記他方の焦
点との間にある場合は、マスク上の照明領域は円弧状に
なり、マスクが他方の焦点にある場合は、マスク上の照
明領域は点になる。この楕円を光源が通るように配置し
た結像光学系の光軸回りに回転する。そのときに得られ
る回転面を反射面とすることでマスク上の照明領域を線
状の円弧にできる。
When the light source is a sheet-like beam which is evenly diverged in the horizontal direction and has a small thickness, a spheroidal surface is used as a condenser mirror for condensing the sheet-like beam, and the light source is generated from an elliptical focus. The light focused by the condenser mirror is focused on the other focus. Therefore,
If the mask is between the condenser mirror, the imaging optics and the other focal point, the illuminated area on the mask is arcuate, and if the mask is at the other focal point, the illuminated area on the mask is a point. become. The ellipse rotates around the optical axis of the imaging optical system arranged so that the light source passes through. By making the rotating surface obtained at that time a reflecting surface, the illumination area on the mask can be made into a linear arc.

【0013】本発明の第1の形態によれば、図1に示す
ように、コンデンサミラー1の反射面を光の進行方向に
複数の領域4、5に分割して、それぞれの領域4、5の
回転楕円面の焦点位置を一方は光源3に一致させ、他方
は14、15のように、光軸z上に分布させ、段階的に
回転楕円面の焦点位置を変え、各領域の外周光線11−
4、11−5がマスク2の有効照明域を重複して照射す
るので、光源3からの開き角度vを大きくしても、マス
ク照明幅ΔHを狭くすることができるので、像歪を増す
ことなくマスク2の有効照明域の狭い2枚組の結像光学
系においても光源3からの照明光の有効利用が可能とな
る。
According to the first embodiment of the present invention, as shown in FIG. 1, the reflecting surface of the condenser mirror 1 is divided into a plurality of regions 4 and 5 in the light traveling direction, and the respective regions 4 and 5 are divided. One of the focal points of the spheroid is aligned with the light source 3, and the other is distributed on the optical axis z, such as 14 and 15, and the focal point of the spheroid is changed stepwise, and the outer peripheral rays of each region are 11-
Since 4 and 11-5 irradiate the effective illumination area of the mask 2 overlappingly, even if the opening angle v from the light source 3 is increased, the mask illumination width ΔH can be narrowed, so that the image distortion is increased. The illumination light from the light source 3 can be effectively used even in a two-image forming optical system in which the effective illumination area of the mask 2 is narrow.

【0014】本発明の第2の形態によれば、コンデンサ
ミラー1の結像光学系の光軸を含む断面は単一の楕円で
あり上記楕円の一方の焦点が光源でマスクが他方の焦点
の近傍に配置される。さらに、上記断面が光源を通るよ
うに配置した結像光学系の光軸回りに回転したときに得
られる回転面をはんしゃめんとすることでマスク上の照
明領域はマスクの移動方向の幅が更に狭められた線状の
円弧となる。よって、像歪は少なく、光源からウエハま
でのX線の反射回数がコンデンサミラーの1回と結像光
学系の2回で最小となり、かつ光源の開き角を大きくす
ることができるので、更に照明光の有効利用が可能とな
る。
According to the second aspect of the present invention, the cross section including the optical axis of the imaging optical system of the condenser mirror 1 is a single ellipse, one of the ellipses has a light source and the mask has the other focal point. It is placed in the vicinity. Further, the illuminated area on the mask is the width in the moving direction of the mask by making the rotating surface obtained when the above-mentioned cross section is rotated around the optical axis of the imaging optical system arranged so as to pass through the light source. Becomes a linear arc that is further narrowed. Therefore, the image distortion is small, the number of reflections of X-rays from the light source to the wafer is minimized by the condenser mirror once and the image forming optical system twice, and the light source opening angle can be increased. Effective use of light becomes possible.

