JPH0853563A - Method for producing phenolic resin foam - Google Patents

Method for producing phenolic resin foam

Info

Publication number
JPH0853563A
JPH0853563A JP18941994A JP18941994A JPH0853563A JP H0853563 A JPH0853563 A JP H0853563A JP 18941994 A JP18941994 A JP 18941994A JP 18941994 A JP18941994 A JP 18941994A JP H0853563 A JPH0853563 A JP H0853563A
Authority
JP
Japan
Prior art keywords
foam
phenol resin
foaming
ethylene oxide
resin foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18941994A
Other languages
Japanese (ja)
Other versions
JP2873167B2 (en
Inventor
Shuji Okumura
修司 奥村
Shigetoshi Awano
滋敏 粟野
Isao Kai
勲 甲斐
Takeo Ino
武雄 井野
Sei Takahashi
聖 高橋
Yukihisa Sato
幸寿 佐藤
Osamu Yamamoto
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd, Nitto Boseki Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP18941994A priority Critical patent/JP2873167B2/en
Publication of JPH0853563A publication Critical patent/JPH0853563A/en
Application granted granted Critical
Publication of JP2873167B2 publication Critical patent/JP2873167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a method for producing the phenolic resin foam, especially a non-freon gas type phenolic resin foam, not containing voids and faults and excellent in surface smoothness with a specific foaming agent excluding freon gases. CONSTITUTION:In the method for producing the phenolic resin foam by foaming and curing a liquid phenolic resin in the presence of an acidic curing agent, a foaming agent and a foam-stabilizer, a polyetherpolyol having a mol.wt. of 2500-20000 and an ethylene oxide adduct content of >=15wt.% and obtained by addition-polymerizing an ethylene oxide consisting essentially of ethylene oxide to an organic compound having two or more of hydroxyl groups and/or amino groups in the molecule is simultaneously used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フェノール樹脂発泡体
の製造方法に関し、詳しくは、ボイドや断層がなくかつ
表面平滑性に優れ、建築・保温保冷用断熱材、防音・防
振材等の用途に適用することができるフェノール樹脂発
泡体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a phenolic resin foam, and more specifically, it has no voids or faults and is excellent in surface smoothness, and is used as a heat insulating material for construction / heat insulation, sound insulation / vibration insulation, etc. The present invention relates to a method for producing a phenol resin foam that can be used for various purposes.

【0002】[0002]

【従来の技術】フェノール樹脂発泡体の代表的な製造方
法として、従前より液状フェノール樹脂を酸性硬化剤、
発泡剤及び整泡剤の存在下で発泡硬化させる方法が知ら
れている。ところが、かかる発泡体の製造において慣用
されてきたトリクロロトリフルオロエタン、トリクロロ
モノフルオロメタン等の特定フロン系発泡剤は、地球環
境保護の観点から、その使用は世界的に厳しく規制さ
れ、しかも将来全廃されることになっている。そのた
め、当該技術分野においては、前記特定フロンに替わる
発泡剤として開発された代替フロン、例えばジクロロフ
ルオロエタン(HCFC−141b)、ジクロロトリフ
ルオロエタン(HCFC−123)や従来公知の物理的
又は化学的発泡剤、例えば塩化メチレン、ペンタン、空
気、窒素、炭酸ガスなどの利用が試みられている。
2. Description of the Related Art As a typical method for producing a phenol resin foam, a liquid phenol resin has been used as an acidic curing agent,
A method of foam-curing in the presence of a foaming agent and a foam stabilizer is known. However, the use of specific CFC-based blowing agents such as trichlorotrifluoroethane and trichloromonofluoromethane, which have been commonly used in the production of such foams, are strictly regulated worldwide from the viewpoint of global environmental protection, and will be completely abolished in the future. It is supposed to be done. Therefore, in the technical field, alternative fluorocarbons developed as a blowing agent to replace the specific fluorocarbons, such as dichlorofluoroethane (HCFC-141b), dichlorotrifluoroethane (HCFC-123) and conventionally known physical or chemical agents. Attempts have been made to use blowing agents such as methylene chloride, pentane, air, nitrogen and carbon dioxide.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この種
の発泡剤は、発泡体成形時におけるガスの脱離量が特定
フロンに比べて多いため、得られた発泡体は一般にボイ
ドや断層を含み易く、また表面平滑性が悪く実用性に欠
けるという問題がある。このような事情から当該技術分
野においては、特定フロンを使用しない発泡体、とりわ
けノンフロンタイプ発泡体の製造技術の出現が待望され
ている。
However, since this type of foaming agent has a larger gas desorption amount during foam molding than that of the specific flon, the foam obtained generally tends to contain voids and faults. In addition, there is a problem that the surface smoothness is poor and the practicality is lacking. Under such circumstances, the advent of a technology for producing a foam that does not use a specific CFC, particularly a non-CFC type foam, is desired in the technical field.

【0004】そこで、本発明の目的は、特定フロン以外
の発泡剤の使用において、ボイドや断層を含まず、かつ
表面平滑性に優れたフェノール樹脂発泡体を製造するこ
とができる方法を提供することにある。本発明の他の目
的は、前記特長を有するノンフロンタイプのフェノール
樹脂発泡体の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method capable of producing a phenol resin foam which is free of voids and faults and has excellent surface smoothness when using a foaming agent other than specific CFCs. It is in. Another object of the present invention is to provide a method for producing a non-CFC type phenolic resin foam having the above characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく鋭意検討した結果、特定のポリエーテル
ポリオールは、発泡体成形時のガス脱離抑制に極めて有
効に作用し、しかも得られた発泡体はボイドや断層を含
まずかつ表面平滑性に優れ、さらにはノンフロン化が可
能であることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that a specific polyether polyol acts extremely effectively in suppressing gas desorption during foam molding, Moreover, they have found that the obtained foam does not contain voids or faults, has excellent surface smoothness, and can be made CFC free, and has completed the present invention.

【0006】即ち、本発明は、酸性硬化剤、発泡剤及び
整泡剤の存在下で液状フェノール樹脂を発泡硬化させて
フェノール樹脂発泡体を製造する方法において、1分子
中に水酸基及び/又はアミノ基を2個以上有する有機化
合物にエチレンオキサイドを必須成分とするアルキレン
オキサイドを付加重合させて得られる分子量が2500
〜20000で、エチレンオキサイド付加量が15重量
%以上であるポリエーテルポリオールを併用することを
特徴とするフェノール樹脂発泡体の製造方法である。
That is, the present invention relates to a method for producing a phenol resin foam by foaming and curing a liquid phenol resin in the presence of an acidic curing agent, a foaming agent and a foam stabilizer, to produce a phenol resin foam. The molecular weight obtained by addition-polymerizing an alkylene oxide containing ethylene oxide as an essential component to an organic compound having two or more groups is 2,500.
The method for producing a phenol resin foam is characterized in that a polyether polyol having an ethylene oxide addition amount of 15% by weight or more is used in combination.

