JPH0854469A - Sensitivity distribution type radiation sensor - Google Patents

Sensitivity distribution type radiation sensor

Info

Publication number
JPH0854469A
JPH0854469A JP6212058A JP21205894A JPH0854469A JP H0854469 A JPH0854469 A JP H0854469A JP 6212058 A JP6212058 A JP 6212058A JP 21205894 A JP21205894 A JP 21205894A JP H0854469 A JPH0854469 A JP H0854469A
Authority
JP
Japan
Prior art keywords
sensitivity distribution
radiation
distribution type
filament
radiation sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6212058A
Other languages
Japanese (ja)
Inventor
Kazunori Nakamura
一則 中村
Naotaka Uchino
直孝 内野
Takafumi Kuboki
尚文 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6212058A priority Critical patent/JPH0854469A/en
Publication of JPH0854469A publication Critical patent/JPH0854469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To obtain a sensitivity distribution type radiation sensor in which the dynamic range to be measured is not narrowed even when there is the position where the radiation dose of a measuring range is largely varied. CONSTITUTION:The same radiation detecting sensitivity distribution for distributing the radiation detecting sensitivity of a strand 1 of a glass added with rare earth element ions in its longitudinal direction is given to the glass itself. A coating 3 for attenuating the radiation is provided in the outer periphery of a radiation detecting strand 2 to form a radiation detecting sensitivity distribution. The two or more strands 2 having different radiation detecting sensitivities are connected in the axial direction to form a detecting sensitivity distribution. The quantity of hole capturing structure in the glass of the strand 1 is controlled to form a detecting sensitivity distribution. Metal ions are added to the glass to control the quantity of the capturing structure to form the detecting sensitivity distribution. The quantity of the hole capturing structure is controlled by altering the drawing conditions of the strand.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電所、原子力研
究所等の放射線が発生する場所において、放射線の漏洩
を検出するのに使用される感度分布型放射線センサに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensitivity distribution type radiation sensor used for detecting leakage of radiation in a place where radiation is generated, such as a nuclear power plant and a nuclear research institute.

【0002】[0002]

【従来の技術】光ファイバを用いた放射線センサは従来
から知られている。例えば、希土類イオンが添加された
ガラスファイバにγ線などの放射線を照射すると吸収が
発生する。ガラスファイバの長手方向における吸収の分
布は放射線の分布に換算することが可能であり、数Km
にわたる測定も可能である。従って、光ファイバに放射
線が照射されたときの光ファイバの長手方向における放
射線量分布は、放射線照射時に発生する吸収の、光ファ
イバの長手方向における分布をパルスエコー法(OTD
R法:Optical Time Domain Reflectometry 法とも呼ば
れる)によりモニタすることにより測定することができ
る。この測定方法はOTDRからの光を光ファイバに送
り出し、光ファイバからの反射光をOTDRで測定し
て、その反射量、反射時間等から放射線の位置、放射線
の量(線量)等を検出するものである。
2. Description of the Related Art A radiation sensor using an optical fiber has been conventionally known. For example, absorption occurs when a glass fiber doped with rare earth ions is irradiated with radiation such as γ-rays. The distribution of absorption in the longitudinal direction of the glass fiber can be converted into the distribution of radiation, which is several Km.
It is also possible to measure over. Therefore, as for the radiation dose distribution in the longitudinal direction of the optical fiber when the optical fiber is irradiated with radiation, the absorption in the longitudinal direction of the optical fiber is determined by the pulse echo method (OTD).
R method: also called Optical Time Domain Reflectometry method). This measurement method sends the light from the OTDR to the optical fiber, measures the reflected light from the optical fiber with the OTDR, and detects the position of the radiation, the radiation amount (dose), etc. from the reflection amount, the reflection time, etc. Is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、吸収を
前記のOTDR法により測定すると、測定長が長くなる
と入射光源の近端と遠端とで受光器に戻る光量に大きな
差が生じ、この結果、分解能やダイナミックレンジに制
限が加わることになる。特に、途中に放射線量の大きな
部分がある場合は、その場所以遠の領域は極端にS/N
が劣化し、測定できるダイナミックレンジが狭隘化(長
手方向の分布が劣化)する、という問題があった。
However, when the absorption is measured by the above-mentioned OTDR method, when the measurement length becomes long, a large difference occurs in the amount of light returning to the light receiver at the near end and the far end of the incident light source, and as a result, The resolution and dynamic range will be limited. In particular, if there is a large radiation dose in the middle, the area beyond that location will be extremely S / N.
However, there is a problem in that the measurable dynamic range is narrowed (the longitudinal distribution is deteriorated).

【0004】また、もう一つの課題として、希土類イオ
ンが添加されたガラスの放射線検知感度を制御する際、
ガラス組成と放射線検知感度との対応が不明確でガラス
自体による放射線検知感度制御方法が確立されていない
という点があった。即ち、希土類イオンをガラス中に添
加することにより放射線検知特性が発現されることは知
られているが、添加する希土類イオン濃度と放射線検知
感度との間には明確な対応関係が確認されていなかっ
た。その結果、ガラスを構成する因子による放射線検知
感度制御方法が不明確であるという問題が残されてい
た。
As another problem, when controlling the radiation detection sensitivity of glass to which rare earth ions are added,
There is a point that the correspondence between the glass composition and the radiation detection sensitivity is unclear, and the radiation detection sensitivity control method by the glass itself has not been established. That is, it is known that the radiation detection characteristics are exhibited by adding rare earth ions to glass, but a clear correspondence relationship between the concentration of rare earth ions to be added and the radiation detection sensitivity has not been confirmed. It was As a result, there remains a problem that the radiation detection sensitivity control method depending on the factors constituting the glass is unclear.

【0005】本発明の目的は、測定範囲の放射線量が大
きく変化する箇所があっても、測定できるダイナミック
レンジが狭隘化しない感度分布型放射線センサを提供す
ることにある。
An object of the present invention is to provide a sensitivity distribution type radiation sensor in which the measurable dynamic range is not narrowed even if the radiation dose in the measurement range changes greatly.

【0006】[0006]

【課題を解決するための手段】本発明のうち請求項1の
感度分布型放射線センサは、希土類イオンを添加したガ
ラス製の線材若しくは光ファイバ等の線条体1を放射線
検出媒体とした放射線センサにおいて、その線条体1の
放射線検出感度がその長手方向に分布してなるものであ
る。
According to a first aspect of the present invention, there is provided a sensitivity distribution type radiation sensor in which a filament wire 1 such as a glass wire or an optical fiber doped with rare earth ions is used as a radiation detection medium. In the above, the radiation detection sensitivity of the filament 1 is distributed in the longitudinal direction.

【0007】本発明のうち請求項2の感度分布型放射線
センサは、請求項1の感度分布型放射線センサにおい
て、線条体1の放射線検出感度の分布が、放射線検出線
条体2の外周に放射線を減衰させる被覆体3を設けるこ
とにより形成されてなるものである。
The sensitivity distribution type radiation sensor according to claim 2 of the present invention is the sensitivity distribution type radiation sensor according to claim 1, wherein the radiation detection sensitivity distribution of the filament 1 is on the outer circumference of the radiation detecting filament 2. It is formed by providing a coating 3 that attenuates radiation.

【0008】本発明のうち請求項3の感度分布型放射線
センサは、請求項1の感度分布型放射線センサにおい
て、線条体1の放射線検出感度の分布が、放射線検出感
度が異なる放射線検出線条体2を軸線方向に接続するこ
とにより形成されてなるものである。
The sensitivity distribution type radiation sensor according to claim 3 of the present invention is the sensitivity distribution type radiation sensor according to claim 1, wherein the distribution of the radiation detection sensitivity of the filamentous body 1 is different from the radiation detection sensitivity. It is formed by connecting the body 2 in the axial direction.

【0009】本発明のうち請求項4の感度分布型放射線
センサは、請求項1の感度分布型放射線センサにおい
て、線条体1の放射線検出感度の分布が、線条体1のガ
ラス自体に存在することを特徴とするものである。
In the sensitivity distribution type radiation sensor according to claim 4 of the present invention, in the sensitivity distribution type radiation sensor according to claim 1, the distribution of the radiation detection sensitivity of the filament 1 exists in the glass itself of the filament 1. It is characterized by doing.

【0010】本発明のうち請求項5の感度分布型放射線
センサは、請求項1又は請求項4のの感度分布型放射線
センサにおいて、線条体1の放射線検出感度の分布が、
同線条体1のガラス中に存在するホ−ル捕獲構成体の量
を制御することにより形成されてなることを特徴とする
ものである。
In the sensitivity distribution type radiation sensor according to claim 5 of the present invention, in the sensitivity distribution type radiation sensor according to claim 1 or 4, the distribution of radiation detection sensitivity of the filament 1 is
It is characterized in that it is formed by controlling the amount of the hole trapping structure present in the glass of the linear body 1.

【0011】本発明のうち請求項6の感度分布型放射線
センサは、請求項5の感度分布型放射線センサにおい
て、線条体1を構成するガラス中に金属イオンの1つ或
は複数を組み合わせて添加することによりガラス中に存
在するホ−ル捕獲構成体の量を制御してなることを特徴
とするものである。
According to a sixth aspect of the present invention, there is provided the sensitivity distribution type radiation sensor according to the fifth aspect, wherein one or more metal ions are combined in the glass forming the filamentous body 1. It is characterized in that the amount of the hole trapping structure present in the glass is controlled by adding it.

【0012】本発明のうち請求項7の感度分布型放射線
センサは、請求項5の感度分布型放射線センサにおい
て、線条体1の製造過程の線引き条件を変えることによ
り線条体1中のホ−ル捕獲構成体の量を制御してなるこ
とを特徴とするものである。
According to a seventh aspect of the present invention, in the sensitivity distribution type radiation sensor of the fifth aspect, the sensitivity distribution type radiation sensor according to the fifth aspect is characterized in that the wire condition in the filamentous body 1 is changed by changing the drawing condition in the manufacturing process of the filamentous body 1. -The method is characterized in that the amount of the le capture component is controlled.

【0013】[0013]

【作用】本発明のうち請求項1〜請求項7の感度分布型
放射線センサでは、希土類イオンを添加したガラス製の
線条体1の放射線検出感度がその長手方向に分布してい
るので、線条体1のうち放射線検出感度の低い部分を放
射線が漏洩し易い(放射線量が多い)箇所に、放射線検
出感度の高い部分を放射線が漏洩しにくい(放射線量が
少ない)箇所に配置すれば、線条体の長手方向全長に亙
って放射線をほぼ均一に検出でき、OTDRへの反射光
レベルがほぼ均一化されるので、測定可能なダイナミッ
クレンジが狭隘化しない。
In the sensitivity distribution type radiation sensor according to claims 1 to 7 of the present invention, since the radiation detection sensitivity of the glass filamentous body 1 to which rare earth ions are added is distributed in the longitudinal direction, By arranging the portion of the strip 1 with low radiation detection sensitivity in a location where radiation easily leaks (high radiation dose), and the portion with high radiation detection sensitivity in a location where radiation is hard to leak (low radiation dose), Radiation can be detected almost uniformly over the entire length of the striatum in the longitudinal direction, and the level of reflected light to the OTDR is made substantially uniform, so that the measurable dynamic range is not narrowed.

【0014】本発明のうち請求項2の感度分布型放射線
センサでは、図1に示すように放射線検出線条体2の外
周に放射線を減衰させる被覆体3を設けることにより放
射線検出感度を分布させてなるので、放射線検出感度が
長手方向に均一な放射線検出線条体2を利用して手軽に
検出感度を所定分布にすることができる。
In the sensitivity distribution type radiation sensor according to claim 2 of the present invention, the radiation detection sensitivity is distributed by providing a coating 3 for attenuating the radiation on the outer periphery of the radiation detection filament 2 as shown in FIG. Therefore, it is possible to easily bring the detection sensitivity into a predetermined distribution by using the radiation detection filament 2 having the uniform radiation detection sensitivity in the longitudinal direction.

【0015】本発明のうち請求項3の感度分布型放射線
センサでは、図2に示すように放射線検出感度の異なる
二以上の放射線検出線条体2を長手方向に接続するの
で、放射線検出感度の異なる既存の放射線検出線条体2
を二以上用意し、それらを利用して手軽に検出感度を所
定分布にすることができる。
In the sensitivity distribution type radiation sensor according to claim 3 of the present invention, as shown in FIG. 2, since two or more radiation detection filaments 2 having different radiation detection sensitivities are connected in the longitudinal direction, the radiation detection sensitivity Different existing radiation detection striatum 2
By preparing two or more of them, the detection sensitivity can be easily set to a predetermined distribution by using them.

【0016】本発明のうち請求項4の感度分布型放射線
センサでは、放射線検出感度の分布が線条体1を構成す
るガラス自体に存在するので、線条体1の構造に特別な
工夫を施さなくとも検出感度を所定の分布にすることが
できる。
In the sensitivity distribution type radiation sensor according to the fourth aspect of the present invention, since the distribution of the radiation detection sensitivity exists in the glass itself forming the filamentous body 1, the structure of the filamentous body 1 is specially devised. Even if it is not necessary, the detection sensitivity can have a predetermined distribution.

【0017】本発明のうち請求項5の感度分布型放射線
センサは、ガラス中に存在するホ−ル捕獲構成体の量を
制御することにより放射線検出感度の分布を持たせるの
で、線条体1の原料となるガラスを製造するときにホ−
ル捕獲構成体の量を所定の感度分布になるように選択す
ることにより、検出感度を所定分布にすることができ
る。
In the sensitivity distribution type radiation sensor according to the fifth aspect of the present invention, the distribution of the radiation detection sensitivity is provided by controlling the amount of the hole trapping structure present in the glass. When manufacturing glass as a raw material for
The detection sensitivity can be made to have a predetermined distribution by selecting the amount of the le capture component so as to have a predetermined sensitivity distribution.

【0018】本発明のうち請求項6の感度分布型放射線
センサは、ガラス中に金属イオンの1つ或は複数を組み
合わせて添加して、ガラス中のホ−ル捕獲構成体の量を
制御するので、線条体1の原料となるガラスを製造する
ときに添加する金属イオンの種類或は組合わせを選択す
ることにより、検出感度を所定分布にすることができ
る。
In the sensitivity distribution type radiation sensor according to claim 6 of the present invention, one or a plurality of metal ions are added in combination to the glass to control the amount of the hole trapping constituents in the glass. Therefore, the detection sensitivity can be made to have a predetermined distribution by selecting the type or combination of the metal ions added when the glass as the raw material of the filament 1 is manufactured.

【0019】本発明のうち請求項7の感度分布型放射線
センサは、線条体1の製造過程の線引き条件を変えるこ
とにより、線条体1中のホ−ル捕獲構成体の量を制御す
るので、線条体1自体を特殊な構造或は組成にする必要
が無く、線引き条件を変えるだけで手軽に検出感度を所
定分布にすることができる。
In the sensitivity distribution type radiation sensor according to claim 7 of the present invention, the amount of the hole trapping structure in the filament 1 is controlled by changing the drawing conditions in the process of manufacturing the filament 1. Therefore, it is not necessary to make the striatum 1 itself to have a special structure or composition, and the detection sensitivity can be easily made to have a predetermined distribution simply by changing the drawing conditions.

【0020】[0020]

【実施例】本発明の感度分布型放射線センサの基本的構
成は希土類イオンを添加したガラス製の線条体1の長手
方向の放射線検出感度を不均一にしたものである。線条
体自身が放射線検出機能を持つ放射線センサの、長手方
向における放射線感度を不均一に分布させるには次の3
種類の構成が考えられる。その第1は放射線検出線条体
の外周に放射線を減衰させる効果を持つ遮蔽管を設ける
構成であり、第2は放射線検出感度の異なる放射線検出
線条体を二以上用意し、これらを長手方向に接続する構
成であり、第3は線条体自体の放射線検出感度が感度分
布を持つようにする構成である。
EXAMPLES The basic structure of the sensitivity distribution type radiation sensor of the present invention is that the filament detection element 1 made of glass to which rare earth ions are added has a non-uniform radiation detection sensitivity in the longitudinal direction. To distribute the radiation sensitivity in the longitudinal direction of the radiation sensor in which the striatum itself has a radiation detection function, the following 3
Different configurations are possible. The first is a structure in which a shielding tube having an effect of attenuating radiation is provided on the outer circumference of the radiation detection filament, and the second is to prepare two or more radiation detection filaments having different radiation detection sensitivities, and these are arranged in the longitudinal direction. The third is a configuration in which the radiation detection sensitivity of the striatum itself has a sensitivity distribution.

【0021】[0021]

【実施例1】前記3種類の構成のうち第1の構成につい
て図1を参照して詳細に説明する。図1の2は放射線検
出線条体であり、これは希土類イオンを添加した石英ガ
ラスで製作された線材、同石英ガラスによりなる光ファ
イバ(コア、クラッド構造)等であり、これらは長手方
向の放射線検出感度が均一なものである。そして図1で
はその放射線検出線条体2の外周の長手方向の一部に、
放射線を減衰させる効果を持つ遮蔽管3を設けて、その
遮蔽管3が設けられた部分の照射線検出感度を他の部分
よりも低下させ、これにより放射線検出線条体2の長手
方向に所定の感度分布を有する線条体1を構成してなる
ものである。この場合、放射線を減衰させるための遮蔽
管3としては例えば金属製のシースとか鉛被等が使用さ
れる。また、遮蔽管3は放射線の減衰量が異なるものを
二以上使用し、それらを図1に示す様に長手方向に連続
して設けるとか、任意の間隔をあけて設ける等する。図
1に示す光ファイバは長手方向の放射線検出感度が不均
一なものであってもよい。この放射線検出感度の不均一
は、実施例3以降に記載するホール捕獲構成体の量を制
御することにより作り出したものであってもよい。
[First Embodiment] A first structure of the three kinds of structures will be described in detail with reference to FIG. Reference numeral 2 in FIG. 1 denotes a radiation detecting filament, which is a wire made of silica glass doped with rare earth ions, an optical fiber (core, clad structure) made of the silica glass, etc. Radiation detection sensitivity is uniform. In FIG. 1, a part of the outer circumference of the radiation detecting filament 2 in the longitudinal direction,
By providing the shield tube 3 having the effect of attenuating the radiation, the irradiation ray detection sensitivity of the portion where the shield tube 3 is provided is made lower than that of the other portion, whereby the radiation detection linear body 2 has a predetermined length in the longitudinal direction. The linear body 1 having the sensitivity distribution of 1 is constituted. In this case, as the shield tube 3 for attenuating the radiation, for example, a metal sheath or a lead cover is used. Further, as the shield tube 3, two or more shield tubes having different radiation attenuation amounts are used, and they are provided continuously in the longitudinal direction as shown in FIG. 1, or provided at arbitrary intervals. The optical fiber shown in FIG. 1 may have non-uniform radiation detection sensitivity in the longitudinal direction. This non-uniformity in radiation detection sensitivity may be created by controlling the amount of hole trapping structures described in Example 3 and the subsequent figures.

【0022】[0022]

【実施例2】前記3種類の構成のうち第2の構成につい
て図2を参照して詳細に説明する。図2に示すものは長
手方向に放射線検出感度が異なる放射線検出線条体2を
二以上用意し、これらを長手方向に接続してなるもので
ある。これら二以上の放射線検出線条体2は長手方向端
部をスリーブに挿入する等して軸線方向に直線方向に接
続してなる。この場合、放射線検出線条体2の配列は種
々考えられる。例えば検出感度の低い放射線検出線条体
2から順次配列する方法、検出感度の良い放射線検出線
条体2の間に検出感度の低い放射線検出線条体2を配列
する方法等である。この配列を任意に選択することによ
り、線条体1の長手方向任意の位置に、任意の長さ毎に
放射線検出感度を分布させることができる。
[Embodiment 2] Of the three types of configurations, the second configuration will be described in detail with reference to FIG. In FIG. 2, two or more radiation detecting filaments 2 having different radiation detecting sensitivities in the longitudinal direction are prepared, and these are connected in the longitudinal direction. These two or more radiation detecting filaments 2 are connected in a straight line in the axial direction by inserting the ends in the longitudinal direction into a sleeve. In this case, various arrangements of the radiation detection striations 2 are possible. For example, there are a method of sequentially arranging the radiation detection filaments 2 having low detection sensitivity, a method of arranging the radiation detection filaments 2 having low detection sensitivity between the radiation detection filaments 2 having high detection sensitivity, and the like. By arbitrarily selecting this array, the radiation detection sensitivity can be distributed at arbitrary positions in the longitudinal direction of the filamentous body 1 for each arbitrary length.

【0023】[0023]

【実施例3】前記3種類の構成のうち第3の構成につい
て図3を参照して詳細に説明する。図3に示すものは線
条体1自体の放射線検出感度が長手方向に均一で無く、
感度分布を持つようにしたものである。
[Third Embodiment] A third structure of the three kinds of structures will be described in detail with reference to FIG. As shown in FIG. 3, the radiation detection sensitivity of the striatum 1 itself is not uniform in the longitudinal direction,
It has a sensitivity distribution.

【0024】本件発明者らが鋭意研究を重ねた結果、希
土類添加型光ファイバの場合、長手方向の放射線検出感
度を目的に応じて調整できる感度分布型センサにするこ
とができることが分かった。この場合、放射線検出感度
は吸収を発生させるために添加する希土類の濃度を制御
することにより容易に調整できるように思われるが、こ
の方法では実際は制御することは難しかった。つまり、
放射線照射によって発生する吸収量の大きさは、必ずし
もガラス中に添加した希土類イオンの濃度に一意的に依
存しないことが分かった。その代わり、石英系ガラスが
線条体に加工される過程でできるホール捕獲構成体(正
孔:ホールを捕獲する構成体)、例えばOxygen Vacanc
y、Peroxylinkage 、或はStrain bond 等の発生量に依
存することが分かった。そこで、ホール捕獲構成体が発
生する条件を調べたところ、ホール捕獲構成体の発生量
は石英系ガラス中に添加物質を加えることにより制御出
来ることが分かった。
As a result of earnest studies by the present inventors, it was found that in the case of a rare earth-doped optical fiber, a sensitivity distribution type sensor capable of adjusting the radiation detection sensitivity in the longitudinal direction can be adjusted according to the purpose. In this case, it seems that the radiation detection sensitivity can be easily adjusted by controlling the concentration of the rare earth element added to generate absorption, but it was difficult to control in practice by this method. That is,
It was found that the amount of absorption produced by irradiation does not necessarily depend on the concentration of rare earth ions added to the glass. Instead, a hole-capturing structure (hole: hole-capturing structure) formed during the process in which the silica-based glass is processed into a filament, for example, Oxygen Vacanc
It was found to depend on the amount of y, Peroxylinkage, or strain bond generated. Therefore, when the conditions for generating the hole trapping structure were investigated, it was found that the generation amount of the hole trapping structure could be controlled by adding an additive substance to the silica glass.

【0025】前記1による効果を確認するため、純粋石
英ガラスにGeやSb、Ti、Alなどの金属イオン
(添加物質)を5から10mol%加え、そのガラスに
放射線を照射させてそのとき発生する吸収量を調べたと
ころ、図4に示す様に放射線照射による吸収量は大きく
変化し、吸収損失が小さくなることが確認された。
In order to confirm the effect of the above 1, 5 to 10 mol% of metal ions (additive substances) such as Ge, Sb, Ti and Al are added to pure quartz glass and the glass is irradiated with radiation to generate the effect. When the amount of absorption was examined, it was confirmed that the amount of absorption due to radiation irradiation changed significantly as shown in FIG. 4 and the absorption loss decreased.

【0026】図4は添加金属イオンとガンマ線照射損失
との関係を示すものであり、横軸に示す金属イオンを添
加したときの照射損失を縦軸に示すものであり、夫々の
金属イオンの場合について2回測定した。図4の黒い四
角が照射損失の最大値、白い四角が照射損失の最小値、
即ち、照射損失のバラツキを示す。
FIG. 4 shows the relationship between the added metal ions and the gamma ray irradiation loss, and the irradiation loss when the metal ion is added on the horizontal axis is shown on the vertical axis. In the case of each metal ion Was measured twice. The black square in Fig. 4 is the maximum value of irradiation loss, and the white square is the minimum value of irradiation loss.
That is, it shows variations in irradiation loss.

【0027】図4の場合は、サンプル光ファイバとして
気相法もしくはゾルゲル法を用いて作成した1200p
pmEr添加ガラスを短尺ファイバ化したものを用い、
測定は633nmの波長の光を用いて行った。ガンマ線
照射は60Coの線源を用い、5×103 R/時の照射レ
ート条件で行ったものである。
In the case of FIG. 4, a 1200p sample optical fiber was prepared by using the vapor phase method or the sol-gel method.
Using a short fiber of pmEr-doped glass,
The measurement was performed using light with a wavelength of 633 nm. The gamma ray irradiation was performed under the irradiation rate condition of 5 × 10 3 R / hour using a 60 Co radiation source.

【0028】添加物質としては上記以外にもGd、S
n、Ta、Nb、Zr、P、B等が考えられる。これら
の金属イオンを添加した場合も吸収の発生は低下する傾
向を示した。これらの金属イオンにはガラスの屈折率を
変化させるものと、変化させないものとがありるため、
この実施例3では屈折率を制御しながら放射線検出感度
を調整したり、屈折率を一定のまま検出感度のみを調整
したりすることができる自由度がある。
Besides the above substances, Gd and S
n, Ta, Nb, Zr, P, B, etc. are considered. The occurrence of absorption also tended to decrease when these metal ions were added. Some of these metal ions change the refractive index of glass and some do not.
In the third embodiment, there is a degree of freedom that the radiation detection sensitivity can be adjusted while controlling the refractive index, or only the detection sensitivity can be adjusted while keeping the refractive index constant.

【0029】[0029]

【実施例4】この実施例も実施例3と同様に線条体1自
体の放射線検出感度が長手方向に感度分布を持つように
するために、ホール捕獲構成体の発生量を制御するもの
である。具体的には線条体1の製造工程において、ガラ
ス母材から糸状の線状(ファイバ)に防糸するとき、即
ち、線引きするときに、線引き張力或は線引き速度を変
化させるようにしたものである。
[Embodiment 4] This embodiment is similar to Embodiment 3 in that the generation amount of the hole trapping structure is controlled so that the radiation detection sensitivity of the filamentous body 1 itself has a sensitivity distribution in the longitudinal direction. is there. Specifically, in the manufacturing process of the filament 1, when the glass base material is thread-proofed (fiber), that is, when the filament is drawn, the drawing tension or the drawing speed is changed. Is.

【0030】本件発明者らが鋭意研究を重ねた結果、放
射線照射による吸収損失の発生量が線引き張力を制御す
る要因である加熱温度(線引き温度)或は線引き速度を
変化させることにより変化することが分かった。その変
化の一例は次頁の表1に示す通りである。この表1は石
英ガラスにErイオンを添加した光ファイバをサンプル
とし、線引き条件としてテンションを変化させたばあい
であり、標準条件から約20%だけテンションを増加も
しくは減少させた場合の結果である。
As a result of intensive studies conducted by the present inventors, the amount of absorption loss due to radiation irradiation changes when the heating temperature (drawing temperature) or the drawing speed, which is a factor controlling the drawing tension, changes. I understood. An example of the change is shown in Table 1 on the next page. Table 1 shows a case where the tension is changed as a drawing condition using an optical fiber in which Er ions are added to silica glass as a sample, and is a result when the tension is increased or decreased by about 20% from the standard condition. .

【0031】この場合、Er以外にも、NdやY、Y
b、Ho、Smなどのランタン系希土類イオンは全て放
射線照射による吸収を発生させるために適用可能であ
る。ただし、添加する希土類イオンの種類により発生す
る吸収波長や吸収の大きさは夫々異なる。また、表1は
線引き条件を変化させた時のガンマ線照射による損失変
化、線引き条件としてテンションを変化させた。標準の
条件から、それぞれ約20%、テンションを増加もしく
は減少させた。
In this case, in addition to Er, Nd, Y, Y
Lanthanum rare earth ions such as b, Ho and Sm are all applicable for generating absorption by irradiation with radiation. However, the absorption wavelength and the magnitude of the absorption generated differ depending on the type of rare earth ion added. Further, Table 1 shows the loss change due to gamma ray irradiation when the drawing conditions were changed, and the tension was changed as the drawing conditions. The tension was increased or decreased by about 20% from the standard condition.

【0032】また、正孔(ホール)を捕獲する構成体の
濃度により放射線検出感度だけでなく、検出の飽和レベ
ル、即ち、放射線の照射量の増加に対する吸収の増大の
割合が低下する線量の変えることができる。加えて、放
射線照射によって増加した吸収が、照射が無くなった時
に吸収を回復させる効果にも影響を与えた。これらの効
果は連続的な放射線照射量、照射速度の検出のみなら
ず、断続的な放射線照射の場合の積算された線量の計測
にも有効である。
Further, not only the radiation detection sensitivity but also the saturation level of detection, that is, the dose at which the rate of increase in absorption with respect to the increase in radiation dose decreases, depending on the concentration of the constituents that trap holes. be able to. In addition, the increased absorption by irradiation also affected the effect of restoring absorption when irradiation was gone. These effects are effective not only for detecting the continuous irradiation dose and irradiation speed but also for measuring the integrated dose in the case of intermittent irradiation.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の感度分布型放射線センサは次の
様な各種効果がある。 .請求項1〜請求項7の感度分布型放射線センサのう
ち感度の鈍い部分を放射線量の多い箇所に、感度の高い
部分を放射線量の少ない箇所に配置すれば、感度分布型
放射線センサの検出感度が長手方向に均一化され、測定
時のダイナミックレンジを広く保持することができる。
従って、本発明の感度分布型放射線センサはOTDR装
置を用いて計測する場合に特に適する。
The sensitivity distribution type radiation sensor of the present invention has the following various effects. . The detection sensitivity of the sensitivity distribution type radiation sensor can be obtained by arranging the part having low sensitivity in the sensitivity distribution type radiation sensor of claim 1 to the part having high radiation dose and the part having high sensitivity to low radiation dose. Can be made uniform in the longitudinal direction, and a wide dynamic range at the time of measurement can be maintained.
Therefore, the sensitivity distribution type radiation sensor of the present invention is particularly suitable for measurement using an OTDR device.

【0035】.請求項2の感度分布型放射線センサ
は、放射線検出感度の分布が線条体1を構成するガラス
自体に存在するので、線条体1の構成が簡潔になり、ま
た、ケーブル化や敷設時の加工性及び作業性の劣化が生
じない。
.. According to the sensitivity distribution type radiation sensor of claim 2, since the distribution of the radiation detection sensitivity is present in the glass itself constituting the filamentous body 1, the configuration of the filamentous body 1 becomes simple, and when the cable is formed or laid. Workability and workability do not deteriorate.

【0036】.請求項3の感度分布型放射線センサ
は、放射線検出線条体2に被覆体3を被せるものである
ため、放射線検出線条体2として検出感度が長手方向に
一定で有る既存の放射線検出ファイバを使用することが
でき、被覆体3を被せる位置、被せる被覆体3の数等を
変えるだけで、線条体1の長手方向任意の位置に、任意
の長さで、他の部分よりも感度の低い部分をもった感度
分布にすることができる。
.. According to the sensitivity distribution type radiation sensor of claim 3, since the radiation detecting filament 2 is covered with the covering body 3, an existing radiation detecting fiber having a constant detection sensitivity in the longitudinal direction is used as the radiation detecting filament 2. It can be used, and only by changing the position to cover the covering body 3, the number of covering bodies 3 to cover, etc., at a desired position in the longitudinal direction of the filamentous body 1, at an arbitrary length, and at a higher sensitivity than other portions. A sensitivity distribution with a low portion can be obtained.

【0037】.請求項4の感度分布型放射線センサ
は、放射線検出感度の異なる二以上の放射線検出線条体
2を長手方向に接続するものであるため、放射線検出感
度の異なる既存の放射線検出ファイバを二以上用意し、
それらを接続するだけで感度分布を有する線条体1を得
ることができ、実用化が容易になる。
.. Since the sensitivity distribution type radiation sensor of claim 4 connects two or more radiation detection filaments 2 having different radiation detection sensitivities in the longitudinal direction, two or more existing radiation detection fibers having different radiation detection sensitivities are prepared. Then
The linear body 1 having a sensitivity distribution can be obtained only by connecting them, and practical application becomes easy.

【0038】.請求項5の感度分布型放射線センサ
は、線条体1のガラス中に存在するホ−ル捕獲構成体の
量を制御してなるので、見かけは従来からの放射線検出
ファイバとかわらず、構成が簡潔である。
.. Since the sensitivity distribution type radiation sensor according to claim 5 controls the amount of the hole trapping structure present in the glass of the filamentous body 1, the structure is apparently different from that of the conventional radiation detecting fiber. It is simple.

【0039】.請求項6の感度分布型放射線センサ
は、線条体1のガラス中に金属イオンの1つ或は複数を
組み合わせて添加して、ガラス中のホ−ル捕獲構成体の
量を制御してなるので、線条体1の原料となるガラスを
製造するときに添加する金属イオンの種類或は組合わせ
を選択するだけで、所望とする検出感度分布にすること
ができる。
.. In the sensitivity distribution type radiation sensor according to claim 6, one or a plurality of metal ions are added to the glass of the striatum 1 in combination to control the amount of the hole-trapping constituent in the glass. Therefore, the desired detection sensitivity distribution can be obtained only by selecting the type or combination of the metal ions added when the glass as the raw material of the filament 1 is manufactured.

【0040】.請求項7の感度分布型放射線センサ
は、線条体1の製造過程の線引き条件を変えることによ
り線条体1中のホ−ル捕獲構成体の量を制御するので、
線引き条件を変えるだけで所望とする検出感度分布にす
ることができる。 .請求項6と請求項7を組合わせれば、任意の屈折率
分布を保持したまま、測定感度を調整することができる
ようになり、感度調整の自由度が広がる。
.. Since the sensitivity distribution type radiation sensor according to claim 7 controls the amount of the hole trapping structure in the filamentous body 1 by changing the drawing conditions in the manufacturing process of the filamentous body 1,
A desired detection sensitivity distribution can be obtained only by changing the drawing conditions. . If the sixth and seventh aspects are combined, the measurement sensitivity can be adjusted while maintaining an arbitrary refractive index distribution, and the degree of freedom in sensitivity adjustment is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の感度分布型放射線センサの第1の実施
例を示す説明図。
FIG. 1 is an explanatory diagram showing a first embodiment of a sensitivity distribution type radiation sensor of the present invention.

【図2】本発明の感度分布型放射線センサの第2の実施
例を示す説明図。
FIG. 2 is an explanatory diagram showing a second embodiment of the sensitivity distribution type radiation sensor of the present invention.

【図3】本発明の感度分布型放射線センサの第3の実施
例を示す説明図。
FIG. 3 is an explanatory view showing a third embodiment of the sensitivity distribution type radiation sensor of the present invention.

【図4】Erドープ石英ガラスファイバに各種金属イオ
ンを添加したときのガンマ線照射による損失変化を示す
説明図。
FIG. 4 is an explanatory diagram showing loss change due to gamma ray irradiation when various metal ions are added to Er-doped silica glass fiber.

【符号の説明】[Explanation of symbols]

1は線条体 2は放射線検出線条体 3は被覆体 1 is a filament 2 is a radiation detecting filament 3 is a cover

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 希土類イオンを添加したガラス製の線材
若しくは光ファイバ等の線条体(1)を放射線検知媒体
とした放射線センサにおいて、その線条体(1)の放射
線検出感度がその長手方向に分布してなることを特徴と
する感度分布型放射線センサ。
1. A radiation sensor using a filament (1) such as a glass wire or optical fiber doped with rare earth ions as a radiation detection medium, wherein the radiation detection sensitivity of the filament (1) is the longitudinal direction. A radiation sensor of sensitivity distribution type characterized in that
【請求項2】 請求項1の感度分布型放射線センサにお
いて、線条体(1)の放射線検出感度分布が、放射線検
出線条体(2)の外周に放射線を減衰させる被覆体
(3)を設けることにより形成されてなることを特徴と
する感度分布型放射線センサ。
2. The sensitivity distribution type radiation sensor according to claim 1, wherein the radiation detection sensitivity distribution of the filament (1) has a coating (3) for attenuating radiation on the outer periphery of the radiation detection filament (2). A sensitivity distribution type radiation sensor characterized by being formed by providing.
【請求項3】 請求項1の感度分布型放射線センサにお
いて、線条体(1)の放射線検出感度分布が、放射線検
出感度の異なる二以上の放射線検出線条体(2)を軸線
方向に接続することにより形成されてなることを特徴と
する感度分布型放射線センサ。
3. The sensitivity distribution type radiation sensor according to claim 1, wherein the radiation detection sensitivity distribution of the filament (1) connects two or more radiation detection filaments (2) having different radiation detection sensitivities in the axial direction. A sensitivity distribution type radiation sensor characterized by being formed by:
【請求項4】 請求項1の感度分布型放射線センサにお
いて、線条体(1)の放射線検出感度分布が、ガラス自
体に存在することを特徴とする感度分布型放射線セン
サ。
4. The sensitivity distribution type radiation sensor according to claim 1, wherein the radiation detection sensitivity distribution of the filament (1) exists in the glass itself.
【請求項5】 請求項1又は請求項4記載の感度分布型
放射線センサにおいて、線条体(1)の放射線検出感度
分布が、同線条体(1)のガラス中に存在するホ−ル捕
獲構成体の量を制御することにより形成されてなること
を特徴とする感度分布型放射線センサ。
5. The sensitivity distribution type radiation sensor according to claim 1 or 4, wherein the radiation detection sensitivity distribution of the filament (1) is present in the glass of the filament (1). A sensitivity distribution type radiation sensor, which is formed by controlling the amount of a capture component.
【請求項6】 請求項5の感度分布型放射線センサにお
いて、線条体(1)を構成するガラス中に金属イオンの
1つ或は複数を組み合わせて添加することにより、同ガ
ラス中に存在するホ−ル捕獲構成体の量を制御してなる
ことを特徴とする感度分布型放射線センサ。
6. The sensitivity distribution type radiation sensor according to claim 5, wherein one or a plurality of metal ions are combined and added to the glass constituting the striatum (1) to be present in the glass. A sensitivity distribution type radiation sensor, characterized in that the amount of the hole capturing component is controlled.
【請求項7】 請求項5の感度分布型放射線センサにお
いて、線条体(1)の製造過程の線引き条件を変えるこ
とにより、線条体(1)中のホ−ル捕獲構成体の量を制
御してなることを特徴とする感度分布型放射線センサ。
7. The sensitivity distribution type radiation sensor according to claim 5, wherein the amount of the hole trapping structure in the filament (1) is changed by changing the drawing conditions in the process of manufacturing the filament (1). A sensitivity distribution type radiation sensor characterized by being controlled.
JP6212058A 1994-08-12 1994-08-12 Sensitivity distribution type radiation sensor Pending JPH0854469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6212058A JPH0854469A (en) 1994-08-12 1994-08-12 Sensitivity distribution type radiation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6212058A JPH0854469A (en) 1994-08-12 1994-08-12 Sensitivity distribution type radiation sensor

Publications (1)

Publication Number Publication Date
JPH0854469A true JPH0854469A (en) 1996-02-27

Family

ID=16616174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6212058A Pending JPH0854469A (en) 1994-08-12 1994-08-12 Sensitivity distribution type radiation sensor

Country Status (1)

Country Link
JP (1) JPH0854469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166542A1 (en) * 2008-09-16 2010-03-24 GE-Hitachi Nuclear Energy Americas LLC High dielectric insulated coax cable for sensitive impedance monitoring
JP2010243475A (en) * 2009-04-01 2010-10-28 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for operating nuclear reactor and determining power level in nuclear reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166542A1 (en) * 2008-09-16 2010-03-24 GE-Hitachi Nuclear Energy Americas LLC High dielectric insulated coax cable for sensitive impedance monitoring
JP2010071975A (en) * 2008-09-16 2010-04-02 Ge-Hitachi Nuclear Energy Americas Llc Nuclear reactor power monitor using highly dielectric insulated coaxial cable
US9691506B2 (en) 2008-09-16 2017-06-27 General Electric Company High dielectric insulated coax cable for sensitive impedance monitoring
JP2010243475A (en) * 2009-04-01 2010-10-28 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for operating nuclear reactor and determining power level in nuclear reactor
US9324465B2 (en) 2009-04-01 2016-04-26 Ge-Hitachi Nuclear Energy Americas Llc Methods and apparatuses for operating nuclear reactors and for determining power levels in the nuclear reactors

Similar Documents

Publication Publication Date Title
DE19880398B4 (en) Substrate temperature measuring instrument with substrate heating method and heat treatment device - heats substrate by light, uses thermocouple with cover partly of high heat- and partly of high light-conductivity materials
Sporea et al. Optical fibers and optical fiber sensors used in radiation monitoring
JPS61250605A (en) Image fiber with optical waveguide
CA2183243C (en) Faraday-effect sensing coil with stable birefringence
Zubair et al. Real-time radiation dosimetry using P-doped silica optical fiber
CH421557A (en) Calorimeter arrangement for measuring the radiant energy of a bundle of coherent electromagnetic radiation
JPH0854469A (en) Sensitivity distribution type radiation sensor
Rogina et al. Application of optical fibre sensors for radiation dosimetry
US6601411B2 (en) Method for annealing an optical waveguide having a bragg grating to accelerate ageing
West et al. The use of optical time domain reflectometers to measure radiation-induced losses in optical fibers
US6087664A (en) Process and device for measuring the radiation depth of radiation
Jung et al. Single pass optical profile monitoring
EP1893956B1 (en) Image converter with heated converter layer
Oresegun et al. Effects of hydroxyl content in pure silica optical fiber exposed to kGy electron beams
US6393094B1 (en) Methods and apparatus using attenuation of radiation to determine concentration of material in object
JPS59155775A (en) Radiation sensor
WO1998059260A2 (en) Fibre optic x-ray camera
Naday et al. Characterization of CCD-based imaging x-ray detectors for diffraction experiments
Scheidt Dual streak camera at the ESRF
RU2755253C1 (en) Method for gamma radiation dosimetry
Oblas et al. Concentration and distribution of Er, Al and P in silica-based optical fiber preforms by SIMS
Suter et al. Fiber optic ionizing radiation detector
JP2719050B2 (en) Method for monitoring carbon coating of optical fiber
JPS63138225A (en) Monitoring method for temperature of liquefied gas tank
Planes et al. Study of γ-ray radiation effects on TW-COTDR optical fiber sensors