【0015】[0015]

【実施例】図2は本発明によるX線投影露光装置の一実
施例の構成を示す要部の構成図である。本実施例は、コ
ンデンサミラー1の反射面が図1で説明したように複数
の回転楕円面で構成され、マスクが楕円の焦点位置から
離れた位置に配置されたものである。光源3からのX線
はコンデンサミラー1で集光されたX線11となり、マ
スク2を照射する。マスク2で反射されたX線は2枚組
のミラー8−1及び8−2の結像光学手段8によってウ
エハ9にマスク2のパターンを転写投影する。マスク2
とウェハ9は走査駆動手段によって矢印で示す方向、即
ち光軸に垂直方向に同期走査される。結像光学手段8が
縮小倍率をもつときは、マスク2とウェハ9は縮小倍率
分だけ速度を変えて同期走査する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a schematic view of the essential parts showing the construction of an embodiment of an X-ray projection exposure apparatus according to the present invention. In this embodiment, the reflecting surface of the condenser mirror 1 is composed of a plurality of spheroidal surfaces as described with reference to FIG. 1, and the mask is arranged at a position away from the focus position of the ellipse. The X-rays from the light source 3 become the X-rays 11 condensed by the condenser mirror 1 and irradiate the mask 2. The X-ray reflected by the mask 2 transfers and projects the pattern of the mask 2 onto the wafer 9 by the image forming optical means 8 of the mirrors 8-1 and 8-2 of the two sets. Mask 2
The wafer 9 is synchronously scanned by the scanning drive means in the direction indicated by the arrow, that is, in the direction perpendicular to the optical axis. When the imaging optical means 8 has a reduction magnification, the mask 2 and the wafer 9 are synchronously scanned while changing the speeds by the reduction magnification.

【0016】コンデンサミラー1の反射面は、図1で説
明したように、反射面がX線の進行方向に複数の領域に
分割され、各領域ごとに回転楕円面の1つの焦点は光源
3の位置と一致し、他の焦点は互いに異なる反射面で構
成されている。即ち、各領域で反射されたX線は、図1
で説明したように、マスク走査方向のマスク照明幅で重
複する。光源3は結像光学手段8の光軸上に配置されて
いる。光源3はシンクロトロンで、その放射光は断面形
状が水平方向に均一に発散し、厚みは薄いシート状ビー
ムである。従って、シート状ビームが回転楕円面の反射
面で反射されると、マスク2上で円弧状(輪帯)照明領
域が形成される。物点高さ(結像光学手段8の光軸から
マスクの照明位置までの距離)を60mm、結像光学手
段8の縮小倍率を1/5、上記円弧状照明領域の幅を1
00mmとすると、ウエハ9の項軸から下側に12mm
のところに幅20mmの円弧状照明領域のパターンが転
写される。上記実施例はマスク2からの反射光を利用す
るものであるが、透過光を利用するようにしても良いこ
とは図1の説明からも明らかである。また、本実施例に
おいて、光源はシンクロトロン放射光でもよいし、レー
ザプラズマX線源であってもよい。さらに、露光波長
は、ミラーを構成する多層膜の製造技術、材料の観点よ
り、3nmから20nmとすることが望ましい。
As described with reference to FIG. 1, the reflecting surface of the condenser mirror 1 is divided into a plurality of areas in the X-ray traveling direction, and one focal point of the spheroidal surface of the light source 3 is in each area. The other focal points correspond to the positions, and the other focal points are composed of different reflecting surfaces. That is, the X-ray reflected in each region is
As described above, the mask illumination width in the mask scanning direction overlaps. The light source 3 is arranged on the optical axis of the imaging optical means 8. The light source 3 is a synchrotron, and its radiated light is a sheet-like beam whose cross-sectional shape is uniformly diverged in the horizontal direction and whose thickness is thin. Therefore, when the sheet-like beam is reflected by the spheroidal reflecting surface, an arcuate (annular zone) illumination area is formed on the mask 2. The height of the object point (the distance from the optical axis of the imaging optical unit 8 to the illumination position of the mask) is 60 mm, the reduction ratio of the imaging optical unit 8 is 1/5, and the width of the arc-shaped illumination region is 1.
If it is 00 mm, it is 12 mm downward from the nip axis of the wafer 9.
The pattern of the arcuate illumination area having a width of 20 mm is transferred there. Although the above embodiment uses the reflected light from the mask 2, it is clear from the description of FIG. 1 that the transmitted light may be used. In this embodiment, the light source may be synchrotron radiation light or a laser plasma X-ray source. Further, the exposure wavelength is preferably 3 nm to 20 nm from the viewpoint of manufacturing technology and materials of the multilayer film forming the mirror.