【0007】本発明において使用される液状フェノール
樹脂は、酸性硬化剤の存在下で硬化反応を引き起こすメ
チロール基やジメチレンエーテル基等の架橋性官能基を
分子中に有する常温で液状の樹脂であり、具体的にはレ
ゾール型フェノール樹脂、ベンジルエーテル型フェノー
ル樹脂の他、ノボラック型フェノール樹脂にメチロール
基を付加させたノボラックレゾール型フェノール樹脂な
どを例示することができる。これらの液状フェノール樹
脂は、1種又は2種以上組み合せて用いてもよく、場合
によっては例えばエポキシ系化合物、メラミン系化合
物、グアナミン系化合物及びノボラック型フェノール樹
脂等と反応させ又は混合して用いてもよい。
The liquid phenol resin used in the present invention is a resin which is liquid at room temperature and has a crosslinkable functional group such as a methylol group or a dimethylene ether group which causes a curing reaction in the presence of an acidic curing agent in the molecule. Specific examples thereof include a resol-type phenol resin and a benzyl ether-type phenol resin, and a novolac resol-type phenol resin obtained by adding a methylol group to a novolac-type phenol resin. These liquid phenol resins may be used alone or in combination of two or more, and in some cases, for example, they are used by reacting with or mixing with an epoxy compound, a melamine compound, a guanamine compound and a novolac phenol resin. Good.

【0008】上記液状フェノール樹脂の代表的なレゾー
ル型又はベンジルエーテル型フェノール樹脂は、フェノ
ール類とアルデヒド類とを、例えばフェノール類1モル
に対してアルデヒド類を0.8モル以上、好ましくは1
〜4.0モルの割合で、触媒の存在下で付加縮合反応さ
せ、望ましくは、更に中和し、減圧下で濃縮することに
より調製することができる。前記フェノール類として
は、フェノールの他、例えばクレゾール、キシレノー
ル、ノニルフェノール、パラ−ターシャリーブチルフェ
ノール等のアルキルフェノール、例えばレゾルシノー
ル、カテコール、ピロガロール等の多価フェノール、例
えばビスフェノールF、ビスフェノールA等のビスフェ
ノール、例えばレゾルシノール残渣、カテコール残渣、
ビスフェノールA残渣等のフェノール系精製残渣などが
1種又は2種以上組み合せて用いられる。また、アルデ
ヒド類としては例えばホルマリン、パラホルムアルデヒ
ド、アセタール等のホルムアルデヒド供給物質の他、例
えばグリオキザール、フルフラール等のホルムアルデヒ
ド同効物質などが1種又は2種以上組み合せて用いられ
る。また、触媒としては例えば水酸化カリウム、水酸化
ナトリウム、水酸化リチウム、水酸化バリウム、水酸化
カルシウム、酸化マグネシウム、燐酸ナトリウム、炭酸
カリウム、炭酸水素ナトリウム、アンモニア、ヘキサメ
チレンテトラミン、トリエチルアミン、トリエタノール
アミン等の塩基性触媒や、例えば酢酸亜鉛、硼酸亜鉛、
塩化亜鉛、ナフテン酸鉛等の酸性二価金属塩触媒などが
用いられるが、場合によってはこれらを組み合せて用い
てもよい。
A typical resol type or benzyl ether type phenolic resin of the above liquid phenolic resin is phenols and aldehydes, for example, 0.8 mol or more, preferably 1 mol of aldehydes per mol of phenols.
It can be prepared by carrying out an addition condensation reaction in the presence of a catalyst at a ratio of ˜4.0 mol, preferably further neutralizing and concentrating under reduced pressure. Examples of the phenols include, in addition to phenol, alkylphenols such as cresol, xylenol, nonylphenol, and para-tert-butylphenol, polyhydric phenols such as resorcinol, catechol, and pyrogallol, such as bisphenol F such as bisphenol F and bisphenol A, such as resorcinol. Residue, catechol residue,
Phenol-based purification residues such as bisphenol A residue are used alone or in combination of two or more. As the aldehydes, for example, formaldehyde-supplying substances such as formalin, paraformaldehyde, acetal and the like, as well as formaldehyde-affecting substances such as glyoxal and furfural, and the like are used alone or in combination of two or more. Examples of the catalyst include potassium hydroxide, sodium hydroxide, lithium hydroxide, barium hydroxide, calcium hydroxide, magnesium oxide, sodium phosphate, potassium carbonate, sodium hydrogen carbonate, ammonia, hexamethylenetetramine, triethylamine, triethanolamine. Basic catalysts such as zinc acetate, zinc borate,
Acidic divalent metal salt catalysts such as zinc chloride and lead naphthenate are used, but in some cases, they may be used in combination.

【0009】本発明において使用される酸性硬化剤は、
上記液状フェノール樹脂の硬化反応を促進する酸性化合
物であり、具体的にはフェノールスルホン酸、ベンゼン
スルホン酸、エチルベンゼンスルホン酸、パラトルエン
スルホン酸、キシレンスルホン酸、スチレンスルホン酸
等の単環芳香族スルホン酸、ナフタレンスルホン酸、ナ
フトールスルホン酸、アントラセンスルホン酸、アント
ラノールスルホン酸等の多環芳香族スルホン酸、メタン
スルホン酸のようなアルキルスルホン酸、スルホン化ク
レオソート油、単環芳香族スルホン酸とホルムアルデヒ
ドの縮合物、多環芳香族スルホン酸及び/又はスルホン
化クレオソート油とホルムアルデヒドの縮合物、スルホ
ン化フェノール樹脂及び硫酸、リン酸等の無機酸などを
例示することができるが、これらの具体例に限定される
ものではない。これらの酸性硬化剤は、1種又は2種以
上組み合せて用いてもよく、又、その配合量は液状フェ
ノール樹脂100重量部に対して通常2〜40重量部の
範囲で選ばれる。
The acidic curing agent used in the present invention is
An acidic compound that accelerates the curing reaction of the liquid phenol resin, and specifically, a monocyclic aromatic sulfone such as phenolsulfonic acid, benzenesulfonic acid, ethylbenzenesulfonic acid, paratoluenesulfonic acid, xylenesulfonic acid, and styrenesulfonic acid. Acids, polycyclic aromatic sulfonic acids such as naphthalene sulfonic acid, naphthol sulfonic acid, anthracene sulfonic acid, anthranol sulfonic acid, alkyl sulfonic acids such as methane sulfonic acid, sulfonated creosote oil, monocyclic aromatic sulfonic acid Examples include condensates of formaldehyde, polycyclic aromatic sulfonic acids and / or condensates of sulfonated creosote oil and formaldehyde, sulfonated phenolic resins and inorganic acids such as sulfuric acid and phosphoric acid. It is not limited to the example. These acidic curing agents may be used alone or in combination of two or more, and the compounding amount thereof is usually selected in the range of 2 to 40 parts by weight with respect to 100 parts by weight of the liquid phenol resin.

【0010】本発明において使用される発泡剤は、前記
液状フェノール樹脂に混入又は溶解してこれを発泡させ
る物質、好ましくは特定フロンを除く物質であり、具体
的には、例えばジクロロモノフルオロメタン(HCFC
−21)、ジクロロフルオロエタン(HCFC−141
b)、ジクロロトリフルオロエタン(HCFC−12
3)、ジクロロペンタフルオロプロパン(HCFC−2
25ca,HCFC−225cb)等の代替フロンの
他、パーフルオロヘキサン、パーフルオロペンタン、塩
化メチレン、塩化プロピル、ジクロロエタン、トリクロ
ルエタン、テトラクロロメタン等のハロゲン化脂肪族炭
化水素、例えばブタン、ペンタン、ヘキサン等の脂肪族
炭化水素、例えばジエチルエーテル、ジイソプロピルエ
ーテル等の脂肪族エーテル、例えば空気、窒素、炭酸ガ
ス等のガス体などの物理的発泡剤、例えば炭酸水素ナト
リウム、炭酸ナトリウム、炭酸バリウム、炭酸カルシウ
ム、過酸化水素、ポリイソシアネート、水、パラトルエ
ンスルホニルヒドラジッド、オキシビスベンゼンスルホ
ニルヒドラジッド、アゾジカルボンアミド及びアゾビス
イソブチロニトリル等の化学的発泡剤などを例示するこ
とができるが、これらの例示に限定されるものではな
い。これらの発泡剤は、1種又は2種以上組み合せて用
いてもよく、又、その配合量は液状フェノール樹脂10
0重量部に対して通常0.5〜30重量部の範囲で選ば
れる。
The foaming agent used in the present invention is a substance which mixes with or dissolves in the liquid phenol resin to foam it, preferably a substance excluding specific chlorofluorocarbon, and specifically, for example, dichloromonofluoromethane ( HCFC
-21), dichlorofluoroethane (HCFC-141
b), dichlorotrifluoroethane (HCFC-12
3), dichloropentafluoropropane (HCFC-2
25ca, HCFC-225cb) and other alternative freons, as well as halogenated aliphatic hydrocarbons such as perfluorohexane, perfluoropentane, methylene chloride, propyl chloride, dichloroethane, trichloroethane, tetrachloromethane, etc., such as butane, pentane, hexane And the like, physical hydrocarbons such as aliphatic hydrocarbons such as diethyl ether and diisopropyl ether, and gaseous bodies such as air, nitrogen and carbon dioxide, such as sodium hydrogen carbonate, sodium carbonate, barium carbonate and calcium carbonate. , Hydrogen peroxide, polyisocyanate, water, chemical blowing agents such as p-toluenesulfonyl hydrazide, oxybisbenzenesulfonyl hydrazide, azodicarbonamide and azobisisobutyronitrile, and the like. It is not limited to the examples. These foaming agents may be used alone or in combination of two or more kinds, and the blending amount thereof is the liquid phenol resin 10
It is usually selected in the range of 0.5 to 30 parts by weight with respect to 0 parts by weight.

【0011】本発明において使用される整泡剤は、発泡
体成形時に形成される気泡の微細化、均一化及び安定化
又は連通化などの使用目的に応じた機能を持つ非イオン
系、アニオン系およびカチオン系界面活性剤であるが、
中でも非イオン系あるいはアニオン系、とりわけ非イオ
ン系界面活性剤が一般的に用いられる。このような非イ
オン系界面活性剤としては、ポリシロキサンオキシアル
キレン共重合体、ポリオキシエチレンソルビタン脂肪酸
エステル、ポリオキシエチレンラノリン脂肪酸エステ
ル、ヒマシ油エチレンオキサイド付加物、ポリオキシエ
チレンラウリルアルコールなどを例示することができ
る。また、アニオン系界面活性剤としてはドデシルベン
ゼンスルホン酸ナトリウム、ドデカンスルホン酸ナトリ
ウム、ジオクチルスルホコハク酸ナトリウム、ジエチル
アミノオレエートなどを例示することができる。これら
の整泡剤は、1種又は2種以上組み合せて用いてもよ
く、又、その配合量は液状フェノール樹脂100重量部
に対して通常0.3〜10重量部の範囲で選ばれる。
The foam stabilizer used in the present invention is a nonionic or anionic type having a function depending on the purpose of use such as miniaturization, homogenization and stabilization or communication of cells formed during foam molding. And a cationic surfactant,
Among them, nonionic or anionic surfactants, especially nonionic surfactants are generally used. Examples of such nonionic surfactants include polysiloxane oxyalkylene copolymers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene lanolin fatty acid esters, castor oil ethylene oxide adducts, and polyoxyethylene lauryl alcohol. be able to. Examples of anionic surfactants include sodium dodecylbenzene sulfonate, sodium dodecane sulfonate, sodium dioctyl sulfosuccinate, and diethylamino oleate. These foam stabilizers may be used alone or in combination of two or more, and the compounding amount thereof is usually selected in the range of 0.3 to 10 parts by weight with respect to 100 parts by weight of the liquid phenol resin.

【0012】本発明において使用されるポリエーテルポ
リオールは、1分子中に水酸基及び/又はアミノ基を2
個以上有する有機化合物(以下、単に有機化合物とい
う)とエチレンオキサイドを必須成分とするアルキレン
オキサイドとを触媒の存在下で例えば80〜150℃及
び0.5〜2kg/cm2 で付加重合させた後必要に応じて
中和、脱水処理して製造される、分子量が2500〜2
0000、より好ましくは4000〜10000で、か
つエチレンオキサイド付加量が15重量%以上、より好
ましくは30重量%以上に調整されたものである。分子
量が2500未満であるとガスの脱離抑制効果が小さ
く、逆に20000を超えると液状フェノール樹脂との
均質混合が困難となる。また、エチレンオキサイド付加
量が15重量%未満であると発泡体成形時に気泡膜の破
壊現象を生じるなどの不都合がある。かかるポリエーテ
ルポリオールの代表的な市販品としては、竹本油脂
(株)製商品名であるパイオニンP−4330−T(実
施例1参照)、パイオニンP−5050−T(有機化合
物としてトリメチロールプロパンを用いて得られた分子
量が5000でエチレンオキサイド付加量が50重量%
のもの)、パイオニンP−5070−T(有機化合物と
してトリメチロールプロパンを用いて得られた分子量が
5000でエチレンオキサイド付加量が70重量%のも
の)などを例示することができる。
The polyether polyol used in the present invention has two hydroxyl groups and / or amino groups in one molecule.
After addition-polymerizing an organic compound having one or more (hereinafter, simply referred to as an organic compound) and an alkylene oxide containing ethylene oxide as an essential component in the presence of a catalyst at, for example, 80 to 150 ° C. and 0.5 to 2 kg / cm 2. The molecular weight is 2,500 to 2, which is produced by neutralizing and dehydrating as necessary.
0000, more preferably 4000 to 10000, and the amount of ethylene oxide added is adjusted to 15% by weight or more, more preferably 30% by weight or more. If the molecular weight is less than 2,500, the gas desorption suppressing effect is small, and if it exceeds 20,000, it becomes difficult to homogeneously mix with the liquid phenol resin. Further, if the amount of ethylene oxide added is less than 15% by weight, there is a disadvantage that a cell membrane breakage phenomenon occurs during foam molding. Typical commercially available products of such polyether polyols include Pionein P-4330-T (see Example 1), which is a trade name of Takemoto Yushi Co., Ltd., and Pieonin P-5050-T (trimethylolpropane as an organic compound). The obtained molecular weight is 5000 and the amount of ethylene oxide added is 50% by weight.
), And Pionine P-5070-T (having a molecular weight of 5000 obtained by using trimethylolpropane as an organic compound and an ethylene oxide addition amount of 70% by weight).

【0013】なお、ここでいうポリエーテルポリオール
の分子量及びエチレンオキサイド付加量は、次の方法で
求めることができる。前記分子量は、例えば、1分子中
の水酸基(官能基数1として計算)及び/又はアミノ基
(官能基数2として計算)を2個以上有する多官能性有
機化合物を開始剤としてエチレンオキサイド(EO)及
びプロピレンオキサイド(PO)を付加重合させて得ら
れるポリエーテルポリオールの水酸基価(JIS−K−
1557)を測定して下記の計算式により算出する。
The molecular weight of the polyether polyol and the amount of ethylene oxide added here can be determined by the following method. The molecular weight is, for example, ethylene oxide (EO) using a polyfunctional organic compound having two or more hydroxyl groups (calculated as 1 functional group) and / or amino groups (calculated as 2 functional groups) in one molecule as an initiator. Hydroxyl value of polyether polyol obtained by addition polymerization of propylene oxide (PO) (JIS-K-
1557) is measured and calculated by the following calculation formula.

【0014】[0014]

【数1】 [Equation 1]

【0015】また、前記エチレンオキサイド付加量(重
量百分率)は、 1H−NMR(溶媒:重クロロホルム、
濃度:5重量%)で得たNMRチャートの3.7ppm 付
近のピークの積分値(a)と1.1ppm 付近のピークの
積分値(b)を用いて下記の計算式により算出する。
The amount of ethylene oxide added (percentage by weight) is 1 H-NMR (solvent: deuterated chloroform,
(Concentration: 5% by weight) of the NMR chart obtained at the concentration of 5% by weight) and the integrated value (a) of the peak near 3.7 ppm and the integrated value (b) of the peak near 1.1 ppm are calculated by the following formula.

【0016】[0016]

【数2】 [Equation 2]

【0017】上記有機化合物としては、エチレングリコ
ール、プロピレングリコール、ジエチレングリコール、
ジプロピレングリコール、ビスフェノールA、ビスフェ
ノールF、グリセリン、トリメチロールプロパン、ヘキ
サントリオール、トリエタノールアミン、ペンタエリス
リトール、エチレンジアミン、メチルグルコシド、ジエ
チレントリアミン、ソルビトール、シュクロース等が例
示されるが、中でもグリセリン、トリメチロールプロパ
ン及びこれらの混合物が好ましく用いられる。また、エ
チレンオキサイド以外のアルキレンオキサイドとして
は、プロピレンオキサイド、ブチレンオキサイド、スチ
レンオキサイド等が例示されるが、中でもプロピレンオ
キサイドが一般的に用いられる。また、触媒としては例
えば水酸化カリウム、水酸化ナトリウムなどが好適に用
いられる。
The above organic compounds include ethylene glycol, propylene glycol, diethylene glycol,
Examples include dipropylene glycol, bisphenol A, bisphenol F, glycerin, trimethylolpropane, hexanetriol, triethanolamine, pentaerythritol, ethylenediamine, methylglucoside, diethylenetriamine, sorbitol, sucrose, and the like. Among them, glycerin, trimethylolpropane And mixtures thereof are preferably used. Examples of alkylene oxides other than ethylene oxide include propylene oxide, butylene oxide, styrene oxide, etc. Among them, propylene oxide is generally used. Further, as the catalyst, for example, potassium hydroxide, sodium hydroxide and the like are preferably used.

【0018】上記ポリエーテルポリオールは、必要に応
じて2種以上を組み合せて用いてもよく、又、その配合
量としては液状フェノール樹脂100重量部に対して
0.3〜10重量部の範囲で選択することが好ましい。
配合量が0.3重量部未満であるとガスの脱離抑制効果
が小さく、逆に10重量部を超えると発泡体が収縮し易
すくなる。
The above polyether polyols may be used in combination of two or more, if necessary, and the compounding amount thereof is within the range of 0.3 to 10 parts by weight with respect to 100 parts by weight of the liquid phenol resin. It is preferable to select.
If the amount is less than 0.3 parts by weight, the effect of suppressing gas desorption is small, and if it exceeds 10 parts by weight, the foam tends to shrink easily.

【0019】本発明において、フェノール樹脂発泡体
は、前述したような液状フェノール樹脂、酸性硬化剤、
発泡剤、整泡剤、ポリエーテルポリオール及び必要に応
じて加えられるその他の添加物を当該技術分野で一般的
に採用されている発泡方式、例えば高速撹拌混合法、高
圧衝突混合法等により均一混合して発泡原液を調製した
後、これを連続発泡法、注入発泡法、現場発泡法などに
より発泡硬化させて製造することができる。
In the present invention, the phenol resin foam is a liquid phenol resin as described above, an acidic curing agent,
A foaming agent, a foam stabilizer, a polyether polyol, and other additives that are added as needed are uniformly mixed by a foaming method generally adopted in the art, for example, a high-speed stirring mixing method, a high-pressure collision mixing method, or the like. After the foaming stock solution is prepared in this manner, it can be produced by subjecting it to foaming and curing by a continuous foaming method, an injection foaming method, an in-situ foaming method or the like.

【0020】なお、上記その他の添加物としては、γ−
アミノプロピルトリエトキシシラン、γ−グリシドキシ
プロピルトリメトキシシラン等のシランカップリング
剤、レゾルシノール、アルキルレゾルシノール等の硬化
促進剤、尿素、メラミン等のホルムアルデヒド捕捉剤、
尿素樹脂、メラミン系樹脂、含リン系化合物、含ハロゲ
ン系化合物、水酸化アルミニウム等の難燃剤、シラスバ
ルーン、ガラスバルーン、多孔質骨材、木粉等の無機系
又は有機系充填材、セラミック繊維、ガラス繊維、炭素
繊維、フェノール繊維、アラミド繊維等の繊維補強材、
そのほか可塑剤、中和剤、着色剤などが挙げられる。
The above-mentioned other additives include γ-
Aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane and other silane coupling agents, resorcinol, alkylresorcinol and other curing accelerators, urea, melamine and other formaldehyde scavengers,
Urea resin, melamine-based resin, phosphorus-containing compound, halogen-containing compound, flame retardant such as aluminum hydroxide, shirasu balloon, glass balloon, porous aggregate, inorganic or organic filler such as wood powder, ceramic fiber Fiber reinforcements such as glass fiber, carbon fiber, phenol fiber, aramid fiber,
Other examples include plasticizers, neutralizing agents, coloring agents and the like.

【0021】[0021]

【実施例】次に、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例により限定されるもので
はない。なお、発泡体成形時のガス脱離量、発泡原液の
反応性及び発泡体特性については下記の試験法により測
定した。
EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The gas desorption amount during foam molding, the reactivity of the foaming stock solution, and the foam characteristics were measured by the following test methods.

【0022】(1)ガス脱離量は、液状レゾール型フェ
ノール樹脂100gに、2gの整泡剤(ヒマシ油エチレ
ンオキサイド付加物、商品名 パイオニンD225、竹
本油脂(株)製)と所定のポリエーテルポリオール3g
を溶解させ、所定の発泡剤を加えて十分に混合し、さら
に液温を20℃に調整した後、これに20℃に調整した
所定量の酸性硬化剤を加えて特殊機化工業社製ホモディ
スパー(商標)(回転数:8000rpm )で15秒間混
合して調製した発泡原液を70℃の雰囲気中に設置され
た電子天秤上のサイドフリーモールド(厚み50mm)内
に注入した時点から発泡硬化に至る間の重量減少を経時
毎に測定し、これを発泡原液100g当たりに換算して
求めた。 (2)発泡原液の反応性を表すクリームタイム(CT)
及びゲルタイム(GT)は、500ccの紙コップ中に採
取した25℃の発泡原液約100gを用いて常法により
測定した。 (3)発泡体の密度及び圧縮強度はJIS−A−951
4に準じて測定した。 (4)発泡体のボイド、断層の有無及び表面平滑性は目
視で判定した。 (5)発泡体のセル径は、マイクロスコープ〔明伸工機
(株)製VMS−300(商標)〕を用いて測定した。
(1) The amount of desorbed gas is 100 g of liquid resol type phenol resin, 2 g of a foam stabilizer (castor oil ethylene oxide adduct, trade name Pionine D225, manufactured by Takemoto Yushi Co., Ltd.) and a predetermined polyether. 3 g of polyol
Was dissolved, a predetermined foaming agent was added and thoroughly mixed, and the liquid temperature was further adjusted to 20 ° C., and then a predetermined amount of an acidic curing agent adjusted to 20 ° C. was added thereto to obtain a homogenized product manufactured by Tokushu Kika Kogyo The foaming undiluted solution prepared by mixing with Disper (trademark) (rotation speed: 8000 rpm) for 15 seconds was injected into a side free mold (thickness 50 mm) on an electronic balance installed in an atmosphere of 70 ° C. The weight loss during the entire period was measured every time, and this was calculated by converting it per 100 g of the foaming stock solution. (2) Cream time (CT), which indicates the reactivity of the effervescent stock solution
The gel time (GT) was measured by a conventional method using about 100 g of the foaming stock solution at 25 ° C. collected in a 500 cc paper cup. (3) The density and compressive strength of the foam are JIS-A-951.
It measured according to 4. (4) The presence or absence of voids and faults in the foam and the surface smoothness were visually determined. (5) The cell diameter of the foam was measured using a microscope [VMS-300 (trademark) manufactured by Meisho Machine Co., Ltd.].

【0023】(参考例)温度計、撹拌機及び還流冷却器
を備えた反応釜にフェノール300kg,47重量%ホル
マリン306kg及び20重量%水酸化ナトリウム水溶液
30kgを仕込んだ後撹拌混合しながら約90℃で2時間
反応させた。その後、40℃まで冷却してフェノールス
ルホン酸でpH7に中和し、更に撹拌混合しながら約60
mmHgの真空下で加熱濃縮して液状レゾール型フェノール
樹脂を調製した。得られた液状レゾール型フェノール樹
脂は、粘度75ポイズ/25℃(B型粘度計)、数平均
分子量254(ゲルロ過クロマトグラフ法)であった。
(Reference Example) 300 kg of phenol, 306 kg of 47% by weight formalin and 30 kg of 20% by weight sodium hydroxide aqueous solution were charged into a reaction kettle equipped with a thermometer, a stirrer and a reflux condenser, and then stirred and mixed at about 90 ° C. And reacted for 2 hours. Then, cool to 40 ° C, neutralize to pH 7 with phenolsulfonic acid, and stir and mix for about 60 minutes.
A liquid resol-type phenol resin was prepared by heating and concentrating under a vacuum of mmHg. The obtained liquid resol-type phenol resin had a viscosity of 75 poise / 25 ° C. (B-type viscometer) and a number average molecular weight of 254 (gel perchromatography method).

【0024】(実施例1)上記参考例で得た液状レゾー
ル型フェノール樹脂100kgに整泡剤としてパイオニン
D225 2kg及びトリメチロールプロパン(有機化合
物)にエチレンオキサイド及びプロピレンオキサイドを
付加重合させて得られた分子量が4300でエチレンオ
キサイド付加量が30重量%のポリエーテルポリオール
〔商品名パイオニンP−4330−T、竹本油脂(株)
製〕3kgを混合溶解させて20℃に調整したものをI
液、発泡剤として20℃に調整した塩化メチレンをII液
及び酸性硬化剤として20℃に調整した63重量%フェ
ノールスルホン酸水溶液をIII 液として準備した。
Example 1 Obtained by addition-polymerizing ethylene oxide and propylene oxide to 100 kg of the liquid resol-type phenol resin obtained in the above Reference Example as a foam stabilizer, 2 kg of Pionine D225 and trimethylolpropane (organic compound). Polyether polyol having a molecular weight of 4300 and an ethylene oxide addition amount of 30% by weight (trade name: Pionine P-4330-T, Takemoto Yushi Co., Ltd.)
Made by mixing and dissolving 3 kg and adjusting the temperature to 20 ° C.
A liquid, methylene chloride adjusted to 20 ° C. as a foaming agent, and a 63 wt% phenolsulfonic acid aqueous solution adjusted to 20 ° C. as an acidic curing agent were prepared as a liquid III.

【0025】次に、エンドレスコンベアによって搬送さ
れる下面材(珪酸カルシウム・ガラス繊維混抄無機質
紙)上に高速混合機を用いて上記I液/II液/III 液=
105/7/15の重量割合で混合調製した発泡原液を
供給し、更に上面材(珪酸カルシウム・ガラス繊維混抄
無機質紙)を対向に重ね合わせた後、これを加熱機構付
きダブルコンベアに案内して70℃で発泡硬化させると
ともに厚みを調整して両面に面材を有する発泡体を形成
し、これを所定寸法に切断してフェノール樹脂発泡体パ
ネル(ノンフロンタイプ、長さ1800mm×幅910mm
×厚み50mm)を作製した。得られたパネルは、ヘコミ
のない良好な表面平滑性を有し、かつ発泡体部分におい
てもボイドや断層は観察されなかった。また、発泡体成
形時のガス脱離量、発泡原液の反応性、発泡体の密度、
圧縮強度及びセル径等を前記試験法により測定した。そ
の結果を表1に示す。
Next, on the lower surface material (calcium silicate / glass fiber mixed inorganic paper) conveyed by the endless conveyor, the above-mentioned I liquid / II liquid / III liquid =
The foaming stock solution prepared by mixing at a weight ratio of 105/7/15 was supplied, and the upper surface material (calcium silicate / glass fiber mixed inorganic paper) was superposed facing each other, and then this was guided to a double conveyor with a heating mechanism. Form a foam with face materials on both sides by foaming and curing at 70 ° C and adjusting the thickness, and cut this to a specified size to phenol resin foam panel (non-CFC type, length 1800 mm x width 910 mm).
X thickness 50 mm) was produced. The obtained panel had good surface smoothness without dents, and voids and faults were not observed even in the foam portion. Also, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam,
The compressive strength, the cell diameter, etc. were measured by the above test method. The results are shown in Table 1.

【0026】(実施例2)実施例1において、発泡剤と
してさらに炭酸バリウムを液状レゾール型フェノール樹
脂に対して5重量%追加して発泡原液を調製した以外は
実施例1と同様にしてノンフロンタイプのフェノール樹
脂発泡体パネルを作製した。得られたパネルは、ヘコミ
のない良好な表面平滑性を有し、かつ発泡体部分におい
てもボイドや断層は観察されなかった。また、発泡体成
形時のガス脱離量、発泡原液の反応性、発泡体の密度、
圧縮強度及びセル径等を前記試験法により測定した。そ
の結果を表1に示す。
Example 2 A non-fluorocarbon type was prepared in the same manner as in Example 1 except that 5% by weight of barium carbonate was added as a foaming agent to the liquid resol type phenol resin to prepare a foaming stock solution. The phenol resin foam panel of was produced. The obtained panel had good surface smoothness without dents, and voids and faults were not observed even in the foam portion. Also, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam,
The compressive strength, the cell diameter, etc. were measured by the above test method. The results are shown in Table 1.

【0027】(実施例3〜6)実施例1において、ポリ
エーテルポリオール及び酸性硬化剤を表1に示すように
変更して発泡原液を調製した以外は実施例1と同様にし
てノンフロンタイプのフェノール樹脂発泡体パネルを作
製した。得られたパネルは、いずれもヘコミのない良好
な表面平滑性を有し、かつ発泡体部分においてもボイド
や断層は観察されなかった。また、発泡体成形時のガス
脱離量、発泡原液の反応性、発泡体の密度、圧縮強度及
びセル径等を前記試験法により測定した。その結果を表
1及び2に示す。
(Examples 3 to 6) A non-CFC type phenol was prepared in the same manner as in Example 1 except that the foaming stock solution was prepared by changing the polyether polyol and the acidic curing agent as shown in Table 1. A resin foam panel was produced. Each of the obtained panels had good surface smoothness without dents, and voids and faults were not observed even in the foam portion. Further, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam, the compressive strength, the cell diameter, etc. were measured by the above-mentioned test methods. The results are shown in Tables 1 and 2.

【0028】(実施例7〜8)実施例1において、発泡
剤及び酸性硬化剤を表1に示すように変更して発泡原液
を調製した以外は実施例1と同様にしてノンフロンタイ
プ又は代替フロンタイプのフェノール樹脂発泡体パネル
を作製した。得られたパネルは、いずれもヘコミのない
良好な表面平滑性を有し、かつ発泡体部分においてもボ
イドや断層は観察されなかった。また、発泡体成形時の
ガス脱離量、発泡原液の反応性、発泡体の密度、圧縮強
度及びセル径等を前記試験法により測定した。その結果
を表3に示す。
(Examples 7 to 8) A non-CFC type or alternative CFC was prepared in the same manner as in Example 1 except that the foaming agent and the acidic curing agent were changed as shown in Table 1 to prepare a foaming stock solution. A type of phenolic resin foam panel was made. Each of the obtained panels had good surface smoothness without dents, and voids and faults were not observed even in the foam portion. Further, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam, the compressive strength, the cell diameter, etc. were measured by the above-mentioned test methods. Table 3 shows the results.

【0029】(比較例1)実施例1において、ポリエー
テルポリオールを省いて発泡原液を調製した以外は実施
例1と同様にしてノンフロンタイプのフェノール樹脂発
泡体パネルを作製した。得られたパネルは、表面の数ヶ
所に直径10cm程度のヘコミを有し、かつ発泡体部分に
おいては無数のボイドと断層が観察された。また、発泡
体成形時のガス脱離量、発泡原液の反応性、発泡体の密
度、圧縮強度及びセル径等を前記試験法により測定し
た。その結果を表4に示す。
Comparative Example 1 A non-CFC type phenol resin foam panel was produced in the same manner as in Example 1 except that the polyether polyol was omitted to prepare the foaming stock solution. The obtained panel had dents with a diameter of about 10 cm at several points on the surface, and innumerable voids and faults were observed in the foam portion. Further, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam, the compressive strength, the cell diameter, etc. were measured by the above-mentioned test methods. The results are shown in Table 4.

【0030】(比較例2)実施例8において、ポリエー
テルポリオールを省いて発泡原液を調製した以外は実施
例1と同様にして代替フロンタイプのフェノール樹脂発
泡体パネルを作製した。得られたパネルは、表面の数ヶ
所に直径6cm程度のヘコミを有し、かつ発泡体部分にお
いてはボイドと断層が観察された。また、発泡体成形時
のガス脱離量、発泡原液の反応性、発泡体の密度、圧縮
強度及びセル径等を前記試験法により測定した。その結
果を表4に示す。
Comparative Example 2 An alternative CFC type phenol resin foam panel was prepared in the same manner as in Example 1 except that the foaming stock solution was prepared by omitting the polyether polyol. The obtained panel had dents with a diameter of about 6 cm at several points on the surface, and voids and faults were observed in the foam portion. Further, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam, the compressive strength, the cell diameter, etc. were measured by the above-mentioned test methods. The results are shown in Table 4.

【0031】(比較例3)実施例1において、ポリエー
テルポリオールを表4に示すように変更して発泡原液を
調製した以外は実施例1と同様にしてノンフロンタイプ
のフェノール樹脂発泡体パネルを作製した。得られたパ
ネルは、表面の数ヶ所に直径8cm程度のヘコミを有し、
かつ発泡体部分においては無数のボイドと断層が観察さ
れた。また、発泡体成形時のガス脱離量、発泡原液の反
応性、発泡体の密度、圧縮強度及びセル径等を前記試験
法により測定した。その結果を表4に示す。
(Comparative Example 3) A non-CFC type phenol resin foam panel was prepared in the same manner as in Example 1 except that the foaming stock solution was prepared by changing the polyether polyol as shown in Table 4. did. The obtained panel has dents with a diameter of about 8 cm in several places on the surface,
Moreover, numerous voids and faults were observed in the foam part. Further, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam, the compressive strength, the cell diameter, etc. were measured by the above-mentioned test methods. The results are shown in Table 4.

【0032】(比較例4)実施例1において、ポリエー
テルポリオール、発泡剤及び酸性硬化剤を表5に示すよ
うに変更して発泡原液を調製した以外は実施例1と同様
にしてノンフロンタイプのフェノール樹脂発泡体パネル
を作製した。得られたパネルは、表面の数ヶ所に直径8
cm程度のヘコミを有し、かつ発泡体部分においては無数
のボイドと断層が観察された。また、発泡体成形時のガ
ス脱離量、発泡原液の反応性、発泡体の密度、圧縮強度
及びセル径等を前記試験法により測定した。その結果を
表5に示す。
(Comparative Example 4) A non-fluorocarbon type was prepared in the same manner as in Example 1 except that the polyether polyol, the foaming agent and the acidic curing agent were changed as shown in Table 5 to prepare a foaming stock solution. A phenolic resin foam panel was made. The resulting panel has a diameter of 8 at several points on the surface.
There were dents of about cm, and numerous voids and faults were observed in the foam part. Further, the amount of gas desorbed during foam molding, the reactivity of the foaming stock solution, the density of the foam, the compressive strength, the cell diameter, etc. were measured by the above-mentioned test methods. The results are shown in Table 5.

【0033】(比較例5)実施例1において、ポリエー
テルポリオールを表5に示すように変更して発泡原液を
調製した以外は実施例1と同様に操作したところ破泡現
象が起こり発泡体は得られなかった。
Comparative Example 5 The same procedure as in Example 1 was carried out except that the polyether polyol was changed as shown in Table 5 to prepare a foaming stock solution. I couldn't get it.

【0034】(比較例6)実施例1において、整泡剤を
省いて発泡原液を調製した以外は実施例1と同様に操作
したところ破泡現象が起こり発泡体は得られなかった。
(Comparative Example 6) The same procedure as in Example 1 was carried out except that the foaming stock solution was prepared in the same manner as in Example 1 except that the foam stabilizer was omitted.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】尚、上記表1〜5において、酸性硬化剤欄
中のPSは63重量%フェノールスルホン酸であり、P
TSは70重量%パラトルエンスルホン酸であり、NS
Aは65重量%ナフタレンスルホン酸である。
In the above Tables 1 to 5, PS in the column of acidic curing agent is 63% by weight phenolsulfonic acid, and P
TS is 70 wt% paratoluene sulfonic acid, NS
A is 65% by weight naphthalene sulfonic acid.

【0041】表1〜5から明らかなように、特定のポリ
エーテルポリオールを用いることにより、発泡体成形時
におけるガスの脱離量を減少させることができ、その結
果従来困難であった特定フロン以外の発泡剤の使用を可
能とするとともに、ボイドや断層がなくかつ表面平滑性
に優れたノンフロン又は代替フロンタイプのフェノール
樹脂発泡体パネルを製造できることが確認された。ま
た、特定のポリエーテルポリオールを用いることによる
発泡体の密度、圧縮強度及びセル径に対する悪影響は観
られなかった。
As is clear from Tables 1 to 5, by using a specific polyether polyol, it is possible to reduce the amount of desorbed gas at the time of molding a foam, and as a result, except for the specific CFC which has been difficult in the past. It has been confirmed that it is possible to produce a non-CFC type or CFC-type phenol resin foam panel which has no voids or faults and is excellent in surface smoothness, as well as enabling the use of the foaming agent. Further, no adverse effect on the density, compressive strength and cell diameter of the foamed product was observed by using the specific polyether polyol.

【0042】[0042]

【発明の効果】以上説明した通り、本発明の製造方法に
よれば、特定のポリエーテルポリオールを用いることに
より、従来困難であった特定フロン以外の発泡剤の使用
を可能とするとともに、ボイドや断層がなくかつ表面平
滑性に優れたフェノール樹脂発泡体を提供することがで
きる。また、オゾン層破壊による自然環境の悪化を懸念
する社会の要請に応えるべくノンフロン又は代替フロン
タイプのフェノール樹脂発泡体を提供することができ
る。
As described above, according to the production method of the present invention, the use of a specific polyether polyol makes it possible to use a foaming agent other than a specific CFC, which has been difficult in the past, and also to prevent voids and It is possible to provide a phenol resin foam having no fault and excellent in surface smoothness. Further, it is possible to provide a non-CFC type or CFC-type phenol resin foam in order to meet the demand of society concerned about the deterioration of the natural environment due to ozone layer depletion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 甲斐 勲 愛知県丹羽郡扶桑町大字南山名字新津26番 地の4 旭有機材工業株式会社愛知工場内 (72)発明者 井野 武雄 福島県郡山市富久山町福原字陣場171−8 (72)発明者 高橋 聖 福島県郡山市富田町字塩ノ草14−10 (72)発明者 佐藤 幸寿 千葉県八千代市高津832−1 2−8−502 (72)発明者 山本 治 東京都品川区大井3丁目13−5 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Kai, No. 26 Shintsu, Minamiyama, Fuso-cho, Niwa-gun, Aichi Prefecture 4 At Asahi Organic Materials Co., Ltd. Aichi factory (72) Takeo Ino Tomihisa, Koriyama-shi, Fukushima Prefecture Yamamachi Fukuhara Jinba 171-2 (72) Inventor St. Takahashi 14-10 Shionogusa, Tomita-cho, Koriyama-shi, Fukushima Prefecture (72) Inventor Kotoshi Sato 832-1 Takatsu, Yachiyo-shi, Chiba 83-2-2 (72) ) Inventor Osamu Yamamoto 3-13-5 Oi, Shinagawa-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸性硬化剤、発泡剤及び整泡剤の存在下
で液状フェノール樹脂を発泡硬化させてフェノール樹脂
発泡体を製造する方法において、1分子中に水酸基及び
/又はアミノ基を2個以上有する有機化合物にエチレン
オキサイドを必須成分とするアルキレンオキサイドを付
加重合させて得られる分子量が2500〜20000
で、かつエチレンオキサイド付加量が15重量%以上で
あるポリエーテルポリオールを併用することを特徴とす
るフェノール樹脂発泡体の製造方法。
1. A method for producing a phenol resin foam by foaming and curing a liquid phenol resin in the presence of an acidic curing agent, a foaming agent and a foam stabilizer, wherein two hydroxyl groups and / or amino groups are contained in one molecule. A molecular weight obtained by addition-polymerizing an alkylene oxide containing ethylene oxide as an essential component to the organic compound having the above is 2,500 to 20,000.
And a polyether polyol having an ethylene oxide addition amount of 15% by weight or more is used in combination, and a method for producing a phenol resin foam.
JP18941994A 1994-08-11 1994-08-11 Method for producing phenolic resin foam Expired - Fee Related JP2873167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18941994A JP2873167B2 (en) 1994-08-11 1994-08-11 Method for producing phenolic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18941994A JP2873167B2 (en) 1994-08-11 1994-08-11 Method for producing phenolic resin foam

Publications (2)

Publication Number Publication Date
JPH0853563A true JPH0853563A (en) 1996-02-27
JP2873167B2 JP2873167B2 (en) 1999-03-24

Family

ID=16240953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18941994A Expired - Fee Related JP2873167B2 (en) 1994-08-11 1994-08-11 Method for producing phenolic resin foam

Country Status (1)

Country Link
JP (1) JP2873167B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037910A (en) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd Expandable phenol-based resol resin composition and method for producing the same
JP3813062B2 (en) 1998-07-03 2006-08-23 旭化成建材株式会社 Phenolic foam
JP2007070503A (en) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd Phenol resin-foamed article
JP2007070501A (en) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd Phenol resin-foamed article
US8765829B2 (en) 2005-09-08 2014-07-01 Kingspan Holdings (Irl) Limited Phenolic foam
JP5795450B1 (en) * 2014-11-18 2015-10-14 旭化成建材株式会社 Phenol resin foam laminate and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3813062B2 (en) 1998-07-03 2006-08-23 旭化成建材株式会社 Phenolic foam
JP2002037910A (en) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd Expandable phenol-based resol resin composition and method for producing the same
JP2007070503A (en) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd Phenol resin-foamed article
JP2007070501A (en) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd Phenol resin-foamed article
US8765829B2 (en) 2005-09-08 2014-07-01 Kingspan Holdings (Irl) Limited Phenolic foam
JP5795450B1 (en) * 2014-11-18 2015-10-14 旭化成建材株式会社 Phenol resin foam laminate and method for producing the same

Also Published As

Publication number Publication date
JP2873167B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
US3389094A (en) Foaming phenol-formaldehyde resins with fluorocarbons
EP0439283B1 (en) Process for producing phenolic resins using blowing agents
JP2002532597A (en) Urethane-based foams containing exfoliable graphite and methods of making them
JP3110235B2 (en) Foam curable phenolic resin composition
JPS6142549A (en) Production of phenolic resin foam
JP2873167B2 (en) Method for producing phenolic resin foam
JP4878672B2 (en) Foamable phenolic resole resin composition and method for producing the same
EP0170357B1 (en) A process for producing phenolic foams
KR100501989B1 (en) The manufacture of non-cfc cellular resol foams using perfluorinated ethers
JP2750005B2 (en) Non-CFC foam made with blended surfactant
JP4170163B2 (en) Phenol foam raw material composition, phenol foam using the same, and method for producing the same
JP4060694B2 (en) Foamable resol-type phenolic resin composition and phenolic resin foam using the same
JP2017160414A (en) Phenolic resin foam
JP2845641B2 (en) Method for producing phenolic resin foam and its application
WO1989012658A1 (en) A process for producing phenolic foams
JP4216151B2 (en) Phenol foam manufacturing resin composition and phenol foam manufacturing method
JP3381042B2 (en) Method for producing phenolic resin form
JP3521048B2 (en) Phenol foam for vacuum insulation core
JPH083359A (en) Production of resol type phenol resin foam
JP2001011230A (en) Phenolic resin foam
JP2541703B2 (en) Method for producing phenolic resin foam
JPH07188446A (en) Production of phenol resin foam
JP3043358B2 (en) Method for producing phenolic resin foam
JP2002088186A (en) Method for producing flame-retardant phenolic resin foam
US20220041827A1 (en) Compositions for producing foamed materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees