JPH085714B2 - La-Cu-O-based oxide photoconductive material and method for producing the same - Google Patents

La-Cu-O-based oxide photoconductive material and method for producing the same

Info

Publication number
JPH085714B2
JPH085714B2 JP63022692A JP2269288A JPH085714B2 JP H085714 B2 JPH085714 B2 JP H085714B2 JP 63022692 A JP63022692 A JP 63022692A JP 2269288 A JP2269288 A JP 2269288A JP H085714 B2 JPH085714 B2 JP H085714B2
Authority
JP
Japan
Prior art keywords
temperature
superconducting
sample
based oxide
photoconductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63022692A
Other languages
Japanese (ja)
Other versions
JPH01201059A (en
Inventor
泰三 真隅
Original Assignee
東京大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京大学長 filed Critical 東京大学長
Priority to JP63022692A priority Critical patent/JPH085714B2/en
Priority to CA000577464A priority patent/CA1338852C/en
Publication of JPH01201059A publication Critical patent/JPH01201059A/en
Priority to US07/725,960 priority patent/US5219831A/en
Publication of JPH085714B2 publication Critical patent/JPH085714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超伝導体の超伝導性を示す組成範囲外
の組成で、これにつながる組成のものの光学的性質、特
に高速パルス光伝導の実験を行い常識的に予期し難い超
伝導性と深く関係した光伝導現象を呈する物質を発見し
たもので、その製造法において超急冷するか徐冷するか
により、前者の超急冷したものは光伝導性をもった半導
体、後者の徐冷したものは光伝導性をも内在させる超伝
導体となるもので、産業上の利用分野としては“超伝導
オプトエレクトロニクス”への応用が期待し得られるも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to the optical properties of a composition outside the composition range showing the superconductivity of an oxide superconductor and a composition leading to the composition, particularly high-speed pulsed photoconductivity. We discovered a substance that exhibits a photoconduction phenomenon closely related to superconductivity that is unpredictable in common sense, and the former ultra-quenched one depends on whether it is super-quenched or gradually cooled in its manufacturing method. The semiconductor with photoconductivity, the latter slow-cooled one, is a superconductor that also contains photoconductivity, and it can be expected to be applied to "superconducting optoelectronics" as an industrial application field. It is what is done.

(従来の技術) これまでの超伝導材料は主として金属をそれらの合金
を用いてきた。また最近の酸化物高温超伝導体(例えば
Y−Ba−Cu−O系酸化物超伝導体)でもその臨界温度を
上げる目的で多量の添加元素(Ba,Sr)などが用いられ
ている。従って、それらの可視域近傍までの光学的性質
の測定は、これらの金属的性質を反映して主として光反
射又は散乱の実験に限られて来た。
(Prior Art) Until now, superconducting materials have mainly used metals and their alloys. Also, in recent oxide high temperature superconductors (for example, Y-Ba-Cu-O-based oxide superconductors), a large amount of additional elements (Ba, Sr) and the like are used for the purpose of raising the critical temperature. Therefore, measurement of their optical properties up to the visible region has been largely limited to light reflection or scattering experiments, reflecting these metallic properties.

(発明が解決しようとする課題) このことが示すように超伝導体には光は反射又は散乱
するだけで入り込まず、したがって超伝導の光物性は国
内外の学会や国際会議でも反射や散乱をのぞいて殆んど
無縁の分野と考えられて来ている。
(Problems to be Solved by the Invention) As shown by this, light does not enter a superconductor simply by being reflected or scattered, and therefore the optical properties of superconductivity are not reflected or scattered at academic conferences and international conferences both at home and abroad. It is considered to be an almost unrelated field except for.

しかしながら、超伝導性に対応した光伝導性をもった
物質が製造できると、たとえば超伝導フォトトランジス
タなどの機器やまた、現在追求されているジョセフソン
素子を基礎にした“超伝導コンピュータ”とオプトエレ
クトロニクスで提案されている“光コンピュータ”の特
性を併せもつような装置、すなわち“超伝導光コンピュ
ータ”等の作製が可能となる。
However, if a material having photoconductivity corresponding to superconductivity can be manufactured, for example, devices such as superconducting phototransistors, and “superconducting computers” and optotypes based on the currently pursued Josephson devices will be developed. It is possible to fabricate a device having the characteristics of an "optical computer" proposed in electronics, that is, a "superconducting optical computer".

(課題を解決するための手段) 本発明の目的は、La−Cu−O系酸化物超伝導性物質の
超伝導現象が発生する臨界温度以下の温度において超伝
導性の発生に対応して光伝導性を生ずるLa−Cu−O系酸
化物光伝導性物質を提供することにある。
(Means for Solving the Problems) An object of the present invention is to provide a photoconductive layer that responds to the occurrence of superconductivity at a temperature equal to or lower than a critical temperature at which a superconducting phenomenon of a La-Cu-O-based oxide superconducting substance occurs. An object is to provide a La-Cu-O-based oxide photoconductive material that produces conductivity.

本発明によるLa−Cu−O系酸化物光伝導性物質は、 一般式 La2−Cu1−Oz ここで、z=3.84〜4.02の組成より成り、La−Cu−O
系酸化物超伝導物質の超伝導状態への転移温度にほぼ対
応した温度以下で、、暗中において絶縁体又は半導体で
あると共に、光照射により光伝導性を生ずることを特徴
とする。
The La—Cu—O-based oxide photoconductive material according to the present invention has the general formula La 2 —Cu 1 —O z where z = 3.84 to 4.02, and La—Cu—O
It is characterized in that it is an insulator or a semiconductor in the dark at a temperature substantially corresponding to the transition temperature of a superconducting oxide-based material to a superconducting state or less, and that it exhibits photoconductivity by light irradiation.

さらに、本発明によるLa−Cu−O系酸化物光伝導性物
質の製造方法は、 一般式 La2−Cu1−Oz ここで、z=3.84〜4.02の組成の出発物質をその固相
反応の生ずる温度800〜1050℃で5〜10時間加熱し、そ
の後徐冷し、加圧整形後600〜1200℃で2次焼結した
後、2000〜900℃/secの冷却温度で超急冷するか、150〜
200℃/Hの冷却速度で徐冷することにより、La−Cu−O
系酸化物超伝導物質の超伝導状態への転移温度にほぼ対
応した温度以下で、暗中において絶縁体又は半導体であ
ると共に、光照射により光伝導性を生ずる物質を得るこ
とを特徴とする。
Furthermore, the manufacturing method of the La-Cu-O based oxide photoconductive substance according to the invention has the general formula La 2 -Cu 1 -O z where, z = the solid phase reaction of the starting material of the composition from 3.84 to 4.02 Is heated at a temperature of 800 to 1050 ℃ for 5 to 10 hours, then slowly cooled, press-molded, secondarily sintered at 600 to 1200 ℃, and then rapidly cooled at a cooling temperature of 2000 to 900 ℃ / sec. , 150 ~
By gradually cooling at a cooling rate of 200 ° C / H, La-Cu-O
It is characterized in that a substance which is an insulator or a semiconductor in the dark and which exhibits photoconductivity by light irradiation is obtained at a temperature substantially lower than a transition temperature of a superconducting oxide-based substance to a superconducting state.

本発明の物質を一般式に示す組成に限定した理由は、
この組成範囲のものを固相反応の生ずる温度約800〜105
0℃の間に5〜10時間加熱し、加圧整形後600〜1200℃で
2次焼結した後、2000〜900℃/secで超急冷するか、150
〜200℃/Hで徐冷すると、実施例で示すとおり、絶縁性
物質の領域でも超伝導性を潜在させるかの如き温度依存
性と励起波長光依存性をもつ光伝導性をもつ物質、さら
には超伝導性物質の超伝導状態への転移に対応して光伝
導性を発生する物質が得られるからであり、これらの現
象を系統的に明らかにして本発明が完成されたものであ
る。
The reason why the substance of the present invention is limited to the composition represented by the general formula is as follows.
If the composition range is set to about 800 to 105
After heating at 0 ℃ for 5-10 hours, press-molding, secondary sintering at 600-1200 ℃, and then ultra-quenching at 2000-900 ℃ / sec, or 150
When gradually cooled at ~ 200 ° C / H, as shown in the examples, a material having photoconductivity having temperature dependence and excitation wavelength light dependence such as latent superconductivity even in an insulating material region, This is because a substance that generates photoconductivity corresponding to the transition of a superconducting substance to the superconducting state can be obtained, and the present invention has been completed by systematically clarifying these phenomena.

従来知られているLa−Cu−O及びY−Cu−O又はY−
Ba−Cu−Oのような酸化物系化合物の大部分は基底状態
(ground state)即ち低温で特に光を照射しない暗い場
所では通常絶縁体又は半導体である。したがって適当な
大きさの運動量とそれに応じた適量のエネルギーを、こ
れらの物質の基底状態に与えることにより、素励起をつ
くり出すことができる。通常超伝導体に対しては、エネ
ルギーギャップを越えた素励起はBCS理論における超伝
導の基底状態を破壊するとされている。しかしながら、
絶縁性の半導体では熱的に非平衡状態においてもバイポ
ーラロン及び励起子のような素励起のコヒーレント状態
をつくり出せる可能性がある。高臨界温度(Tc)の超伝
導体の研究と並行しているが、その研究の傾向とは異な
り、新しい視点から、つまり素励起概念の見地より基礎
物理及び応用物理の分野でむしろ完全な超伝導体とはな
らない組成のもので、超伝導体につながる組成で超伝導
性の転移温度以下の温度で光伝導性を発生する物質を知
見し、本発明が完成されたものである。
Conventionally known La-Cu-O and Y-Cu-O or Y-
Most of oxide-based compounds such as Ba-Cu-O are usually insulators or semiconductors in a ground state, that is, in a dark place where light is not radiated at a low temperature. Therefore, elementary excitation can be created by giving an appropriate amount of momentum and an appropriate amount of energy to the ground state of these substances. For superconductors, it is generally said that elementary excitation over the energy gap destroys the superconducting ground state in BCS theory. However,
Insulating semiconductors may be able to create elementary coherent states such as bipolaron and excitons even in a thermally non-equilibrium state. In parallel with the research on superconductors with high critical temperature (Tc), unlike the trend of that research, from a new perspective, that is, from the perspective of elementary excitation concept The present invention has been completed by discovering a substance that has a composition that does not become a conductor and that is photoconductive at a temperature below the superconducting transition temperature in a composition that leads to a superconductor.

このような物質の一例をあげると、La2−Cu1−Ozであ
り、このフェイスダイアグラム、特にzによる変化、す
なわち、酸素欠陥の影響を解明すべく、本研究を行っ
た。ここで、本発明者は上記の物質の超伝導相のみなら
ず、半導体相又は絶縁体相についても解明すべく研究を
行った。La2−Cu1−Ozの多数の試料をLa2O3及びCuOの粉
末より製造した。出発物質の組成については詳細に検討
したが、ここでは特に冷却方法の緩急により酸素含量z
を一応制御できることが明らかとなった。試料P2はLa2O
31.70g、CuO0.469gを混合し、La2Cu1Ozの式となるよう
に焼成した。試料S30はLa2O33.26g、CuO0.80gを混合
し、La2Cu1Ozとなるよう焼成したもので、zは酸素の量
を示し、焼成方法によりzが変化し、これに伴い得られ
た製品の物性が異なる。
One example of such a substance is La 2 —Cu 1 —O z , and this study was conducted to clarify the face diagram, especially the change due to z, that is, the effect of oxygen defects. Here, the present inventor has conducted research to clarify not only the superconducting phase of the above substances but also the semiconductor phase or the insulator phase. A large number of La 2 —Cu 1 —O z samples were prepared from La 2 O 3 and CuO powders. Although the composition of the starting material was studied in detail, here, the oxygen content z
It has been clarified that can be controlled. Sample P2 is La 2 O
3 1.70 g and CuO 0.469 g were mixed and fired so that the formula of La 2 Cu 1 O z was obtained. Sample S30 was prepared by mixing 3.26 g of La 2 O 3 and 0.80 g of CuO and firing it so as to become La 2 Cu 1 O z . Z represents the amount of oxygen, and z changes depending on the firing method. The physical properties of the obtained products are different.

たとえば仕込みの組成比にしたがって調合し、よく攪
拌し、粉砕した後800〜1050℃にて4時間1次焼成して
固相反応を行わせ、徐冷後、その生成物を用いてペレッ
トを加圧整形で作製する。さらにこれらを1000℃で4〜
5時間かけて2次焼結を行い、一方の試料P2は液体窒素
温度(絶対温度77K)まで超急冷し、他方の試料S30は80
0℃で3時間、600℃で2時間焼鈍後、室温まで4時間以
上かけて徐冷する。
For example, prepare according to the composition ratio of the charged material, stir well, pulverize, and then perform primary calcination at 800 to 1050 ° C for 4 hours to perform solid phase reaction, and after slowly cooling, add pellets using the product. It is made by pressure shaping. Furthermore, these are 1000 ~ 4
Secondary sintering was performed for 5 hours, one sample P2 was ultra-quenched to liquid nitrogen temperature (absolute temperature 77K), and the other sample S30 was 80%.
After annealing at 0 ° C. for 3 hours and 600 ° C. for 2 hours, it is gradually cooled to room temperature over 4 hours.

実験方法 La2−Cu1−Oz系の相図は少し詳細を追求し始めると、
未だ完全とはいい難く、なお究明段階にある。特に大切
なのは酸素欠陥の制御である。多くの科学者たちの大変
な努力にもかかわらず、完成には恐らくなお、しばらく
の時間を必要としよう。ここでは我々は超伝導相のみな
らず半導体相にも関心を払って来た。La−Cu−OZ系の沢
山の試料をLa2O3,CuOの粉末から作製した。仕込みの材
料の組成は徐冷や急冷の過程などは詳しくしらべられて
いるし、多少とも制御可能である。
Experimental method The phase diagram of the La 2 -Cu 1 -O z system begins to pursue some details,
It is still hard to say that it is perfect, but it is still in the process of being investigated. Especially important is the control of oxygen defects. Despite the hard work of many scientists, it will probably take some time to complete. Here we have been concerned not only with the superconducting phase but also with the semiconductor phase. A lot of samples la-CuO Z lines were prepared from La 2 O 3, CuO powders. The composition of the charged material has been investigated in detail in the process of slow cooling and rapid cooling and can be controlled to some extent.

La2−Cu1−Oz系の試料はzのある値の部分では極めて
絶縁性が高いか、少くとも低温では半導体的であるの
で、我々の実験での抵抗あるいは/さらに伝導度測定に
際しては2つの型の技術が採用された。まず第一に絶縁
性の試料(ρ108Ω・cm)で絶対温度4.2Kでの試料P2
のようなものに対してはブロッキング電極を配した高速
パルス技術〔第1図(A)参照〕が、前にも注意したい
くつかの測定上の困難な問題点を克服することがわかっ
た。この際たとえば電場パルスEはE≒3kV/cmまでの一
定値で10msec持続させ、これを13Hzのくり返し周波数で
行なう。励起光パルスは3n secの幅で電場パルスの印加
時間内の適切な時刻に同期させておく〔第1図(B)参
照〕。つぎに試料S30のように適度に伝導性のある試料
(ρ10-2〜101Ω・cm)に対しては、抵抗測定も、そ
の場合には勿論励起光は用いず暗い所で普通の4端子法
を採用して行った。
The La 2 -Cu 1 -O z system sample has extremely high insulating property at a certain value of z, or is semiconductive at least at low temperature. Two types of technology were adopted. First of all, an insulating sample (ρ10 8 Ω · cm) and sample P2 at an absolute temperature of 4.2K.
It has been found that the high-speed pulse technique (see FIG. 1 (A)) in which a blocking electrode is arranged overcomes some of the difficult measurement problems previously noted. At this time, for example, the electric field pulse E is maintained at a constant value up to E≈3 kV / cm for 10 msec, and this is repeated at a repetition frequency of 13 Hz. The excitation light pulse has a width of 3 nsec and is synchronized with an appropriate time within the application time of the electric field pulse [see FIG. 1 (B)]. Next, for samples with moderate conductivity (ρ10 -2 to 10 1 Ω · cm), such as sample S30, the resistance measurement was not performed in this case as a matter of course. The terminal method was adopted.

静帯磁率または磁化の大きさM(T,H)は、H≒500Oe
までの弱い磁場での9GHz帯でのマイクロ波SQUIDを用い
て行った。この測定系の特性は前に記したとおりである
〔第2図(A),(B),(C)参照〕。
Static magnetic susceptibility or magnitude of magnetization M (T, H) is H ≈ 500 Oe
Microwave SQUID in the 9GHz band in a weak magnetic field up to. The characteristics of this measuring system are as described above [see FIGS. 2 (A), (B) and (C)].

試料は、光伝導測定に際しては、パルス発振色素レー
ザーを用いて光励起した。分光スペクトル応答も同様な
注意を払い綿密に行った。励起された光キャリァーの密
度は106〜108/cm3の桁である。すべての光信号はボック
スカー積分器を用いて同期モードで通常は検出された。
The sample was photoexcited using a pulsed dye laser for the measurement of photoconductivity. The spectral response was also carefully examined with the same caution. The density of the excited optical carriers is on the order of 10 6 -10 8 / cm 3 . All optical signals were usually detected in synchronous mode using a boxcar integrator.

実験結果 試料S30のようなLa2−Cu1−Ozの試料は黒く見え、抵
抗は普通ρ10-1Ω・cmの桁である。それにもかかわら
ず、我々が観測した所によれば、La2−Cu1−Oz試料S30
(超伝導性)と試料P2(半導体性)の両方に対して、前
に記したトランジェントパルス技術を適用すると絶対温
度30K以下でどちらにも光伝導性を示す信号が確実に出
現することが認められた。
Experimental Results Samples of La 2 —Cu 1 —O z like sample S30 appear black and the resistance is usually in the order of ρ 10 −1 Ω · cm. Nevertheless, according to the place where we have observed, La 2 -Cu 1 -O z sample S30
Applying the transient pulse technique described above to both (superconductivity) and sample P2 (semiconductor) confirmed that a signal exhibiting photoconductivity appears reliably at an absolute temperature of 30 K or less. Was given.

最初にのべておくが、光伝導性Q(λ,T,E,H)の電場
Eに対する依存性は、T≒4.2KでE≒3kV/cmまで殆んど
直線的である。一方磁場Hに対して絶対温度4.2Kでは磁
場H≒15kOeまで検出しうるような大きさの磁気抵抗は
横効果も縦効果も観測されていない。第3図(b)はLa
2−Cu1−Oz試料P2,第3図(c)はLa2−Cu1−Oz試料S30
のλ≒420〜640nmの波長領域でのパルス光伝導応答Q
(λ,T)の典型的スペクトルである。ちなみに第3図
(a)はグロスマンが報告しているCu2Oの光吸収のデー
タでこの分野では確立されている標準的なものである。
First of all, the dependence of the photoconductivity Q (λ, T, E, H) on the electric field E is almost linear up to E≈3 kV / cm at T≈4.2K. On the other hand, with respect to the magnetic field H, at a temperature of 4.2 K in absolute temperature, neither a lateral effect nor a longitudinal effect has been observed in the magnetoresistance having a size capable of detecting a magnetic field H≈15 kOe. Figure 3 (b) shows La
2- Cu 1 -O z sample P2, Fig. 3 (c) shows La 2 -Cu 1 -O z sample S30
Photoconductive response Q in the wavelength region of λ ≈ 420 to 640 nm
It is a typical spectrum of (λ, T). By the way, FIG. 3 (a) shows the data of optical absorption of Cu 2 O reported by Grossman, which is a standard established in this field.

つぎに、超伝導性La2−Cu1−Oz試料S30の磁化の大き
さM(T,H)の値は少くとも絶対温度4.2Kで|χ|<3
×10-8と非常に小さくしか観測はされない。同様な現象
はカン氏らによってLa−Cu−Oz系についても報告されて
いる。しかし彼らは、そのような試料についてすら、臨
界電流や臨界磁場は観測している。すなわち超伝導性を
示唆している。
Next, the value of the magnitude M (T, H) of the magnetization of the superconducting La 2 —Cu 1 —O z sample S30 is at least │χ│ <3 at an absolute temperature of 4.2K.
It is observed as very small as × 10 -8 . A similar phenomenon was reported by Kang et al. In the La-Cu-O z system. But they have observed critical currents and fields even in such samples. That is, it suggests superconductivity.

次に、波長領域λ≒500〜570nmでのQ(λ,T)の温度
依存性を第4図(a),(b)に示したように半導体的
試料P2と超伝導性試料S30の両方についてしらべた。こ
こで驚くべきことには、試料S30と試料P2では第4図
(c)に示されているように途方もなく大きな暗抵抗率
ρ(T)の差があるにもかかわらず、お互いの光伝導性
Q(λ,T)の一般的な特色の間には顕著な類似性が確実
に存在することが認められた。誰でも明確に認めざるを
得ないように、半導体的である試料でも超伝導性の試料
でも温度の減少とともに“光伝導応答Q(λ,T)”が絶
対温度30〜40Kで出現し、単調に増加した後、絶対温度5
K以下でやや減少する。
Next, as shown in FIGS. 4 (a) and 4 (b), the temperature dependence of Q (λ, T) in the wavelength region λ≈500 to 570 nm is shown in both the semiconducting sample P2 and the superconducting sample S30. I investigated about. What is surprising here is that despite the tremendous difference in dark resistivity ρ (T) between sample S30 and sample P2, as shown in FIG. It was observed that there are certainly significant similarities between the general features of conductive Q (λ, T). As anyone has to admit clearly, “photoconductive response Q (λ, T)” appears at an absolute temperature of 30 to 40K as the temperature decreases in both semiconducting and superconducting samples, Absolute temperature after increasing to 5
It decreases a little below K.

最後に、超伝導性La2−Cu1−Oz試料S30と半導体的La2
−Cu1−Oz試料P2の両方の暗抵抗率ρ(T)が第4図
(c)に温度の関数として示されている。誰しも直ちに
気がつくことであるが、試料S30はT≒10〜35K以下で超
伝導になるが、他方試料P2は絶縁体的である。
Finally, superconducting La 2 -Cu 1 -O z samples S30 and semiconducting La 2
The dark resistivity ρ (T) of both -Cu 1 -O z sample P2 is shown as a function of temperature in Figure 4 (c). As anyone will notice immediately, sample S30 becomes superconducting below T≈10-35K, while sample P2 is an insulator.

これらの実験事実を簡単に解釈しようとするのは決し
て容易ではない。励起光による試料の加熱効果は、注意
深くしらべ評価すると充分小さいことが判る。絶対温度
300KではLa2−Cu1−Ozの試料S30も試料P2もともに半導
体的である。超伝導性試料S30でブロッキング電極の配
置で観測された“光伝導性”は“超伝導性”と矛盾せず
両立しうるものである。これは恐らく、第4図(b),
(c)に示されているように、この試料内の絶縁体的部
分によるものである。しかし驚くべきことは、第4図
(a)に示されているように半導体的試料P2においてす
らも恰もそこに超伝導性が潜在しているかの如き暗々裡
に相関をもった“光伝導現象の出現”という事実の存在
である。
It is never easy to try to interpret these experimental facts. It can be seen that the heating effect of the sample by the excitation light is sufficiently small when carefully evaluated. Absolute temperature
La 2 -Cu 1 -O z samples S30 in the 300K also sample P2 also are both semiconducting. The "photoconductivity" observed in the arrangement of the blocking electrodes in the superconducting sample S30 is compatible with the "superconductivity". This is probably Fig. 4 (b),
As shown in (c), this is due to the insulating portion in this sample. However, surprisingly, as shown in Fig. 4 (a), even in the semiconducting sample P2, there is a "photoconductivity" that is implicitly correlated as if superconductivity is latent in it. It is the existence of the "appearance of phenomena".

実験の考察 広く知られているこではあるがLa2−Cu1−Oz系で半導
体的である試料は普通濃い赤色か黒色の色彩をしてい
る。第3図(a),(b)に示した光伝導のスペクトル
応答Q(λ,T)はLa2−Cu1−Oz系の試料の内部に、かり
に原子的な意味での層状ではないとしてもなんらかの意
味でCu2O類似の領域が存在していることを暗示してい
る。
Experimental consideration Although it is widely known, the La 2 —Cu 1 —O z system semiconductor-like samples usually have a deep red or black color. The photoconductive spectral response Q (λ, T) shown in FIGS. 3 (a) and 3 (b) is not layered in the atomic sense inside the La 2 —Cu 1 —O z system sample. Also implies that there is a Cu 2 O-like region in some sense.

Cu2Oそのものの光吸収と光伝導性は既に励起子理論に
よってくまなく解明されていてMott−Wannier型励起子
の典型的な例として有名である。ここでのQ(λ,T)に
おける微細構造の位置はCu2Oそのものの基礎吸収端の構
造とまったくよく一致している。我々はいくつかの際立
つた恐らく励起子によるものであろうと考えられる微細
構造を認めることが出来る。たとえばCu2Oのそれと類似
してLa2−Cu1−Ozの光伝導応答スペクトルのλ≒580nm
近傍にCu2Oの黄色系列励起子のn=2状態に対応するも
のではないかと考えられる構造が認められる。それゆ
え、我々が次のような想像をしたとしても理に沿ったも
のといえよう。La−Cu−O系の物質の内部には無視する
ことの出来ない、少くとも有限の比率でのCu+1を有する
Cu2O類似の相が存在する。そしてそこではそれぞれの結
晶構造に若干の相異をもつものの、光によって励起され
た伝導電子と正孔が確かに動きまわれる状態にある。
The photoabsorption and photoconductivity of Cu 2 O itself have been thoroughly elucidated by exciton theory and are well known as typical examples of Mott-Wannier type excitons. The position of the fine structure in Q (λ, T) here is in good agreement with the structure of the basic absorption edge of Cu 2 O itself. We can recognize some striking fine structures that are probably due to excitons. For example, similar to that of Cu 2 O, the photoconduction response spectrum of La 2 −Cu 1 −O z λ ≈ 580 nm
A structure that is thought to correspond to the n = 2 state of the yellow excitons of Cu 2 O is recognized in the vicinity. Therefore, even if we imagine the following, it would be reasonable. La-Cu-O system has Cu +1 in non-negligible at least finite ratio inside the material
A phase similar to Cu 2 O exists. And although there are some differences in their crystal structures, the conduction electrons and holes excited by light are certainly in a state of moving around.

標準的なタイプCu2O結晶内の伝導電子と正孔は、結合
定数α≒0.14〜0.18で以前にも議論した様にやや“大き
いポーラロン”を形成していると報告されている。デン
バー効果での光応答の符号は励起光でつくられた担体で
寿命が長くより大きな寄与をしているのはLa−Cu−O系
では伝導電子であると思われる。しかしどちらの場合で
も、絶縁体的資料において、“光伝導性Q(λ,T)”の
出現が、“超伝導性の出現”と明確に関係していて、恰
かも超伝導性が光伝導性の現象のうらに潜在しているか
のように見える。そこでポーラロンの効果は、それがLO
フォノンとの相互作用にもとづく“大きなポーラロン”
であろうとヤーンテラー効果による“小さなポーラロ
ン”であろうと、または両者にもとづく中間結合の領域
のものであろうと、とに角第3,4図(a)〜(c)に示
されているように“電子分極によるポーラロン効果”と
同様に少くとも潜在的には大切なものであろう。それら
は多分、コヒーレントに混成した形での素励起として効
果をもっていると思われる。ここで我々は電子分極によ
るポーラロンに特別の注意を払う必要があり、それは別
名“励起子ポーラロン”とも呼ばれているものである。
ここでの実験結果を見ると、ポーラロンや励起子の間の
密接な関係を誰でもが認めざるを得ないであろう。
It is reported that conduction electrons and holes in a standard type Cu 2 O crystal form a rather “large polaron” with a coupling constant α ≈ 0.14 to 0.18, as discussed previously. The sign of the optical response by the Denver effect is considered to be conduction electrons in the La-Cu-O system, which has a long lifetime and makes a large contribution to the carriers made of excitation light. However, in both cases, the appearance of “photoconductivity Q (λ, T)” is clearly related to the “appearance of superconductivity” in the insulating material, and even if superconductivity is photoconductivity. It seems to be latent in the back of the phenomenon of sexuality. So the effect of polaron is that it is LO
"Large polaron" based on interaction with phonons
Whether it is a “small polaron” due to the Jahn-Teller effect, or in the region of an intermediate bond based on both, as shown in FIGS. 3 and 4 (a) to (c). It is at least potentially important, as is the "polaron effect due to electronic polarization". They are probably effective as elementary excitations in coherently hybrid form. Here we need to pay special attention to polarons due to electronic polarization, which is also called "exciton polaron".
Looking at the experimental results here, we must admit the close relationship between polarons and excitons.

これらのポーラロンや励起子は、どれも酸素の(2p)
と銅の(3d)の混成価電子状態から後(3d)の配置で
正孔を残して、LOフォノンとも相互作用をしながら銅の
(4s)伝導帯への光学的には帯間遷移によって(4s)
の伝導電子がつくり出されたものである。しかしLa−Cu
−O形のポーラロンは光学的励起でも、LaをBaやSrで置
換することでもつくり出すことが出来る。2p(O)と3d
(Cu)の混成帯内の正孔は帯内または帯間いずれの遷移
によっても多体系の基底状態からつくり出すことが出来
るから、電子間の相関効果は勿論きわめて大切である。
我々もCu2+とCu3+の間の動的な価電子揺動もさることな
がらCu1+とCu2+の間の動的な価電子揺動にももっと注意
を払わなければならない。それゆえ、高臨界温度をもつ
超伝導機構に対しては、その大小を問わずポーラロンの
集合、特に励起子と密接に関係した集合の潜在的役割を
考える理由は充分存在するであろう。ここでのこれらの
結びつけられたポーラロンと励起子の集合は、多分バイ
ポーラロン、ポーラロン励起子の集合、そして/または
最もありそうなのは動的な電子−フォノン相互作用と同
じく動的な電子相関にもとづく“励起子媒介のバイポー
ラロン”であると思われる。第4図(a)に示すように
La−Cu−O系での光伝導応答Q(λ,T)はLa−Ba−Cu−
O,La−Sr−Cu−O系での超伝導の出現を反映している。
したがって、ここでの素励起の研究は厖大なキャリァー
密度の差にもかかわらず、超伝導基底状態の性質を啓示
していると我々は信じることが出来る。我々の知識の及
ぶ限りでは、これらが高臨界温度をもち反磁性は殆んど
ない超伝導性に登場するポーラロンと励起子による機構
の最初の明確な実験的証拠である。
These polarons and excitons are all oxygen (2p)
From the hybrid valence state of (3d) of copper and copper, leaving holes in the configuration of (3d) 9 and interacting with LO phonons, the optical band-to-band transition to the (4s) conduction band of copper occurs. By (4s) 1
The conduction electrons of are created. But La-Cu
The -O type polaron can be created even by optical excitation by substituting La or Ba for La. 2p (O) and 3d
Since the holes in the (Cu) hybrid band can be created from the ground state of many-body systems by either intra-zone or inter-zone transitions, the correlation effect between electrons is of course extremely important.
We also have to pay more attention to the dynamic valence fluctuations between Cu 1+ and Cu 2+ as well as the dynamic valence fluctuations between Cu 2+ and Cu 3+ . Therefore, for the superconducting mechanism with high critical temperature, there is sufficient reason to consider the potential role of polaron assemblages, especially those closely related to excitons, regardless of size. These bound polaron and exciton sets here are probably based on bipolarons, polaron exciton sets, and / or most likely dynamic electron-phonon interactions as well as dynamic electron correlations. It seems to be an "exciton-mediated bipolaron". As shown in Fig. 4 (a)
The photoconductive response Q (λ, T) in the La-Cu-O system is La-Ba-Cu-
It reflects the appearance of superconductivity in the O, La-Sr-Cu-O system.
Therefore, we can believe that the elementary excitation study here reveals the nature of the superconducting ground state, despite the enormous carrier density differences. To the best of our knowledge, these are the first clear experimental evidences for polaron and exciton mechanisms to appear in superconductivity with high critical temperatures and few diamagnetisms.

以上、ここで我々は、予期された出現温度の一致、す
なわち絶対温度4.2〜100Kまでの少くとも超伝導性La−C
u−O系及び半導体的La−Cu−O系においては反磁性は
(なんらかの理由で)殆どないが“超伝導性(ゼロ抵
抗)”と“光伝導性”の深い相関について最初に知見し
た。それゆえ、高温超伝導においてポーラロンと励起子
による動的機構、すなわち、“励起子媒介のバイポーラ
ロン”による動的機構の存在を再確認した。
Thus, here we find the expected coincidence of appearance temperatures, i.e. at least superconducting La-C up to an absolute temperature of 4.2-100 K.
In the u-O system and the semiconducting La-Cu-O system, there was almost no diamagnetism (for some reason), but we first discovered a deep correlation between "superconductivity (zero resistance)" and "photoconductivity". Therefore, we reconfirmed the existence of the dynamical mechanism by polarons and excitons, that is, by "exciton-mediated bipolaron" in high temperature superconductivity.

(発明の効果) 以上の結果、我々は次のように結論することが出来
る。絶対温度4.2K〜100Kの温度領域で、伝導度測定には
直流四端子法とくり返しパルス光伝導測定法を適用し、
静帯磁率の測定にはマイクロ波SQUIDを用いることで始
めて幅広く調べた結果、反磁性は殆んどないが“超伝導
性(ゼロ抵抗)”と“光伝導性”のと相関がある“光伝
導物質"La2−Cu1−Oz系(z=3.84〜4.02)を発明しそ
の製造方法をも発明した。なおこの発明は我々が提案し
ている“高温超伝導”に対しての“ポーラロンと励起子
による動的機構”つまり“励起子媒介のバイポーラロ
ン”による機構という理論的考察と並行して展開された
もので、これらの新素材は、光で直接超伝導性を制御す
る“超伝導オプトエレクトロニクス”という新しい最先
端科学技術分野をひらくものである。
(Effect of Invention) As a result of the above, we can conclude as follows. In the temperature range of absolute temperature 4.2K ~ 100K, the DC four-terminal method and repeated pulse photoconductivity measurement method are applied for conductivity measurement.
As a result of extensively examining the static magnetic susceptibility using microwave SQUID for the first time, diamagnetism is almost nonexistent, but there is a correlation between "superconductivity (zero resistance)" and "photoconductivity". The inventor of the conductive material "La 2 -Cu 1 -O z system (z = 3.84 to 4.02) and the manufacturing method thereof were also invented. This invention was developed in parallel with the theoretical consideration that we have proposed for "high-temperature superconductivity", that is, "dynamic mechanism by polarons and excitons", that is, by "exciton-mediated bipolaron". These new materials will open up a new cutting-edge science and technology field called "superconducting optoelectronics" that directly controls superconductivity with light.

【図面の簡単な説明】[Brief description of drawings]

第1図はブロッキング電極を配したくり返しパルス光伝
導測定法の原理図、 第2図は静帯磁率測定用マイクロ波SQUID装置の説明
図、 第3図は超伝導性光伝導物質La2−Cu1−Ozの下記
(a),(b),(c)の場合の光吸収K(λ)、光伝
導応答Q(λ,T)の波長依存性を示す特性図、 (a)GROSMANNによるCu2Oの光吸収の実験結果、 (b)半導体性資料P2(z≒3.88)の光伝導応答Q
(λ,T)の波長依存性を示す特性図、 (c)超伝導性試料S30(z≒3.92)の光伝導応答Q
(λ,T)の波長依存性を示す特性図、 第4図は超伝導性光伝導物質La2−Cu1−Ozの下記 (a)半導体性試料P2(z≒3.88) (b)伝導性試料S30(z≒3.92) (c)試料P2及び試料S30 の場合の光伝導応答Q(λ,T)と、暗抵抗R(T)の温
度依存性を示す特性図である。
Fig. 1 shows the principle of the repeated pulsed photoconductivity measurement method with blocking electrodes, Fig. 2 shows the microwave SQUID device for static magnetic susceptibility measurement, and Fig. 3 shows the superconducting photoconductive material La 2 -Cu. Characteristic diagram showing wavelength dependence of optical absorption K (λ) and photoconductive response Q (λ, T) in the case of 1- O z (a), (b), and (c) below, (a) According to GROSMANN Experimental results of light absorption of Cu 2 O, (b) Photoconductive response Q of semiconductor material P2 (z ≒ 3.88)
A characteristic diagram showing wavelength dependence of (λ, T), (c) Photoconductivity response Q of superconducting sample S30 (z ≈ 3.92)
Fig. 4 is a characteristic diagram showing the wavelength dependence of (λ, T). Fig. 4 shows the following (a) semiconducting sample P2 (z ≈ 3.88) (b) conduction of the superconducting photoconductive material La 2 -Cu 1 -O z. (C) is a characteristic diagram showing the temperature dependence of photoconductive response Q (λ, T) and dark resistance R (T) in the case of sample P2 and sample S30.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式 La2−Cu1−Oz ここで、z=3.84〜4.02の組成より成り、La−Cu−O系
酸化物超伝導物質の超伝導状態への転移温度にほぼ対応
した温度以下で、、暗中において絶縁体又は半導体であ
ると共に、光照射により光伝導性を生ずることを特徴と
するLa−Cu−O系酸化物光伝導性物質。
1. A general formula La 2 —Cu 1 —O z where z = 3.84 to 4.02, and corresponds substantially to a transition temperature of a La—Cu—O based oxide superconducting material to a superconducting state. La-Cu-O-based oxide photoconductive substance, which is an insulator or a semiconductor in the dark at a temperature equal to or lower than the above temperature, and exhibits photoconductivity by light irradiation.
【請求項2】一般式 La2−Cu1−Oz ここでz=3.84〜4.02の組成の出発物質をその固相反応
の生ずる温度800〜1050℃で5〜10時間加熱し、その後
徐冷し、加圧整形後600〜1200℃で2次焼結した後、200
0〜900℃/secの冷却温度で超急冷するか、150〜200℃/H
の冷却速度で徐冷することにより、La−Cu−O系酸化物
超伝導物質の超伝導状態への転移温度にほぼ対応した温
度以下で、暗中において絶縁体又は半導体であると共
に、光照射により光伝導性を生ずる物質を得ることを特
徴とするLa−Cu−O系酸化物光伝導性物質の製造方法。
2. A starting material having a composition of the general formula La 2 —Cu 1 —O z, where z = 3.84 to 4.02, is heated at a temperature at which the solid-state reaction occurs, at 800 to 1050 ° C. for 5 to 10 hours and then slowly cooled. Then, after pressure shaping and secondary sintering at 600-1200 ℃, 200
Ultra-quick cooling at 0-900 ℃ / sec or 150-200 ℃ / H
By gradually cooling at a cooling rate of 1, the temperature is substantially equal to or lower than the transition temperature of the La-Cu-O-based oxide superconducting substance to the superconducting state, and it is an insulator or a semiconductor in the dark and is irradiated with light. A method for producing a La-Cu-O-based oxide photoconductive substance, which comprises obtaining a substance which exhibits photoconductivity.
JP63022692A 1988-02-04 1988-02-04 La-Cu-O-based oxide photoconductive material and method for producing the same Expired - Lifetime JPH085714B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63022692A JPH085714B2 (en) 1988-02-04 1988-02-04 La-Cu-O-based oxide photoconductive material and method for producing the same
CA000577464A CA1338852C (en) 1988-02-04 1988-09-15 Superconductive photoconductive-substance of the la-cu-o system and a method for producing the same
US07/725,960 US5219831A (en) 1988-02-04 1991-07-05 Superconductive photoconductive-substance of the La-Cu-O system and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022692A JPH085714B2 (en) 1988-02-04 1988-02-04 La-Cu-O-based oxide photoconductive material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01201059A JPH01201059A (en) 1989-08-14
JPH085714B2 true JPH085714B2 (en) 1996-01-24

Family

ID=12089927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022692A Expired - Lifetime JPH085714B2 (en) 1988-02-04 1988-02-04 La-Cu-O-based oxide photoconductive material and method for producing the same

Country Status (2)

Country Link
JP (1) JPH085714B2 (en)
CA (1) CA1338852C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109905B2 (en) * 1991-07-16 1995-11-22 東京大学長 Bi-SrCa (LaY) -Cu-O-based oxide superconducting conjugate photoconductive material, method for producing the same, and superconducting optoelectronic device using the same
JP4861290B2 (en) * 2007-10-30 2012-01-25 日本電信電話株式会社 Superconductor and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JapaneseJournalofAppliedPhysicsVol.26No.11p.L1845〜L1846

Also Published As

Publication number Publication date
CA1338852C (en) 1997-01-21
JPH01201059A (en) 1989-08-14

Similar Documents

Publication Publication Date Title
Walsh Zero-bias anomalies in the current-voltage and conductance-voltage characteristics of high-critical-temperature superconductor junctions
JPH085714B2 (en) La-Cu-O-based oxide photoconductive material and method for producing the same
EP0354812B1 (en) Superconductive photoconductive-substance of the Ca-Sr-Bi-Cu-O group system and a method for producing the same
Masumi et al. A Novel Spectral Photoconductivity of the Y–Cu–O, Y–Ba–Cu–O Correlative with Superconductivity
US5219831A (en) Superconductive photoconductive-substance of the La-Cu-O system and a method for producing the same
US5371067A (en) Superconductive photoconductive substance of the Ba-Pb-Bi-O group system and a method for producing the same
US5168165A (en) Superconductive photoconductive-substance of the Y-Ba-Cu-O system and a method for producing the same
CA1338851C (en) Superconductive photoconductive-substance of the y-ba-cu-o system and a method for producing the same
US5654259A (en) Superconductive conjugate photoconductive substances of the Bi-SrCa (laY)-Cu-O system, a method for producing the same and superconductive optoelectronic devices using the same
US5244870A (en) Superconductive optoelectronic device with the basic substance Cu2 O of superconductive-conjugate photoconductivity
US5140002A (en) Photoconductive-substance of the Y-Ba-Cu-O system and a method for producing the same
Navarro et al. Improving the Josephson energy in high-Tc superconducting junctions for ultra-fast electronics
Hatfield The Advent of High-Temperature Superconducting Materials: Chronology of Events and Hallmark Developments
Aleksandrov et al. Microwave studies of high-temperature superconductors
Sugawara et al. MICROWAVE ABSORPTION STUDIES ON HIGH-Tc SUPERCONDUCTORS AND RELATED MATERIALS V-ANOMALOUS BEHAVIOR OF LOW MAGNETIC FIELD MICROWAVE ABSORPTION IN AN ULTRA-THIN Bi-Sr-Ca-Cu-O FILM
Chen et al. Electronic transport properties of polycrystalline Sm x C 60
Ummarino et al. Possible explanation of electric-field-doped C 60 phenomenology in the framework of Eliashberg theory
Mazov Possible Room-Tc Superconductor with in-plane Ginzburg Sandwichin Cuprate-and Pnictide-likefamilyof Compounds
Bollinger et al. Atomic-layer engineering of oxide superconductors
Szymczak et al. Experimental studies of electronic phase separation in high temperature superconductors
Bunda et al. Physical properties of “HTSC-photosemiconductor” hybrid contact structures
Singh Synthesis and Characterization of Fe doped Bi2Sr2Ca1Cu2O8
Jardim Unconventional Properties of Ln2-xCexCuO4-y (Ln= Pr, Nd, Sm, Eu) Compounds
Harsányi et al. Frits in thick film superconductors: a special approach for improving superconducting and adhesion properties
Taoufik et al. The critical current density and the vortex pinning in high-quality YBa2Cu3O7− δ thin films

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term