【0017】作用の欄で説明したように、コンデンサミ
ラー1の回転楕円面の組み合わせにによって、光源3か
らの開き角vを大きくしてもマスク照明幅を狭くできる
ので、2枚組の結像光学系8を利用する場合でも像歪を
大きくすることなく光源3からの光を効率良く露光に用
いることが可能となり、従来にないスループットの向上
が実現できる。なお、上記説明においては、光源3と光
軸上の点14、15を対応させたが、光源3と対応させ
る点はこれに限定されないことは自明である。例えば、
図3に示すように、結像光学系の入射瞳面上に対応する
点をとるように、コンデンサミラー1の回転楕円面を複
数の回転楕円面6、7で構成すれば、結像光学系の子午
方向(メリジオナル)についてインコヒーレント照明に
近づけることができ、結果的に像質が向上する効果があ
る。
As described in the section of the operation, the mask illumination width can be narrowed by increasing the opening angle v from the light source 3 by combining the spheroidal surfaces of the condenser mirror 1. Even when the optical system 8 is used, the light from the light source 3 can be efficiently used for exposure without increasing the image distortion, and it is possible to realize an improvement in throughput that has never been seen before. In the above description, the light source 3 is associated with the points 14 and 15 on the optical axis, but it is obvious that the point associated with the light source 3 is not limited to this. For example,
As shown in FIG. 3, if the spheroidal surface of the condenser mirror 1 is composed of a plurality of spheroidal surfaces 6 and 7 so as to take a corresponding point on the entrance pupil plane of the imaging optical system, the imaging optical system is formed. In the meridional direction of (1), it is possible to approach incoherent illumination, and as a result, the image quality is improved.

【0018】さらに、コンデンサミラー1を図4に示す
ように、x軸方向に揺動することにより、結像光学系の
球欠方向(サジタル)のインコヒーレント照明も可能と
なる。なお、この揺動軌道は、図4に示すように、マス
ク2照明位置(円弧状照明領域の中心線と光軸と垂直な
軸の交わる点)を回転中心とした円弧軌道が望ましい。
その他、コンデンサミラー1を各領域ごとに分離して複
数のコンデンサミラーを用いても全く同様の効果がある
のは自明である。
Further, as shown in FIG. 4, by swinging the condenser mirror 1 in the x-axis direction, incoherent illumination in the sagittal direction of the image forming optical system becomes possible. As shown in FIG. 4, the swing trajectory is preferably an arc trajectory with the mask 2 illumination position (the point where the center line of the arc illumination region intersects the axis perpendicular to the optical axis) as the rotation center.
Besides, it is obvious that the same effect can be obtained even if the condenser mirror 1 is divided into each region and a plurality of condenser mirrors are used.

【0019】図5及び図6によって本実施例による像歪
の改善を説明する。図5は2枚組の結像光学手段を用い
た場合の物点高さと像歪の関係を示す図である。図に示
すように物点高さ60mmの近傍において−0.26%
程度の像歪Eを有する。これは、既に述べたように、結
像光学系8が2枚組ミラーにより構成されているために
像歪の補正が出来ないことに起因して生じる収差であ
る。この収差がどのような影響を及ぼすかについて図6
によって説明する。
The improvement of image distortion according to this embodiment will be described with reference to FIGS. FIG. 5 is a diagram showing the relationship between the object height and the image distortion in the case where two sets of image forming optical means are used. As shown in the figure, in the vicinity of the object height of 60 mm, -0.26%
It has a degree of image distortion E. This is an aberration caused by the fact that the image distortion cannot be corrected because the image forming optical system 8 is composed of the double mirror as described above. Fig. 6 shows how this aberration affects
It will be explained by.

【0020】図6はマスク照明領域とウエハ上の露光領
域の関係を説明する図である。なお、ウエハ上の露光領
域はマスク照明領域と比較しやすいように、拡大して向
きを逆にして示している。図6に示すように、物点高さ
によって像歪による縮小倍率変動がある場合、図示する
ように転写される像が走査位置によって横ずれsを起こ
し、転写パターンのボケにつながる。ここで、0.1μ
mの転写を行なうのに充分な転写パターンの寸法許容値
を10%以内とし、図6に示すように物点高さの中心値
Hを60mm、結像光学系の縮小倍率mを1/5倍、円
弧状のマスク照明領域の片幅Wを50mmとすると、転
写による寸法シフトSは次式で与えられる。
FIG. 6 is a diagram for explaining the relationship between the mask illumination area and the exposure area on the wafer. Note that the exposure area on the wafer is shown in an enlarged and inverted direction for easy comparison with the mask illumination area. As shown in FIG. 6, when there is a change in reduction magnification due to image distortion due to the height of an object point, the transferred image causes lateral shift s depending on the scanning position, which leads to blurring of the transfer pattern. Where 0.1μ
The size tolerance of the transfer pattern sufficient to transfer m is within 10%, the center value H of the object point height is 60 mm, and the reduction ratio m of the imaging optical system is 1/5 as shown in FIG. If the width W of the arcuate mask illumination area is 50 mm, the size shift S due to transfer is given by the following equation.

【0021】[0021]

【数1】 [Equation 1]

【0022】また、マスク照明幅ΔHは、次式のように
定義できる。
Further, the mask illumination width ΔH can be defined by the following equation.

【0023】[0023]

【数2】 [Equation 2]

【0024】ここで、H1とH2は図6にあるようにマ
スク照明領域の照明幅の上下限である。(1)と(2)
式を用いて有効寸法シフト量を0.1μmの10%の1
0nmとすると、物点高さの幅(マスク照明幅)ΔH
は、35μmしかないことがわかる。この際、反射(又
は透過)光はマスク位置では円弧状に成形されている。
図1で説明したように、本発明の第1の実施例では、2
つの回転楕円の反射面4、5によるX線はマスク2上で
同じ領域、即ちマスク照明幅ΔHを照射することにな
り、シフトSを小さくし、像歪を少なくできる。
Here, H1 and H2 are the upper and lower limits of the illumination width of the mask illumination area as shown in FIG. (1) and (2)
Using the formula, the effective dimension shift amount is 0.1 μm of 10% of 1
Assuming 0 nm, the width of the height of the object point (mask illumination width) ΔH
Is only 35 μm. At this time, the reflected (or transmitted) light is shaped like an arc at the mask position.
As described with reference to FIG. 1, in the first embodiment of the present invention, 2
The X-rays from the two spheroidal reflecting surfaces 4 and 5 irradiate the same area on the mask 2, that is, the mask illumination width ΔH, so that the shift S can be reduced and the image distortion can be reduced.

【0025】図7は、本発明によるX線投影露光装置の
他の実施例の構成を示す構成図である。本実施例は図示
のように、結像光学系の光軸を含む断面が楕円で、上記
楕円の断面を光源を通るように配置した結像光学系の光
軸回りに回転したときにできる回転面を反射面とするコ
ンデンサミラー1に対して、上記楕円の一方の第1焦点
に光源3を配置し、上記楕円の他方の第2焦点にマスク
2の照射位置がくるようにマスクを配置している。本実
施例においてもコンデンサミラー1はX線の進行方向に
おける反射の回数が一回である複数個の回転楕円面を持
つ構成としてもよい。本実施例はマスクの照射位置が楕
円の焦点に位置するため、照射領域幅ΔHを極めて狭く
することができるため、横方向の像歪を少なくすると同
時に光ビームの利用効率を高め、従ってスループットを
向上できる。また、コンデンサミラー1の反射面が単一
であるため、前記のX線の進行方向において複数の反射
を行うコンデンサミラーに比較してスループット改善効
果は極めて高く、かつ製造が容易となる。
FIG. 7 is a block diagram showing the configuration of another embodiment of the X-ray projection exposure apparatus according to the present invention. In this embodiment, as shown in the drawing, the cross section including the optical axis of the imaging optical system is an ellipse, and the rotation that can be performed when the cross section of the ellipse is rotated around the optical axis of the imaging optical system arranged so as to pass through the light source. With respect to the condenser mirror 1 whose surface is a reflecting surface, the light source 3 is arranged at one first focus of the ellipse, and the mask is arranged so that the irradiation position of the mask 2 is located at the other second focus of the ellipse. ing. Also in this embodiment, the condenser mirror 1 may be configured to have a plurality of spheroids each having one reflection in the X-ray traveling direction. In this embodiment, since the irradiation position of the mask is located at the focal point of the ellipse, the irradiation region width ΔH can be extremely narrowed, so that the image distortion in the lateral direction can be reduced and at the same time the utilization efficiency of the light beam can be improved, thus improving the throughput. Can be improved. Further, since the condenser mirror 1 has a single reflecting surface, the throughput improving effect is extremely high and the manufacturing is easy as compared with the condenser mirror which performs a plurality of reflections in the traveling direction of the X-rays.

【0026】図8は上記他の実施例のスループット改善
効果を説明する特性図である。図において横軸はウエハ
のレジスト感度、横軸はX線投影露光装置のスループッ
ト(時間あたりの露光処理されるウエハの枚数)を示
す。レジスト感度をSmj/cm2、ウエハの露光面積
をA、ウエハ面上に到達するX線強度をP、ステージの
移動によるオーバヘッド時間をt0とすると、
FIG. 8 is a characteristic diagram for explaining the throughput improving effect of the other embodiment. In the figure, the horizontal axis shows the resist sensitivity of the wafer, and the horizontal axis shows the throughput of the X-ray projection exposure apparatus (the number of wafers subjected to exposure processing per time). If the resist sensitivity is Smj / cm 2 , the exposure area of the wafer is A, the X-ray intensity reaching the wafer surface is P, and the overhead time due to movement of the stage is t 0 ,

【0027】[0027]

【数3】 (Equation 3)

【0028】で表される。ここでX線強度をPはIt is represented by Where X is the X-ray intensity

【0029】[0029]

【数4】 [Equation 4]

【0030】で表される。Psは光源の輝度、θはビー
ムの水平取得角度、Iはビーム電流、Rcはコンデンサ
ミラーの反射率、長波長光のカットに用いるフィルタの
透過率、Rmは多層膜面の反射率、nは多層膜反射回
数、Δλ/λはバンド幅である。
It is represented by Ps is the brightness of the light source, θ is the horizontal acquisition angle of the beam, I is the beam current, Rc is the reflectance of the condenser mirror, the transmittance of the filter used for cutting long-wavelength light, Rm is the reflectance of the multilayer film surface, and n is n. The number of reflections of the multilayer film, Δλ / λ, is the bandwidth.

【0031】図8の斜線部に示すように、化学増幅型レ
ジストの実用感度は3〜5mJ/cm2である。また、
X線露光装置で実用できるスループットは量産効果を考
慮し20枚/hr以上である。上記(3)、(4)式に
基づいて、図7に示した本発明の実施例による特性及び
従来の結像光学系を2枚のミラーで構成し、コンデンサ
ミラーとして2つのミラーを組み合わせた従来の装置の
特性をそれぞれ曲線a及びbで示す。図から明らかなよ
うに、本発明の実施例ではスループットを著しく改善
し、実用レジスト感度範囲3〜5mJ/cm2におい
て、実用可能な20〜30枚/hrが実現できる。
As shown by the shaded area in FIG. 8, the practical sensitivity of the chemically amplified resist is 3 to 5 mJ / cm 2 . Also,
The throughput that can be used in the X-ray exposure apparatus is 20 sheets / hr or more in consideration of the effect of mass production. Based on the expressions (3) and (4), the characteristic according to the embodiment of the present invention shown in FIG. 7 and the conventional imaging optical system are configured by two mirrors, and two mirrors are combined as a condenser mirror. The characteristics of the conventional device are shown by curves a and b, respectively. As is apparent from the figure, in the embodiment of the present invention, the throughput is remarkably improved, and in the practical resist sensitivity range of 3 to 5 mJ / cm 2 , 20 to 30 sheets / hr which is practical can be realized.

【0032】[0032]

【発明の効果】本発明により、光源からウエハまでの反
射を最小の3組のミラーとすることによりミラーによる
損失を軽減することによりX線投影露光装置のスループ
ットが向上すると共に、コンデンサミラーを回転楕円面
で構成することによって生ずる像の横方向の歪を軽減す
ることが可能となる。また、結像光学系の像質を改善す
る照明のインコヒーレント化も可能とする副次的な効果
がある。
According to the present invention, the reflection from the light source to the wafer is minimized by using three sets of mirrors to reduce the loss due to the mirrors, thereby improving the throughput of the X-ray projection exposure apparatus and rotating the condenser mirror. It is possible to reduce the lateral distortion of the image caused by the elliptical surface. In addition, there is a secondary effect that illumination can be made incoherent to improve the image quality of the imaging optical system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるX線投影露光装置の要部の原理を
説明する図である。
FIG. 1 is a diagram illustrating a principle of a main part of an X-ray projection exposure apparatus according to the present invention.

【図2】本発明によるX線投影露光装置の一実施例の構
成を示す図である。
FIG. 2 is a diagram showing the configuration of an embodiment of an X-ray projection exposure apparatus according to the present invention.

【図3】本発明によるX線投影露光装置の他の実施例の
要部構成を示す図である。
FIG. 3 is a diagram showing a main part configuration of another embodiment of the X-ray projection exposure apparatus according to the present invention.

【図4】本発明によるX線投影露光装置の更に他の実施
例の要部構成を示す図である。
FIG. 4 is a diagram showing a main part configuration of still another embodiment of the X-ray projection exposure apparatus according to the present invention.

【図5】2枚組の結像光学系の像歪特性を説明する図で
ある。
FIG. 5 is a diagram illustrating image distortion characteristics of a pair of imaging optical systems.

【図6】2枚組の結像光学系のマスク照明領域と投影像
の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a mask illumination area and a projected image of a pair of imaging optical systems.

【図7】本発明によるX線投影露光装置の一実施例の構
成を示す図である。
FIG. 7 is a diagram showing the configuration of an embodiment of an X-ray projection exposure apparatus according to the present invention.

【図8】本発明によるX線投影露光装置の一実施例と従
来例のスループット特性を示す図である。
FIG. 8 is a diagram showing throughput characteristics of an example of an X-ray projection exposure apparatus according to the present invention and a conventional example.

【図9】従来のX線投影露光装置の結像光学系の構成を
示す図である。
FIG. 9 is a diagram showing a configuration of an imaging optical system of a conventional X-ray projection exposure apparatus.

【図10】従来のX線投影露光装置のコンデンサミラー
部の構成を示す図である。
FIG. 10 is a diagram showing a configuration of a condenser mirror unit of a conventional X-ray projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1:コンデンサミラー 2:マスク 3:光源 4:照明領域A 5:照明領域B 6:照明領域C 7:照明領域D 8:2枚組の結像光学系 9:ウェハ 10:3枚組の結像光学系 11:マスク照明光 12:マスクパターン 13:ウェハ上に同期走査により転写中のパターン 14:ウェハ上に転写されたパターン 1: Condenser mirror 2: Mask 3: Light source 4: Illumination area A 5: Illumination area B 6: Illumination area C 7: Illumination area D 8: 2-image forming optical system 9: Wafer 10: 3-piece combination Image optical system 11: Mask illumination light 12: Mask pattern 13: Pattern being transferred onto the wafer by synchronous scanning 14: Pattern transferred onto the wafer

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】光源から発散するX線をコンデンサミラー
で集光してマスクを照明し、上記マスクからの反射光又
は透過光を結像光学手段を介して基板上に投影露光して
上記マスク上のパターンを転写する露光装置において、
上記コンデンサミラーを回転楕円面とし、かつ上記回転
楕円面の反射面が複数の領域に分割され、各領域で反射
されたX線が上記マスクの同一領域を照射するように構
成されたことを特徴とするX線投影露光装置。
1. A mask which illuminates a mask by condensing X-rays emitted from a light source by a condenser mirror, and projects reflected light or transmitted light from the mask onto a substrate through an image forming optical means to expose the mask. In the exposure device that transfers the pattern above,
The condenser mirror is a spheroidal surface, the reflecting surface of the spheroidal surface is divided into a plurality of regions, and the X-ray reflected in each region irradiates the same region of the mask. X-ray projection exposure apparatus.
【請求項2】請求項1記載のX線投影露光装置におい
て、上記コンデンサミラーの各領域の焦点位置が上記結
像光学手段の入射瞳面内に分布することを特徴とするX
線投影露光装置。
2. The X-ray projection exposure apparatus according to claim 1, wherein the focal positions of the respective regions of the condenser mirror are distributed in the entrance pupil plane of the imaging optical means.
Line projection exposure system.
【請求項3】請求項1記載のX線投影露光装置におい
て、上記コンデンサミラーの各領域の焦点位置が上記結
像光学手段の光軸上に分布することを特徴とするX線投
影露光装置。
3. The X-ray projection exposure apparatus according to claim 1, wherein the focal positions of the respective regions of the condenser mirror are distributed on the optical axis of the image forming optical means.
【請求項4】請求項1、2又は3記載のX線投影露光装
置において、上記コンデンサミラーを往復運動する駆動
手段を備えたことを特徴とするX線投影露光装置。
4. An X-ray projection exposure apparatus according to claim 1, 2 or 3, further comprising drive means for reciprocating the condenser mirror.
【請求項5】請求項4記載のX線投影露光装置におい
て、上記マスクの円弧状照明領域の中心線と光軸と垂直
な軸の交わる点を回転中心とした円弧軌道でに上記コン
デンサミラーを往復運動する駆動手段を設けたことを特
徴としたX線投影露光装置。
5. The X-ray projection exposure apparatus according to claim 4, wherein the condenser mirror is arranged in an arcuate path whose center of rotation is a point where a centerline of the arcuate illumination area of the mask intersects an axis perpendicular to the optical axis. An X-ray projection exposure apparatus, characterized in that a driving means for reciprocating movement is provided.
【請求項6】光源から発散するX線をコンデンサミラー
で集光してマスクを照明し、上記マスクからの反射光又
は透過光を結像光学手段を介して基板上に投影露光して
上記マスク上のパターンを転写する露光装置において、
上記コンデンサミラーを構成する反射面の結像光学系の
光軸を含む一断面を単一の楕円とし、上記楕円の一方の
焦点に上記光源を配置し、上記コンデンサミラーを上記
楕円の他方の焦点が上記マスクの照射領域の中心とし、
上記反射面を上記楕円の回りに回転した回転面となる形
状とした上記コンデンサミラーを備えたことを特徴とす
るX線投影露光装置。
6. An X-ray diverging from a light source is condensed by a condenser mirror to illuminate a mask, and reflected light or transmitted light from the mask is projected and exposed on a substrate through an imaging optical means to expose the mask. In the exposure device that transfers the pattern above,
One cross section including the optical axis of the imaging optical system of the reflecting surface that constitutes the condenser mirror is a single ellipse, the light source is arranged at one focus of the ellipse, and the condenser mirror is the other focus of the ellipse. Is the center of the irradiation area of the mask,
An X-ray projection exposure apparatus comprising: the condenser mirror having a shape in which the reflection surface is a rotation surface rotated around the ellipse.
【請求項7】請求項1ないし6記載のいずれかのX線投
影露光装置において、上記光源はシンクロトロンX線源
であることを特徴とするX線投影露光装置。
7. The X-ray projection exposure apparatus according to any one of claims 1 to 6, wherein the light source is a synchrotron X-ray source.
【請求項8】請求項1ないし6記載のいずれかのX線投
影露光装置において、上記光源はレーザプラズマX線源
であることを特徴とするX線投影露光装置。
8. The X-ray projection exposure apparatus according to any one of claims 1 to 6, wherein the light source is a laser plasma X-ray source.
【請求項9】請求項1ないし6記載のいずれかのX線投
影露光装置において、上記結像光学手段が2枚の反射ミ
ラーで構成されていることを特徴とするX線投影露光装
置。
9. An X-ray projection exposure apparatus according to any one of claims 1 to 6, wherein the image forming optical means comprises two reflecting mirrors.
【請求項10】請求項1ないし9記載のいずれかのX線
投影露光装置において、上記マスクと上記基板とを同期
走査する手段を備えたことを特徴とするX線投影露光装
置。
10. The X-ray projection exposure apparatus according to claim 1, further comprising means for synchronously scanning the mask and the substrate.
【請求項11】請求項1ないし9記載のいずれかのX線
投影露光装置において、上記光源は3ナノメートルから
20ナノメートルの範囲の波長光を発生する光源である
ことを特徴とするX線投影露光装置。
11. The X-ray projection exposure apparatus according to claim 1, wherein the light source is a light source that emits light having a wavelength in the range of 3 nanometers to 20 nanometers. Projection exposure device.
JP14172894A 1994-06-23 1994-06-23 X-ray projection exposure equipment Expired - Fee Related JP3305119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14172894A JP3305119B2 (en) 1994-06-23 1994-06-23 X-ray projection exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14172894A JP3305119B2 (en) 1994-06-23 1994-06-23 X-ray projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH085796A true JPH085796A (en) 1996-01-12
JP3305119B2 JP3305119B2 (en) 2002-07-22

Family

ID=15298831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14172894A Expired - Fee Related JP3305119B2 (en) 1994-06-23 1994-06-23 X-ray projection exposure equipment

Country Status (1)

Country Link
JP (1) JP3305119B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526118B2 (en) 1998-09-08 2003-02-25 Nikon Corporation Projection exposure apparatus and method, and illumination optical system thereof
WO2005078738A1 (en) * 2004-02-12 2005-08-25 Japan Science And Technology Agency Soft x-ray processing device and soft x-ray processing method
JP2011522256A (en) * 2008-05-30 2011-07-28 リガク イノベイティブ テクノロジーズ インコーポレイテッド High intensity X-ray beam system
CN104464870A (en) * 2014-12-03 2015-03-25 复旦大学 Method for manufacturing X-ray lens high in height-width ratio

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526118B2 (en) 1998-09-08 2003-02-25 Nikon Corporation Projection exposure apparatus and method, and illumination optical system thereof
WO2005078738A1 (en) * 2004-02-12 2005-08-25 Japan Science And Technology Agency Soft x-ray processing device and soft x-ray processing method
JP2011522256A (en) * 2008-05-30 2011-07-28 リガク イノベイティブ テクノロジーズ インコーポレイテッド High intensity X-ray beam system
CN104464870A (en) * 2014-12-03 2015-03-25 复旦大学 Method for manufacturing X-ray lens high in height-width ratio

Also Published As

Publication number Publication date
JP3305119B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JPH0831736A (en) Illumination optical device
JPH11312638A (en) Illuminator, aligner provided therewith, and manufacture of semiconductor device using the same
JPH11249313A (en) Annular surface reduction projection optical system
JPH09330878A (en) X-ray reduction aligner and method for manufacturing device using the same
JPH05326370A (en) Projection aligner
TW201544917A (en) Optical integrator
KR100917418B1 (en) Exposure apparatus
KR20080056094A (en) Exposure apparatus and device fabrication method
TW200809919A (en) Exposure apparatus
JP2009206227A (en) Illumination optical system, and projection exposure device using the same
JPS5964830A (en) Illuminating device
JP2002075835A (en) Illumination optical device and exposure system with the same
JP4051473B2 (en) Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
US20040218164A1 (en) Exposure apparatus
JP3305119B2 (en) X-ray projection exposure equipment
JP2009130091A (en) Illumination optical device, aligner, and device manufacturing method
US7292316B2 (en) Illumination optical system and exposure apparatus having the same
TW201433826A (en) Illumination optical system, exposure device, and method for manufacturing device
CN111936933A (en) Pupil facet mirror, illumination optical unit and optical system of projection lithography system
JP2000182953A (en) Micro lithography projection device
JP3371510B2 (en) Illumination device and exposure device
JPS58215621A (en) 1:1 projection aligner
JP3371512B2 (en) Illumination device and exposure device
JP3256773B2 (en) X-ray reduction projection exposure equipment
JP3316761B2 (en) Scanning exposure apparatus and device manufacturing method using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees