JPH0854371A - Apparatus for measuring moisture content of printing ink - Google Patents

Apparatus for measuring moisture content of printing ink

Info

Publication number
JPH0854371A
JPH0854371A JP6193228A JP19322894A JPH0854371A JP H0854371 A JPH0854371 A JP H0854371A JP 6193228 A JP6193228 A JP 6193228A JP 19322894 A JP19322894 A JP 19322894A JP H0854371 A JPH0854371 A JP H0854371A
Authority
JP
Japan
Prior art keywords
printing ink
ink
water content
film thickness
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6193228A
Other languages
Japanese (ja)
Inventor
Akitomo Tejima
章友 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6193228A priority Critical patent/JPH0854371A/en
Publication of JPH0854371A publication Critical patent/JPH0854371A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve a reliability of an apparatus by making the apparatus possible to automatically measure/control a moisture content of a printing ink of an Indian ink color and to be easily set in any printing machine. CONSTITUTION:A corona charger 25 is arranged in the vicinity of the surface of a conductor roller 21 among a group of ink rollers of a printing machine, and surface potential-measuring devices 27, 28 are disposed on the downstream side from the corona charger 25. A moisture content is obtained by measuring a charge potential. Although the charge potential is proportional to a film thickness of a printing ink, the film thickness can be measured by the photoacoustic technique even in the case of an Indian color ink. Therefore, the moisture content of the Indian color ink can be identified by measuring the charge potential and the film thickness after obtaining a calibration graph of relation between the charge potential and the moisture content per 1mum of a printing ink of a known moisture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、印刷インキ、特に墨色
印刷インキの含水率を測定する印刷インキの含水率測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water content measuring device for printing ink, particularly for measuring the water content of black ink.

【0002】[0002]

【従来の技術】従来、墨色以外の印刷インキの含水率セ
ンサとして光学式のものが実用化されている。その代表
的なものを図6により説明すると、この含水率センサ
は、赤外線の吸収波長が印刷インキと水とで異なること
を利用して、それぞれの吸収波長での吸収率の比(含水
率)を求めようとするものである。
2. Description of the Related Art Conventionally, an optical sensor has been put into practical use as a water content sensor for printing inks other than black ink. A typical example thereof will be described with reference to FIG. 6. This water content sensor utilizes the fact that the absorption wavelength of infrared rays differs between the printing ink and water, and the ratio of the absorption rates at each absorption wavelength (water content) Is to seek.

【0003】この含水率センサを具体的に説明すると、
赤外発光体1から照射される光をレンズ2により集光
し、干渉フィルタ3を通す。この干渉フィルタ3には、
水の吸収波長λw 、印刷インキの吸収波長λi 、水・印
刷インキに吸収されない参照波長λr のそれぞれを透過
する種類のものが設置されており、これらを順に選択し
て、特定の波長の赤外線を光導管4を経て印刷インキロ
ーラ5上の印刷インキ膜(乳化インキ膜)6へ照射す
る。
The water content sensor will be described in detail below.
The light emitted from the infrared light emitter 1 is condensed by the lens 2 and passed through the interference filter 3. This interference filter 3 includes
Water absorption wavelength λ w , printing ink absorption wavelength λ i , and reference wavelength λ r that is not absorbed by water / printing ink are installed. The infrared rays of (3) are applied to the printing ink film (emulsified ink film) 6 on the printing ink roller 5 through the optical conduit 4.

【0004】そして印刷インキ膜6からの反射光を光電
素子7で受けて、これを増幅器8により増幅し、A/D
変換器9へ出力して、アナログ信号をディジタル信号に
変換し、このディジタル信号を計算機10へ送り、ここ
で処理した後、プロッタ11に記録する。なお12は同
期装置である。
Then, the reflected light from the printing ink film 6 is received by the photoelectric element 7 and is amplified by the amplifier 8 to be A / D.
The data is output to the converter 9 to convert the analog signal into a digital signal, the digital signal is sent to the computer 10, processed there, and then recorded on the plotter 11. Reference numeral 12 is a synchronizer.

【0005】[0005]

【発明が解決しようとする課題】前記図6に示す従来の
含水率センサは、墨色印刷インキが赤外から紫外までの
広い範囲の光を吸収するため、墨色印刷インキの含水率
測定には、適用することができない。またインキ分離時
に発生する超音波から含水率についての情報を間接的に
得ようとする方式のものも、騒音等のため、実際の印刷
機には適用することができず、含水率に直接関係する印
刷インキの物性値を計測することにより、含水率の同定
が可能な全く新しい印刷インキの含水率測定装置が望ま
れている。
In the conventional moisture content sensor shown in FIG. 6, the black ink absorbs light in a wide range from infrared to ultraviolet. Therefore, the water content of the black ink should be measured. Not applicable. A method that indirectly obtains information about the water content from the ultrasonic waves generated during ink separation cannot be applied to the actual printing machine due to noise, etc., and is directly related to the water content. There is a demand for a completely new printing water content measuring device capable of identifying the water content by measuring the physical properties of the printing ink.

【0006】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、墨色印刷インキの含水
率の測定及び制御を自動的に行うことができ、如何な
る印刷機にも容易に設置でき、装置の信頼性を向上で
きる印刷インキの含水率測定装置を提供しようとする点
にある。
The present invention has been proposed in view of the above problems, and an object thereof is to automatically measure and control the water content of a black-color printing ink, which is easy for any printing machine. The present invention aims to provide a water content measuring device for printing ink which can be installed in the device and can improve the reliability of the device.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の印刷インキの含水率測定装置は、印刷機
のインキローラ群中の導体ローラの表面近傍にコロナ帯
電器を配設し、同コロナ帯電器の下流側に表面電位測定
器を配設している。前記印刷インキの含水率測定装置に
おいて、導体ローラの表面近傍に配設したインキ膜厚測
定器と、インキ膜厚測定器及び表面電位測定器からの測
定値に基づいてインキ中の含水率を演算する演算器とを
具えるようにしてもよい。
In order to achieve the above object, the apparatus for measuring the water content of a printing ink of the present invention has a corona charger in the vicinity of the surface of a conductor roller in an ink roller group of a printing machine. However, a surface potential measuring device is arranged downstream of the corona charger. In the water content measuring device for the printing ink, the water content in the ink is calculated based on the measured values from the ink film thickness measuring device arranged near the surface of the conductor roller and the ink film thickness measuring device and the surface potential measuring device. It may be provided with a computing unit for performing.

【0008】[0008]

【作用】本発明の印刷インキの含水率測定装置は前記の
ように構成されており、次の作用が行われる。即ち、印
刷インキの電気抵抗は、含水率により大幅に変化し、帯
電電荷保持能も同様に変化するので、帯電電位を測定す
ることにより、含水率が求められる。この帯電電位は、
印刷インキの膜厚に比例するが、膜厚は墨色印刷インキ
の場合にも、光音響法等により測定可能である。従って
予め含水率が既知の印刷インキについて1μm当たりの
帯電電位と含水率との関係を較正グラフにとっておけ
ば、帯電電位と膜厚とを測定することにより、墨色印刷
インキの含水率が同定可能である。
The apparatus for measuring the water content of printing ink according to the present invention is constructed as described above, and has the following functions. That is, the electric resistance of the printing ink changes greatly depending on the water content, and the charge holding ability also changes. Therefore, the water content can be obtained by measuring the charge potential. This charging potential is
Although proportional to the film thickness of the printing ink, the film thickness can be measured by the photoacoustic method or the like even in the case of the black printing ink. Therefore, if the relationship between the charging potential per 1 μm and the water content of a printing ink having a known water content is set in advance in a calibration graph, the water content of the black printing ink can be identified by measuring the charging potential and the film thickness. is there.

【0009】[0009]

【実施例】次に本発明の印刷インキの含水率測定装置を
図面に示す実施例により説明すると、図1は、本発明の
印刷インキの含水率測定装置を示している。図1の21
が導体ローラ(銅メッキ金属ローラ)、22が同銅メッ
キ金属ローラ21上の印刷インキ膜、23が着けロー
ラ、24が版胴である。
EXAMPLES Next, the water content measuring apparatus for printing ink of the present invention will be explained with reference to the examples shown in the drawings. FIG. 1 shows the water content measuring apparatus for printing ink of the present invention. 21 of FIG.
Is a conductor roller (copper-plated metal roller), 22 is a printing ink film on the copper-plated metal roller 21, 23 is a deposition roller, and 24 is a plate cylinder.

【0010】25が上記銅メッキ金属ローラ21の表面
近傍に配設したコロナ帯電器、26が同コロナ帯電器2
5に接続した高圧電源、27が上記コロナ帯電器25の
下流側に配設した表面電位測定器ヘッド、28が同表面
電位測定器ヘッド27に接続した表面電位測定器本体、
29が上記表面電位測定器ヘッド27の下流側に配設し
たインキ膜厚測定器、30が上記表面電位測定器本体2
8及び上記インキ膜厚測定器29に接続した演算器であ
る。
A corona charger 25 is provided near the surface of the copper-plated metal roller 21, and a corona charger 2 is provided 26.
5, a high-voltage power supply connected to 5, a surface potential measuring head 27 disposed downstream of the corona charger 25, a surface potential measuring device main body 28 connected to the surface potential measuring head 27,
Reference numeral 29 denotes an ink film thickness measuring device disposed on the downstream side of the surface potential measuring device head 27, and 30 denotes the surface potential measuring device main body 2
8 and the ink film thickness measuring device 29.

【0011】上記印刷インキの含水率測定装置では、印
刷機のインキ供給系の1つの導体ローラ21の周りに円
周方向に順にコロナ帯電器25と表面電位測定器27、
28とを配設している。帯電器25にはコロナ帯電器を
用い、表面電位測定器27、28には表面電位計を用い
る。コロナ帯電は、導体ローラ21の1回周回時間帯電
を施し、その後、帯電電位が充分に減衰する時間、帯電
を休止するパルス帯電方式が最も高い精度を得られる。
In the above-mentioned water content measuring apparatus for printing ink, a corona charger 25 and a surface potential measuring device 27 are sequentially arranged in the circumferential direction around one conductor roller 21 of the ink supply system of the printing machine.
28 are provided. A corona charger is used as the charger 25, and surface potential meters are used as the surface potential measuring devices 27 and 28. For corona charging, the highest accuracy can be obtained by the pulse charging method in which the conductor roller 21 is charged once for one revolution, and then the charging is stopped for a time when the charging potential is sufficiently attenuated.

【0012】上記印刷インキの含水率測定装置では、次
の作用が行われる。即ち、印刷インキの電気抵抗は、含
水率により大幅に変化し、帯電電荷保持能も同様に変化
するので、帯電電位を測定することにより、含水率が求
められる。この帯電電位は、印刷インキの膜厚に比例す
るが、膜厚は墨色印刷インキの場合にも、光音響法等に
より測定可能である。従って予め含水率が既知の印刷イ
ンキについて1μm当たりの帯電電位と含水率との関係
を較正グラフにとっておけば、帯電電位と膜厚とを測定
することにより、墨色印刷インキの含水率が同定可能で
ある。
The following functions are carried out in the water content measuring device for printing ink. That is, the electric resistance of the printing ink changes greatly depending on the water content, and the charge holding ability also changes. Therefore, the water content can be obtained by measuring the charge potential. This charging potential is proportional to the film thickness of the printing ink, but the film thickness can be measured by the photoacoustic method or the like even in the case of black printing ink. Therefore, if the relationship between the charging potential per 1 μm and the water content of a printing ink having a known water content is set in advance in a calibration graph, the water content of the black printing ink can be identified by measuring the charging potential and the film thickness. is there.

【0013】上記印刷インキの含水率測定装置の原理を
検証するため、図2に示すインキ転移試験装置により実
験を行った。図2の21が銅メッキ金属ローラ(導体ロ
ーラ)、22が同銅メッキ金属ローラ21上の印刷イン
キ膜、25がコロナ帯電器、26が高圧電源、31がフ
ァンクションジェネレータである。
In order to verify the principle of the apparatus for measuring the water content of the above printing ink, an experiment was carried out by the ink transfer test apparatus shown in FIG. In FIG. 2, 21 is a copper-plated metal roller (conductor roller), 22 is a printing ink film on the copper-plated metal roller 21, 25 is a corona charger, 26 is a high voltage power supply, and 31 is a function generator.

【0014】27が上記コロナ帯電器25の下流側に配
設した表面電位測定器ヘッド、28が表面電位測定器本
体、32がレコーダ、33が膜厚・含水率計である。3
4、35がゴムローラ、36が揺動ローラ、37がクロ
ムメッキ金属ローラ、38がゴムローラ、39が湿し水
である。初期状態では、ゴムローラ35がクロムメッキ
金属ローラ37から離れている。この状態で、揺動ロー
ラ36に適当量の印刷インキを塗布し、ゴムローラ3
4、銅メッキ金属ローラ21、揺動ローラ36を連動し
て回転させ、これら3本のローラに均一な印刷インキ膜
を形成する。
Reference numeral 27 is a surface potential measuring device head disposed downstream of the corona charger 25, 28 is a surface potential measuring device main body, 32 is a recorder, and 33 is a film thickness / water content meter. Three
Reference numerals 4 and 35 are rubber rollers, 36 is a swing roller, 37 is a chrome-plated metal roller, 38 is a rubber roller, and 39 is dampening water. In the initial state, the rubber roller 35 is separated from the chrome-plated metal roller 37. In this state, the rocking roller 36 is coated with an appropriate amount of printing ink, and the rubber roller 3
4. The copper-plated metal roller 21 and the swing roller 36 are rotated in association with each other to form a uniform printing ink film on these three rollers.

【0015】次いでゴムローラ35を銅メッキ金属ロー
ラ21に接触させ、湿し水29をゴムローラ38→クロ
ムメッキ金属ローラ37→ゴムローラ35を経て銅メッ
キ金属ローラ21へ供給する。湿し水の供給速度は、ゴ
ムローラ35とクロムメッキ金属ローラ37とのスリッ
プの状態を加減することにより制御する。これに伴って
銅メッキ金属ローラ21上の印刷インキの含水率が変化
する。
Then, the rubber roller 35 is brought into contact with the copper-plated metal roller 21, and dampening water 29 is supplied to the copper-plated metal roller 21 via the rubber roller 38, the chrome-plated metal roller 37, and the rubber roller 35. The supply speed of the dampening water is controlled by adjusting the slip state between the rubber roller 35 and the chrome-plated metal roller 37. Along with this, the water content of the printing ink on the copper-plated metal roller 21 changes.

【0016】一方、銅メッキ金属ローラ21の周りに
は、コロナ帯電器25と表面電位測定器ヘッド27とが
周回方向に順に配設されている。そしてコロナ帯電器2
5は、高圧電源26とファンクションジェネレータ31
とに接続されている。また表面電位測定器ヘッド27
は、表面電位測定器本体28とレコーダ32とに接続さ
れている。
On the other hand, a corona charger 25 and a surface potential measuring head 27 are sequentially arranged around the copper-plated metal roller 21 in the circumferential direction. And corona charger 2
5 is a high voltage power supply 26 and a function generator 31
Connected to. Also, the surface potential measuring head 27
Is connected to the surface potential measuring device main body 28 and the recorder 32.

【0017】上記高圧電源26には、MODEL610
C(TREX社製)、ファンクションジェネレータ31
には、WIDE−BAND FUNCTIONGENE
RATOR MODELFG−143(NF回路設計ブ
ロック(株)製)、表面電位測定器27、28には、M
ODEL344(TREX社製)、レコーダ32には、
高速応答のMODEL2931 PHOTOCORDE
R(横河電機(株)製)を用いた。
The high voltage power source 26 includes a MODEL 610.
C (manufactured by TREX), function generator 31
WIDE-BAND FUNCTION GENERATION
RATOR MODEL FG-143 (manufactured by NF Circuit Design Block Co., Ltd.)
ODEL344 (made by TREX), recorder 32,
Fast response MODEL2931 PHOTOCORDE
R (made by Yokogawa Electric Co., Ltd.) was used.

【0018】また藍色印刷インキには、HYPLUS
MZ(BLUE)(東洋インキ(株)製)、墨色印刷イ
ンキには、NEWVS墨(合同インキ(株)製)を用い
た。また銅メッキ金属ローラ21とコロナ帯電器25と
表面電位測定器ヘッド27との距離は、共に3mmに設
定し、銅メッキ金属ローラ21は、アース電位になって
いる。また銅メッキ金属ローラ21等の周速は、3m/
sに設定した。
For the blue printing ink, HYPLUS
MZ (BLUE) (manufactured by Toyo Ink Co., Ltd.) and NEWVS ink (manufactured by Godo Ink Co., Ltd.) were used as the black printing ink. The distances between the copper-plated metal roller 21, the corona charger 25, and the surface potential measuring head 27 are all set to 3 mm, and the copper-plated metal roller 21 is at ground potential. The peripheral speed of the copper-plated metal roller 21 etc. is 3 m /
set to s.

【0019】コロナ帯電方式としては、(1)直流コロ
ナ帯電、(2)低周波交流コロナ帯電、(3)パルスコ
ロナ帯電の3種類について検討を行った。 (1)直流コロナ帯電方式は、印刷インキ膜5μmのと
き、湿す水を加えない状態のとき、藍色印刷インキで5
0V程度、墨色印刷インキで35V程度の帯電電位があ
り、含水率の増大に伴なって帯電電位は徐々に低下し、
12%位の含水率で両インキとも、10V前後の帯電電
位まで落ちる。従って含水率同定に充分適用可能である
が、時間の経過とともに帯電電位が増大し、膜厚も変動
するという問題が起こる。しかし交流コロナ除電器を表
面電位測定器ヘッド27の下流側にセットして、毎回除
電を行えば、この問題が解消する。
Three types of corona charging methods were investigated: (1) DC corona charging, (2) low frequency AC corona charging, and (3) pulse corona charging. (1) The DC corona charging method uses a blue printing ink when the printing ink film is 5 μm and no dampening water is added.
There is a charging potential of about 0 V and about 35 V for black printing ink, and the charging potential gradually decreases as the water content increases,
With a water content of about 12%, both inks drop to a charging potential of around 10V. Therefore, it can be sufficiently applied to the identification of the water content, but there arises a problem that the charging potential increases and the film thickness also changes with the passage of time. However, if the AC corona discharger is set on the downstream side of the surface potential measuring head 27 and the charge is removed every time, this problem will be solved.

【0020】(2)低周波交流コロナ帯電は、上述の帯
電電位や膜厚の時間変化の問題を解決するためのもので
ある。実験では、コロナ帯電器25に、2秒間+7.5
KV、次の2秒間−7.5KVを印加する0.25HZ
の交流コロナ帯電で行った。この結果、帯電電位や膜厚
の時間変動も低く抑えられた。しかも正帯電時と負帯電
時との帯電電流の差の値と含水率との相関をとるため、
表面電位測定器27、28の0点シフトの影響が相殺さ
れて、含水率同定の精度も向上する。
(2) The low-frequency AC corona charging is for solving the above-mentioned problems of time-dependent changes in charging potential and film thickness. In the experiment, the corona charger 25 was set to +7.5 for 2 seconds.
KV, 0.25H Z to apply the next two seconds -7.5KV
AC corona charging was performed. As a result, the time variation of the charging potential and the film thickness was suppressed to be low. Moreover, in order to correlate the value of the difference in charging current between positive charging and negative charging with the water content,
The effect of the zero-point shift of the surface potential measuring devices 27 and 28 is offset, and the accuracy of water content identification is also improved.

【0021】(3)パルスコロナ帯電方式は、低周波コ
ロナ帯電方式よりもさらに帯電に伴う膜厚変化を極小化
するためのものである。上述の直流コロナ帯電方式や低
周波交流コロナ帯電では、1回の帯電中に、銅メッキ金
属ローラ21は、多数回回転する。印刷インキの帯電電
位は、帯電波、指数関数的に減少するが、銅メッキ金属
ローラ21が1回転する短い時間では、帯電電位が充分
に減衰しないため、多数回回転中に帯電電位が累積して
ゆく。この残留電位成分は、含水率にあまり依存しない
ため、この値が大きくなると、含水率により変化する帯
電電位幅が小さくなって、測定精度の低下を来す。
(3) The pulse corona charging method is for further minimizing the film thickness change due to charging as compared with the low frequency corona charging method. In the DC corona charging method and the low frequency AC corona charging described above, the copper-plated metal roller 21 rotates many times during one charging. The charging potential of the printing ink decreases exponentially as a charging wave, but the charging potential is not sufficiently attenuated in a short period of one rotation of the copper-plated metal roller 21, so that the charging potential is accumulated during many rotations. Go on. Since this residual potential component does not depend so much on the water content, when this value becomes large, the charging potential width that changes depending on the water content becomes small and the measurement accuracy deteriorates.

【0022】この問題を解決するのがパルスコロナ帯電
方式であり、上述の低周波コロナ帯電方式よりも帯電に
伴う膜厚変化がさらに小さくなる。銅メッキ金属ローラ
21(φ200mm)が1回転する時間0.21秒帯電
を施すと、0.6秒程度で帯電電位が0V程度に減衰す
る。そこで+7.5KV、0.21秒間のコロナ帯電、
及びそれに続く0.63秒の帯電休止を1サイクルとす
る1.19HZ のパルス帯電で実験を行った。膜厚の若
干の変動は避けられないので、別途手段により測定した
印刷インキ膜厚で規格化した藍色印刷インキの膜厚及び
含水率は、赤外吸収法で測定した。墨色印刷インキの膜
厚は、図5に示す光音響法で測定し、含水率は、カール
フィッシャー法により測定した。
The pulse corona charging method solves this problem, and the change in film thickness due to charging is further reduced as compared with the above-mentioned low frequency corona charging method. When the copper-plated metal roller 21 (φ200 mm) rotates once for 0.21 seconds, the charging potential is reduced to about 0 V in about 0.6 seconds. So + 7.5KV, corona charging for 0.21 seconds,
Then, the experiment was conducted by pulse charging of 1.19H Z with one cycle of charging rest of 0.63 seconds thereafter. Since a slight variation in the film thickness is unavoidable, the film thickness and water content of the indigo printing ink standardized by the printing ink film thickness measured by a separate means were measured by the infrared absorption method. The film thickness of the black printing ink was measured by the photoacoustic method shown in FIG. 5, and the water content was measured by the Karl Fischer method.

【0023】このようにして1mm当たりの帯電電位と
含水率との関係を、藍色印刷インキ及び墨色印刷インキ
について調べたのが図3及び図4であり、帯電電位と含
水率との間に強い相関が得られていることが判る。上述
の光音響法による膜厚計の原理を図5に示した。チョッ
パーによりパルス化した光を試料に照射し、そのとき、
試料で発熱影響により発する弾性波をマイクロフォンで
捉えて、膜厚に比例する音圧から膜厚を同定する。
In this way, the relationship between the charging potential per 1 mm and the water content was examined for the indigo printing ink and the black printing ink in FIGS. 3 and 4, and the relationship between the charging potential and the water content was obtained. It can be seen that a strong correlation is obtained. The principle of the above-described photoacoustic film thickness meter is shown in FIG. Irradiate the sample with light pulsed by the chopper, at that time,
An acoustic wave generated by heat generation in a sample is captured by a microphone, and the film thickness is identified from the sound pressure proportional to the film thickness.

【0024】前記図1に示す印刷インキの含水率測定装
置では、パルスコロナ帯電方式の有効性検証の実験を行
ったコロナ帯電器25と表面電位測定器27、28との
位置関係通りにセットした。藍色印刷インキと墨色印刷
インキとについて、前記既存の測定法で膜厚と含水率と
を測定して、帯電電位と含水率との関係を調べた結果を
図3、図4に○印により示した。図2に示すインキ転移
試験装置により作成した較正グラフは、図1に示す印刷
インキの含水率測定装置でも、高精度で適用可能なこと
が判る。
In the apparatus for measuring the water content of printing ink shown in FIG. 1, the corona charger 25 and the surface potential measuring devices 27 and 28, which were subjected to an experiment for verifying the effectiveness of the pulse corona charging method, were set according to the positional relationship. . With respect to the indigo printing ink and the black printing ink, the film thickness and the water content were measured by the existing measurement method, and the results of examining the relationship between the charging potential and the water content are shown by the circles in FIGS. 3 and 4. Indicated. It can be seen that the calibration graph created by the ink transfer test device shown in FIG. 2 can be applied with high accuracy even in the printing ink water content measuring device shown in FIG.

【0025】なお前記パルスコロナ帯電方式において、
パルス帯電の極性を正負交互に変化させれば、帯電によ
る膜厚変化をさらに低減させることが可能である。なお
定常運転で膜厚変動が無視できる場合は、敢えて膜厚計
を設ける必要はない。
In the pulse corona charging method,
By changing the polarity of pulse charging alternately between positive and negative, it is possible to further reduce the change in film thickness due to charging. If film thickness fluctuation can be ignored in steady operation, it is not necessary to intentionally install a film thickness meter.

【0026】[0026]

【発明の効果】本発明の印刷インキの含水率測定装置に
よれば、含水率により顕著に変化する電気抵抗に直接相
関する帯電電位を測定するので、これまで人手に頼って
いた墨色印刷インキの含水率の測定及び制御を自動的に
行うことができる。また非接触でコンパクトなので、如
何なる印刷機にも容易に設置できる。
According to the apparatus for measuring the water content of printing ink of the present invention, since the charging potential directly correlating with the electric resistance which remarkably changes depending on the water content is measured, the ink for printing black ink which has hitherto been relied upon manually. It is possible to automatically measure and control the water content. Since it is non-contact and compact, it can be easily installed on any printing machine.

【0027】また表面電位測定器はギャップ変動や振動
に強いので、装置の信頼性を向上できる。
Further, since the surface potential measuring device is resistant to gap fluctuation and vibration, the reliability of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の印刷インキの含水率測定装置の一実施
例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a water content measuring apparatus for printing ink according to the present invention.

【図2】同印刷インキの含水率測定装置の原理を検証す
るためのインキ転移試験装置を示す系統図である。
FIG. 2 is a system diagram showing an ink transfer test device for verifying the principle of the water content measuring device for the printing ink.

【図3】藍色印刷インキの帯電電位と含水率との較正グ
ラフである。
FIG. 3 is a calibration graph of electrostatic potential and water content of indigo printing ink.

【図4】墨色印刷インキの帯電電位と含水率との較正グ
ラフである。
FIG. 4 is a calibration graph of charging potential and water content of black printing ink.

【図5】光音響法による膜厚計の原理を示す説明図であ
る。
FIG. 5 is an explanatory view showing the principle of a film thickness meter by a photoacoustic method.

【図6】従来の含水率センサを示す系統図である。FIG. 6 is a system diagram showing a conventional moisture content sensor.

【符号の説明】[Explanation of symbols]

21 導体ローラ(銅メッキ金属ローラ) 22 印刷インキ膜 23 着けローラ 24 版胴 25 コロナ帯電器 26 高圧電源 27 表面電位測定器ヘッド 28 表面電位測定器本体 29 インキ膜厚測定器 30 演算器 21 Conductor Roller (Copper Plated Metal Roller) 22 Printing Ink Film 23 Wearing Roller 24 Plate Cylinder 25 Corona Charger 26 High Voltage Power Supply 27 Surface Potential Meter Head 28 Surface Potential Meter Main Body 29 Ink Film Thickness Meter 30 Computing Unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 印刷機のインキローラ群中の導体ローラ
の表面近傍にコロナ帯電器を配設し、同コロナ帯電器の
下流側に表面電位測定器を配設したことを特徴とする印
刷インキの含水率測定装置。
1. A printing ink, wherein a corona charger is provided near the surface of a conductor roller in an ink roller group of a printing machine, and a surface potential measuring device is provided downstream of the corona charger. Water content measuring device.
【請求項2】 前記導体ローラの表面近傍に配設したイ
ンキ膜厚測定器と、同インキ膜厚測定器及び前記表面電
位測定器からの測定値に基づいてインキ中の含水率を演
算する演算器とを具えている請求項1記載の印刷インキ
の含水率測定装置。
2. An ink film thickness measuring device arranged near the surface of the conductor roller, and a calculation for calculating the water content in the ink based on the measured values from the ink film thickness measuring device and the surface potential measuring device. The water content measuring device for printing ink according to claim 1, further comprising a container.
JP6193228A 1994-08-17 1994-08-17 Apparatus for measuring moisture content of printing ink Withdrawn JPH0854371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193228A JPH0854371A (en) 1994-08-17 1994-08-17 Apparatus for measuring moisture content of printing ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193228A JPH0854371A (en) 1994-08-17 1994-08-17 Apparatus for measuring moisture content of printing ink

Publications (1)

Publication Number Publication Date
JPH0854371A true JPH0854371A (en) 1996-02-27

Family

ID=16304459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193228A Withdrawn JPH0854371A (en) 1994-08-17 1994-08-17 Apparatus for measuring moisture content of printing ink

Country Status (1)

Country Link
JP (1) JPH0854371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528506A (en) * 2010-05-28 2013-07-11 任▲徳堅▼ Active predictive fluid thin film intelligent monitoring method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528506A (en) * 2010-05-28 2013-07-11 任▲徳堅▼ Active predictive fluid thin film intelligent monitoring method and apparatus

Similar Documents

Publication Publication Date Title
Zhang et al. Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy
US7956601B2 (en) Device and process for detecting particles in a flowing liquid
JP4873471B2 (en) Measurement technique to improve the measurable pressure of unsteady pressure fluctuations by luminescence image of pressure sensitive paint
JP2927808B2 (en) Electrostatic recording apparatus and photoreceptor life evaluation method
US7063731B2 (en) Method and apparatus for detecting particles in a gas flow
Noda et al. Detection of small-amplitude periodic surface pressure fluctuation by pressure-sensitive paint measurements using frequency-domain methods
CN111025064B (en) Method and system for realizing detection of working state of ball mill by non-contact speed measurement
WO2012011293A1 (en) Ion amount measuring device
JPH0854371A (en) Apparatus for measuring moisture content of printing ink
JPH021243A (en) Method and apparatus for detecting forged fingerprint
Ajagu et al. Modified gauge for time‐resolved skin‐friction measurements
JP2000147037A (en) Method for measuring space charge
JP5121739B2 (en) Sodium leak detection system
JP2005502043A (en) Method for measuring density characteristics of particle distribution
Macia-Sanahuja et al. Wavelet analysis of partial discharges acoustic waves obtained using an optical fibre interferometric sensor for transformer applications
FR2782163B1 (en) METHOD FOR MEASURING THE SPECTRAL ABSORPTION OF A BODY AND DEVICE FOR IMPLEMENTING THE METHOD
CN111780911A (en) Ultrasonic sensor for measuring bolt axial force
JP3246679B2 (en) Insulation characteristics measurement device
WO2018163704A1 (en) Microparticle number detector
JP2000131955A (en) Toner concentration measuring device and image forming device utilizing it
JPH03150474A (en) Inspecting device for static eliminator
JPH0568663B2 (en)
CN109632838A (en) Automotive catalyst coating uniformity detection method and device
Sakoda et al. Analysis of acoustic emissions caused by the partial discharge in the insulation oil
RU2764385C1 (en) Apparatus for monitoring the defect rate of wire insulation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106