JPH085249A - Furnace floor of dc electric furnace and execution method therefor - Google Patents

Furnace floor of dc electric furnace and execution method therefor

Info

Publication number
JPH085249A
JPH085249A JP6158165A JP15816594A JPH085249A JP H085249 A JPH085249 A JP H085249A JP 6158165 A JP6158165 A JP 6158165A JP 15816594 A JP15816594 A JP 15816594A JP H085249 A JPH085249 A JP H085249A
Authority
JP
Japan
Prior art keywords
brick
hearth
graphite powder
joint
fiber felt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6158165A
Other languages
Japanese (ja)
Other versions
JP3130208B2 (en
Inventor
Tsugio Yukinawa
次夫 行縄
Koichi Suzuki
浩一 鈴木
Tsukasa Sugano
司 菅野
Yoshimi Nakamori
義巳 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Muroran Inc
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Mitsubishi Steel Muroran Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Mitsubishi Steel Muroran Inc filed Critical Asahi Glass Co Ltd
Priority to JP06158165A priority Critical patent/JP3130208B2/en
Publication of JPH085249A publication Critical patent/JPH085249A/en
Application granted granted Critical
Publication of JP3130208B2 publication Critical patent/JP3130208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To obtain a furnace floor having low electric reistance by using scaly graphite powdered materials or graphitized carbon fiber felt or a mixture of the both as joint materials for a joint between a metal plate and a permanent brick and for a joint between the permanent brick and a wear brick. CONSTITUTION:A furnace floor of a DC electric furnace is constructed with an electrode plate made of a metal (mainly, copper plate) forming a furnace bottom, electrically conductive bricks (mainly, burned MgO-C bricks) with which the electrode plate is lined and which are usually stacked in two stages on the upper part of the electrode plate, and a stamp material constituting the furnace floor. An electric current is caused to flow through these layers. In this case, for a joint between the metal plate that is the electrode and a permanent brick and for a joint between the permanent brick and a wear brick, a scaly graphite powdered material having a mean particle size of 0.12 to 0.5mm or graphitized carbon fiber felt is used as a joint material. Further, the burned MgO-C bricks containing 8 to 25wt.% of graphite are used as the permanent and wear bricks.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炉床が導電性れんがで施
工された直流電気炉の炉床に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hearth of a DC electric furnace in which the hearth is constructed of conductive bricks.

【0002】[0002]

【従来の技術】直流電気炉は、炉底に設置された炉底電
極と炉蓋を通して挿入された可動電極との間に直流アー
クを発生させ、その熱によりスクラップを溶解し、金
属、例えば鋼を溶解・精錬する炉である。直流電気炉の
全体構成を図1に示した。図1に示すように、電気炉の
炉床は、炉底の金属製電極プレート(通常陽極であり、
主に銅プレートである)と、その上部に通常2段にライ
ニングされた導電性れんが(主に焼成MgO−Cれん
が)と炉床を構成するスタンプ材により構成され、これ
らの層を通じて電流が流れる。この時炉床内部の発熱を
少なくし、溶解物内でより多く発熱するようするため、
炉床れんがの電気抵抗は小さいほうが望ましい。
2. Description of the Related Art A direct current electric furnace generates a direct current arc between a bottom electrode installed on the bottom of a furnace and a movable electrode inserted through a furnace lid, the heat of which melts scrap to produce metal such as steel. It is a furnace for melting and refining. The overall structure of the DC electric furnace is shown in FIG. As shown in FIG. 1, the hearth of the electric furnace is a metal electrode plate (usually an anode
Mainly a copper plate), a conductive brick (mainly a calcined MgO-C brick) lined in two stages on top of it, and a stamping material that constitutes the hearth, and a current flows through these layers. . At this time, to reduce the heat generation inside the hearth and to generate more heat inside the melt,
It is desirable that the hearth brick has a low electrical resistance.

【0003】炉底の構造の例を図1に示したが、下部の
パーマれんがと上部のウェアーれんがは、例えば導電性
がある黒鉛を含有する厚み450mmのMgO−Cれん
がで構成されている。炉床面は、例えばウェアーれんが
上に施工された厚さ100mmのMgO−Cスタンプ材
で構成されている。MgO−Cれんが中には導電性物質
である鱗片状黒鉛が含まれ、れんが自体の電気抵抗を低
下させている。しかし、炉床全体の電気抵抗はれんが自
体の内部抵抗だけでなく、下部のパーマれんがと銅プレ
ート、上部のウェアーれんがとパーマれんがの間の接触
状態が大きく効いている。しかし、今迄のところ望まし
い目地材についての検討は成されていない。
An example of the structure of the furnace bottom is shown in FIG. 1. The lower perm brick and the upper wear brick are composed of, for example, 450 mm thick MgO-C brick containing conductive graphite. The hearth surface is made of, for example, a 100 mm thick MgO-C stamp material applied on a wear brick. The MgO-C brick contains flake graphite, which is a conductive substance, and reduces the electric resistance of the brick itself. However, not only the internal resistance of the brick itself, but also the electrical contact of the lower perm brick and the copper plate, and the upper wear brick and the perm brick have a great effect on the electrical resistance of the entire hearth. However, no studies have so far been made on a desirable joint material.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述の問題
点を解消し、上記パーマれんがとウェアーれんがとの
間、および、ウェアーれんがと金属製電極プレートとの
間の良好で再現性のある電気導電性を確保し、かつ、耐
久性がある直流電気炉の炉床を提供しようとするもので
ある。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and provides good and reproducible results between the perm brick and the wear brick, and between the wear brick and the metal electrode plate. An object of the present invention is to provide a hearth of a direct current electric furnace that ensures electric conductivity and is durable.

【0005】[0005]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくされたものであり、目地材として鱗片状黒
鉛を使用するものである。さらに、鱗片状黒鉛は潤滑性
を有するため、炉床れんが施工時の作業上の安全性を考
慮し、黒鉛化ファイバーフェルトを使用しても電気抵抗
を小さくできるとの知見をえて、下記の発明をするに至
った。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and uses flake graphite as a joint material. Further, since the flake graphite has lubricity, in consideration of the safety of the work at the time of construction of the hearth brick, it has been found that the electric resistance can be reduced even if the graphitized fiber felt is used, and the invention described below is obtained. Came to do.

【0006】(1)請求項1の発明は、電気炉炉床の最
下部を構成する電極である金属プレートとその上部に配
置された導電性があるパーマれんがとの間の目地、及び
このパーマれんがとその上の導電性があるウェアーれん
がとの間の目地に、鱗片状黒鉛粉体または黒鉛化カーボ
ンファイバーフェルトを目地材として使用していること
を特徴とする直流電気炉の炉床である。
(1) The invention of claim 1 is a joint between a metal plate which is an electrode forming the lowermost part of the hearth of an electric furnace and a conductive perm brick arranged above the metal plate, and this perm. A hearth of a DC electric furnace characterized by using scaly graphite powder or graphitized carbon fiber felt as a joint material in a joint between a brick and a conductive wear brick on the brick. .

【0007】(2)請求項2の発明は、前記目地材が鱗
片状黒鉛粉体であり、該鱗片状黒鉛粉体の平均粒径が0.
12〜0.5 mmである請求項1に記載の直流電気炉の炉床
である。
(2) In the invention of claim 2, the joint material is scaly graphite powder, and the average particle size of the scaly graphite powder is 0.
The hearth of the DC electric furnace according to claim 1, having a diameter of 12 to 0.5 mm.

【0008】(3)請求項3の発明は、前記パーマれん
がと前記ウェアーれんがが、黒鉛を8〜25重量%含む焼
成MgO−Cれんがである請求項1または2に記載の直
流電気炉の炉床。
(3) The invention of claim 3 is a furnace for a DC electric furnace according to claim 1 or 2, wherein the perm brick and the wear brick are fired MgO-C bricks containing 8 to 25% by weight of graphite. floor.

【0009】(4)請求項4の発明は、電気炉炉床の最
下部を構成する電極である金属プレートの上面に乾いた
鱗片状黒鉛粉体を2.0 〜10mmの厚さに散布した第1の
黒鉛粉体層を形成し、次に第1の黒鉛粉体層の上に導電
性があるパーマれんがを積み、次いで該パーマれんがの
上に乾いた鱗片状黒鉛粉体を2.0 〜10mmの厚さに散布
して第2の黒鉛粉体層を形成し、更に第2の黒鉛粉体層
の上に導電性があるウェアーれんがを積むことを特徴と
する電気炉炉床の施工方法である。
(4) According to the invention of claim 4, a dry flaky graphite powder is sprinkled to a thickness of 2.0 to 10 mm on the upper surface of a metal plate which is an electrode forming the lowermost part of the electric hearth. A graphite powder layer is formed, and then a conductive perm brick is stacked on the first graphite powder layer, and then dry scale-like graphite powder having a thickness of 2.0 to 10 mm is stacked on the perm brick. Is applied to form a second graphite powder layer, and an electrically conductive wear brick is further stacked on the second graphite powder layer to provide an electric furnace hearth construction method.

【0010】(5)請求項5の発明は、電気炉炉床の最
下部を構成する電極である金属プレートの上面に厚さ3.
0 〜10mmの第1の黒鉛化ファイバーフェルトを敷き、
次に第1の黒鉛化ファイバーフェルトの上に導電性があ
るパーマれんがを積み、次いで該パーマれんがの上に厚
さ3.0 〜10mmの第2の黒鉛化ファイバーフェルトを敷
き、更に第2の黒鉛化ファイバーフェルトの上に導電性
があるウェアーれんがを積むことを特徴とする電気炉炉
床の施工方法である。
(5) The invention according to claim 5 has a thickness of 3. on the upper surface of the metal plate which is the electrode forming the lowermost part of the electric furnace hearth.
Lay the first graphitized fiber felt of 0-10mm,
Next, a conductive perm brick is stacked on the first graphitized fiber felt, and then a second graphitized fiber felt having a thickness of 3.0 to 10 mm is laid on the perm brick, and then the second graphitized fiber felt. A method for constructing an electric hearth hearth, which is characterized in that a conductive wear brick is placed on a fiber felt.

【0011】[0011]

【作用】まず、炉床全体の電気抵抗を考えて見ると、約
450mm厚さの焼成MgO−Cれんが2枚の抵抗値
は、例えば単位表面積(cm2 )当たり約1Ω(計算
値)であり、一方目地材の抵抗値は約5Ω(推定値)で
ある。即ち、目地材の抵抗は全体の80〜90%を占める。
従って、目地部での電気抵抗を低下させることは極めて
重要となる。
First, considering the electric resistance of the entire hearth, the resistance value of two sheets of calcined MgO-C brick of about 450 mm thickness is, for example, about 1 Ω (calculated value) per unit surface area (cm 2 ). On the other hand, the resistance value of the joint material is about 5Ω (estimated value). That is, the resistance of the joint material accounts for 80 to 90% of the total.
Therefore, it is extremely important to reduce the electric resistance at the joint.

【0012】目地材の電気抵抗は、その材質、及び充填
度によっても異なる。従って、目地材自体の電気抵抗が
小さいこと、並びに均等に充填し易い材であることが必
要である。望ましい目地材は以下の様な特性としてが必
要である。 耐熱性があって導電性があること。 耐酸化性が良いこと。 れんが施工時において曲面を有する銅プレートとパー
マれんがとの間に充填むらが生じないこと。 望ましくは、施工時作業者が滑らないこと。
The electrical resistance of the joint material varies depending on the material and the filling degree. Therefore, it is necessary that the joint material itself has a low electric resistance and that the joint material is a material that can be uniformly and easily filled. A desirable joint material is required to have the following characteristics. It has heat resistance and conductivity. Good oxidation resistance. There should be no uneven filling between the curved copper plate and the perm brick during brick construction. Desirably, workers should not slip during construction.

【0013】そこで、後述する電気抵抗の試験を行な
い、天然の鱗片状黒鉛と黒鉛化したファイバーフェルト
を目地材に選択した。天然の鱗片状黒鉛の比抵抗は壁開
面に沿う方向について、10- 3 Ω・cm程度と小さく、
直角方向には約100倍の比抵抗を有する他、耐酸化性
が比較的大きいという特性を有する。これを目地材とし
て使用したときに導電性を示すのは勿論であるが、滑動
性があるため、例えば金属電極のプレートの上に、例え
ば約10mm厚さに堆積させておき、その上にれんがを乗
せるとその重みで圧縮され平均化され、かつ、一部の鱗
片状黒鉛粉体はその周囲に流出し、適当な量、例えば厚
さ3mm程度の相が金属プレートとれんがの隙間を均等
に充填した状態で残る。
Therefore, the electrical resistance test described below was carried out, and natural flake graphite and graphitized fiber felt were selected as joint materials. The specific resistance of natural flake graphite is as small as about 10 -3 Ωcm in the direction along the open wall,
In addition to having a specific resistance about 100 times in the perpendicular direction, it has a characteristic that its oxidation resistance is relatively large. Of course, when it is used as a joint material, it exhibits conductivity, but since it is slippery, it is deposited on a plate of a metal electrode, for example, to a thickness of about 10 mm, and bricks are deposited thereon. When put on, it is compressed and averaged by its weight, and some flaky graphite powder flows out to its surroundings, and an appropriate amount, for example, a phase with a thickness of about 3 mm, makes the gap between the metal plate and the brick even. Remains filled.

【0014】また、黒鉛化ファイバーフェルトの比抵抗
は密度により変化するが、例えば0.1 g/ccのものは1 〜
10Ω・cmである。また、耐酸化性も比較的良好であ
る。フェルトの厚みは7 〜20mmで、比較的高密度(0.
05〜0.2 g/cc)のものを目地材に選択すれば、れん
がの重みでフェルトが潰れて導電性が増し、電気的な接
触が確保される。またフェルトを使用する場合には鱗片
状黒鉛粉体のような飛散がないく、作業現場が滑りやす
くならず、作業者が滑るという安全上の問題も発生しな
い。黒鉛化ファイバーフェルトは、フェノール樹脂など
の残炭量の多いバインダーをしみ込ませたプレプリグで
あってもよい。
The specific resistance of the graphitized fiber felt varies depending on the density. For example, the specific resistance of 0.1 g / cc is 1 to
It is 10 Ω · cm. Also, the oxidation resistance is relatively good. The felt has a thickness of 7 to 20 mm and a relatively high density (0.
If a joint material of 05-0.2 g / cc) is selected, the felt will be crushed by the weight of the bricks and the conductivity will increase, ensuring electrical contact. Further, when the felt is used, it does not scatter like scaly graphite powder, the work site is not slippery, and the safety problem that the worker slips does not occur. The graphitized fiber felt may be a prepreg impregnated with a binder having a large amount of residual carbon such as phenol resin.

【0015】目地材を選択するため、図2に示すような
試験装置を考案し、種々の目地材の電気抵抗を比較し
た。厚さ5mmの二枚の鉄板(37×52mm2 )の間に種
々の目地材を充填し、電気抵抗を測定し、その結果を表
1に示した。
In order to select the joint material, a test apparatus as shown in FIG. 2 was devised, and the electric resistances of various joint materials were compared. Various joint materials were filled between two iron plates (37 × 52 mm 2 ) having a thickness of 5 mm, and the electric resistance was measured. The results are shown in Table 1.

【0016】表1に示した様に、鉄板と鉄板の接触で
は、目地間に目地材が無いときの抵抗が最も低い。しか
し、実炉では曲面の部分もあって、隙間の発生が避けら
れないため接触状態を良くする目地材が必要となる。目
地材としては、鱗片状黒鉛粉体と黒鉛化ファイバーフェ
ルトの電気抵抗が低くて良い。また、鱗片状黒鉛粉体の
では、粒子径の影響もあり、目地材を構成する粒子どう
しの接触抵抗が、粒子内部の抵抗より、はるかに大きい
と考えられている。
As shown in Table 1, the contact between iron plates is the lowest when there is no joint material between the joints. However, in an actual furnace, there is a curved surface, and the occurrence of gaps is unavoidable, so joint materials that improve the contact state are required. As the joint material, the electric resistance of the scaly graphite powder and the graphitized fiber felt may be low. Further, in the case of the flake graphite powder, it is considered that the contact resistance between particles constituting the joint material is much larger than the resistance inside the particles due to the influence of the particle size.

【0017】そのため、種々の粒径の鱗片状黒鉛を試験
した結果、粗い粒径のものを利用した方が望ましいこと
がわかるが、約0.1 mm以上のものならば使用できるこ
とが判明した。しかし、あまり粗い粒径であると接触面
積が少なくなるので望ましい最大粒径は約0.5 mmであ
る。他方、カーボンブラックは主として粒径が細かすぎ
るため電気抵抗が大きいと考えられる。
Therefore, as a result of testing flake graphite having various particle diameters, it was found that it is preferable to use those having a coarse particle diameter, but it was found that those having a particle diameter of about 0.1 mm or more can be used. However, if the grain size is too coarse, the contact area will be small, so the desirable maximum grain size is about 0.5 mm. On the other hand, carbon black is considered to have a large electric resistance mainly because the particle size is too small.

【0018】一方、長繊維であるカーボンファイバーと
それをフェルト状に加工した黒鉛化ファイバーフェルト
は接触点を少なくでき、そのため電気抵抗が低くなる筈
であるが、本試験結果では黒鉛化ファイバーフェルトの
方が電気抵抗は低かった。黒鉛化ファイバーフェルト
は、カーボンファイバーをフェルト状に加工してあるた
め、れんが面に垂直な方向にもファイバーが存在し、接
触点を実質的に少なくできるためと考えられるからであ
る。
On the other hand, the carbon fiber which is a long fiber and the graphitized fiber felt obtained by processing it into a felt shape should have a small number of contact points, and therefore the electrical resistance should be low. The electrical resistance was lower. This is because the graphitized fiber felt is formed by processing carbon fibers into a felt shape, so that the fibers are present in the direction perpendicular to the brick surface, and the number of contact points can be substantially reduced.

【0019】このことは、鱗片状黒鉛粉体ならば鱗片が
荷重方向と垂直に配向し折り重なって密に充填されるの
に対し、カーボンファイバーでは充填の緻密さが足りな
いためと思われる。この点であらかじめ、ある程度黒鉛
化ファイバーを密に織ってある黒鉛化ファイバーフェル
トでは低い抵抗値が得られたものと考えられる。
This is considered to be because, in the case of scale-like graphite powder, the scales are oriented perpendicularly to the loading direction and are folded and densely packed, whereas the carbon fibers are insufficiently dense. In this respect, it is considered that the graphitized fiber felt in which the graphitized fibers are densely woven to some extent in advance has obtained a low resistance value.

【0020】[0020]

【表1】 [Table 1]

【0021】以上のことから、目地材としては比較的粗
い粒径の鱗片状黒鉛粉体と黒鉛化ファイバーフェルトが
望ましく、これらを単独に用いるてもよく、両者を混合
して使用してもよい(請求項 1)。
From the above, the scaly graphite powder having a relatively coarse particle diameter and the graphitized fiber felt are desirable as the joint material, and these may be used alone or in combination. (Claim 1).

【0022】次に、鱗片状黒鉛粉体の粒径粗い方が目地
材として導電性が大きいので、平均粒径が0.12mm以上
のものを使用することが望ましく、入手の容易さから通
常平均粒径が0.5 mm以下のものを使用するのが望まし
い( 請求項2)。
Next, since the coarser particle size of the scaly graphite powder is more conductive as a joint material, it is desirable to use one having an average particle size of 0.12 mm or more. Usually, the average particle size is easy to obtain. It is desirable to use one having a diameter of 0.5 mm or less (claim 2).

【0023】次に、パーマれんがとウェアーれんがは共
に良好な導電性が必要であり、この点から黒鉛の量は8
重量%以上が望ましく、この黒鉛は鱗片状黒鉛が良い。
バインダーとしてフェノール樹脂が使用されるが、絶縁
性を有するためフェノール樹脂を焼成して炭化した焼成
MgO−Cれんが望ましい。黒鉛含有量が25重量%を
超えると、酸化により消耗が大きく、熱伝導率が大きく
なり炉床の断熱性が損なわれる。従って、炉床の断熱性
を確保するためにはパーマれんがの黒鉛含有量はウェア
ーれんがのそれよりも少なくしておくのが望ましい(請
求項3)。
Next, both the perm brick and the wear brick are required to have good conductivity. From this point, the amount of graphite is 8
It is desirable that the amount is at least wt%, and the graphite is preferably flake graphite.
Phenol resin is used as the binder, but it is desirable to use calcined MgO-C brick obtained by calcining and carbonizing the phenol resin because it has insulating properties. If the graphite content exceeds 25% by weight, it will be consumed by oxidation and the thermal conductivity will be high, and the heat insulation of the hearth will be impaired. Therefore, in order to secure the heat insulation of the hearth, it is desirable that the graphite content of the perm brick is smaller than that of the wear brick (claim 3).

【0024】鱗片状黒鉛を用いた施工方法においては、
鱗片状黒鉛粉体の散布厚さはある程度厚くないと、目地
部に均等な導電性を確保しにくいことから2.0 mm以上
としてあり、あまり厚いと施工に手間取り、鱗片状黒鉛
粉体の損耗が増えるので10mm以下とする。散布された
鱗片状黒鉛層の上にMgO−Cれんがをライニングする
と、鱗片状黒鉛層の厚さは散布された時の厚さの約1/
4に圧縮される。適切な散布厚さは、目地を挟む面に凹
凸が少なければ小さくすることができる(請求項4)。
なお、本発明において鱗片状黒鉛粉体の平均粒径は、篩
で分級して重量積算分布を求め、積算重量が50重量%と
なる粒径を求める方法によって測定されるものである。
In the construction method using flake graphite,
It is 2.0 mm or more because it is difficult to secure uniform conductivity in the joints unless the flake graphite powder is spread to a certain degree. If it is too thick, it will take time to install and the flake graphite powder will be worn more. Therefore, it should be 10 mm or less. When MgO-C bricks are lined on the spread scaly graphite layer, the thickness of the scaly graphite layer is about 1 / th of the thickness when spread.
Compressed to 4. The appropriate spraying thickness can be made small as long as the surfaces sandwiching the joint have few irregularities (claim 4).
In the present invention, the average particle size of the flake graphite powder is measured by a method of classifying with a sieve to obtain a weight cumulative distribution and obtaining a particle size at which the cumulative weight becomes 50% by weight.

【0025】黒鉛化ファイバーフェルトは施工時に飛散
しにくく、作業場所が滑りやすくならず、施工が容易な
点が鱗片状黒鉛粉体と比べて優れている。また、黒鉛化
ファイバーフェルトの厚さは、密度を0.05g/ccのも
のに換算した値であり、厚さが3mmより薄いと施工時
に破れやすく、施工後には密度のムラが大きくなって均
等な導電性が得難くなるので3mm以上とするのが好ま
しく、あまり厚くすると材料コストが増すので10mm以
下とするのが好ましい(請求項5)。
Graphitized fiber felt is superior to scaly graphite powder in that it is less likely to scatter during construction, does not slip easily in the work place, and is easy to construct. Further, the thickness of the graphitized fiber felt is a value in which the density is converted to that of 0.05 g / cc. If the thickness is less than 3 mm, the graphitized fiber felt is easily torn at the time of construction, and the unevenness of the density becomes large after the construction. Since it becomes difficult to obtain conductivity, the thickness is preferably 3 mm or more, and the material cost is increased if the thickness is too thick, so it is preferably 10 mm or less (claim 5).

【0026】[0026]

【実施例】鱗片状黒鉛の含有量を約20重量%および約10
重量%とした厚さ450 mmのMgO−Cれんがを、それ
ぞれウェアーれんがとパーマれんがに使用し、陽極であ
る銅製の金属プレートとパーマれんがとの間、およびパ
ーマれんがとウェアーれんがとの間の両方に平均粒径約
0.3 mmの鱗片状黒鉛粉体を約8 mm厚(れんがを積み
上げた後の厚さは約2 mm)に散布して積み上げ、さら
にウェアーれんがの上面にMgO−Cのスタンプ材を約
100 mmの厚さに施工し、炉床を構築した。この直流電
気炉で鉄スクラップを溶解したところ、炉床の電気抵抗
値は充分小さく、安定して操業を継続できることが確認
された。また使用後においても目地材の部分が焼き固ま
ることがないので、炉床のれんがの解体が容易になると
いう付加的な効果も得られた。
Example: The content of flake graphite was about 20% by weight and about 10%.
450% thick MgO-C bricks in weight% were used for wear bricks and perm bricks, respectively, both between the anode copper metal plate and the perm brick, and between the perm brick and the wear brick. Average particle size
0.3 mm flaky graphite powder is sprinkled to a thickness of about 8 mm (the thickness of the bricks after stacking is about 2 mm) and piled up, and then a MgO-C stamp material is placed on top of the wear bricks.
It was constructed to a thickness of 100 mm to construct a hearth. When iron scrap was melted in this DC electric furnace, it was confirmed that the electric resistance of the hearth was sufficiently small and that the operation could be continued stably. In addition, since the joint material does not harden and harden after use, the additional effect of facilitating the dismantling of the hearth brick was obtained.

【0027】上記例において、炉床の単位面積あたりの
抵抗値は約4.9 Ω・cm2 であった。この値から計算す
ると、MgO−Cれんがの部分( スタンプ材を含む) の
抵抗は0.8 Ω・cm2 、目地間の抵抗値は約4 Ω・cm
2 である。
In the above example, the resistance value per unit area of the hearth was about 4.9 Ω · cm 2 . Calculated from this value, the resistance of the MgO-C brick part (including stamp material) is 0.8 Ω · cm 2 , and the resistance value between joints is about 4 Ω · cm.
2

【0028】次に、黒鉛化ファイバーフェルトを目地材
として使用した例をのべる。市販の黒鉛化ファイバーフ
ェルト(商品名ドナカーボフェルト)で厚さ10mm、
目付け500 g/m2 、密度0.05g/cm3 、比抵抗 2
Ω・cmのものを陽極である銅製の金属プレートとパー
マれんがとの間、およびパーマれんがとウェアーれんが
との間の両方に1層を敷き、目地材とした。ウェアーれ
んがとパーマれんがは、それぞれ、上記鱗片状黒鉛の含
有量を約20重量%および約10重量%とした厚さ450 mm
のMgO−Cれんがである。この場合の電気抵抗値は鱗
片状黒鉛を目地材とした場合と比べやや大きかったが、
この直流電気炉で同様に鉄スクラップを溶解したとこ
ろ、安定して操業を継続できることが確認された。
Next, an example in which graphitized fiber felt is used as a joint material will be given. A commercially available graphitized fiber felt (trade name Dona Carbo Felt) with a thickness of 10 mm,
Basis weight 500 g / m 2 , density 0.05 g / cm 3 , specific resistance 2
One layer of Ω · cm was laid between the metal plate made of copper as an anode and the perm brick, and between the perm brick and the wear brick, to make a joint material. Wear bricks and perm bricks have a thickness of 450 mm with the content of the above flake graphite being approximately 20% by weight and approximately 10% by weight, respectively.
This is a MgO-C brick. The electric resistance value in this case was slightly larger than that in the case of using flake graphite as a joint material,
When iron scrap was similarly melted in this DC electric furnace, it was confirmed that the operation could be continued stably.

【0029】[0029]

【発明の効果】以上、説明した通り、金属プレートとパ
ーマれんがとの間、およびパーマれんがとウェアーれん
がとの間の両方に鱗片状黒鉛粉体または黒鉛化ファイバ
ーフェルトを目地材として使用した本発明の直流電気炉
炉床においては、炉床全体の電気抵抗を十分く小さくで
きる、炉床の耐久性も良好であり、耐火物原単位、鋼t
on当たりの消費電力を低下させることができる。
As described above, according to the present invention, the scaly graphite powder or the graphitized fiber felt is used as the joint material both between the metal plate and the perm brick and between the perm brick and the wear brick. In the DC electric hearth, the electric resistance of the entire hearth can be made sufficiently small, and the durability of the hearth is also good.
The power consumption per on can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】直流電気炉の炉床構造を示す図である。FIG. 1 is a diagram showing a hearth structure of a DC electric furnace.

【図2】目地材の電気抵抗測定方法を示す図である。FIG. 2 is a diagram showing a method for measuring an electric resistance of a joint material.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F27D 11/08 A 8926−4K (72)発明者 菅野 司 北海道室蘭市仲町12番地 三菱製鋼室蘭特 殊鋼株式会社室蘭製作所内 (72)発明者 中森 義巳 北海道室蘭市仲町12番地 三菱製鋼室蘭特 殊鋼株式会社室蘭製作所内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location F27D 11/08 A 8926-4K (72) Inventor Tsukasa Sugano 12 Nakamachi, Muroran-shi, Hokkaido Mitsubishi Steel Muroran special steel stock Muroran Manufacturing Company (72) Inventor Yoshimi Nakamori 12 Nakamachi, Muroran City, Hokkaido Mitsubishi Steel Muroran Special Steel Co., Ltd. Muroran Manufacturing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電気炉炉床の最下部を構成する電極であ
る金属プレートとその上部に配置された導電性があるパ
ーマれんがとの間の目地、及びこのパーマれんがとその
上の導電性があるウェアーれんがとの間の目地に、鱗片
状黒鉛粉体または黒鉛化カーボンファイバーフェルト、
または、鱗片状黒鉛粉体と黒鉛化カーボンファイバーフ
ェルトを混合したものを目地材として使用していること
を特徴とする直流電気炉の炉床。
1. A joint between a metal plate, which is an electrode forming the lowermost part of the hearth of an electric furnace, and a conductive perma brick disposed above the metal plate, and the perma brick and the electric conductivity on the perimeter brick. In a joint between a wear brick, scaly graphite powder or graphitized carbon fiber felt,
Alternatively, a hearth of a DC electric furnace is characterized by using a mixture of scaly graphite powder and graphitized carbon fiber felt as a joint material.
【請求項2】 前記目地材が鱗片状黒鉛粉体であり、該
鱗片状黒鉛粉体の平均粒径が0.12〜0.5 mmである請求
項1に記載の直流電気炉の炉床。
2. The hearth of a DC electric furnace according to claim 1, wherein the joint material is scaly graphite powder, and the average particle size of the scaly graphite powder is 0.12 to 0.5 mm.
【請求項3】 前記パーマれんがと前記ウェアーれんが
が、黒鉛を8〜25重量%含む焼成MgO−Cれんがであ
る請求項1または2に記載の直流電気炉の炉床。
3. The hearth of a DC electric furnace according to claim 1, wherein the perm brick and the wear brick are fired MgO—C bricks containing 8 to 25% by weight of graphite.
【請求項4】 電気炉炉床の最下部を構成する電極であ
る金属プレートの上面に乾いた鱗片状黒鉛粉体を2.0 〜
10mmの厚さに散布した第1の黒鉛粉体層を形成し、次
に第1の黒鉛粉体層の上に導電性があるパーマれんがを
積み、次いで該パーマれんがの上に乾いた鱗片状黒鉛粉
体を2.0 〜10mmの厚さに散布して第2の黒鉛粉体層を
形成し、更に第2の黒鉛粉体層の上に導電性があるウェ
アーれんがを積むことを特徴とする電気炉炉床の施工方
法。
4. Dry scale-like graphite powder is added to the upper surface of a metal plate which is an electrode forming the lowermost part of the hearth
Form a first graphite powder layer scattered to a thickness of 10 mm, then stack conductive perma brick on the first graphite powder layer, and then dry scale-like on the perma brick Electricity characterized by spreading graphite powder to a thickness of 2.0 to 10 mm to form a second graphite powder layer, and further stacking conductive wear bricks on the second graphite powder layer. Construction method of hearth hearth.
【請求項5】 電気炉炉床の最下部を構成する電極であ
る金属プレートの上面に厚さ3.0 〜10mmの第1の黒鉛
化ファイバーフェルトを敷き、次に第1の黒鉛化ファイ
バーフェルトの上に導電性があるパーマれんがを積み、
次いで該パーマれんがの上に厚さ3.0 〜10mmの第2の
黒鉛化ファイバーフェルトを敷き、更に第2の黒鉛化フ
ァイバーフェルトの上に導電性があるウェアーれんがを
積むことを特徴とする電気炉炉床の施工方法。
5. A first graphitized fiber felt having a thickness of 3.0 to 10 mm is laid on the upper surface of a metal plate which is an electrode forming the lowermost part of the electric furnace hearth, and then the first graphitized fiber felt is placed on top. Stack conductive perm bricks on the
Next, an electric furnace furnace characterized in that a second graphitized fiber felt having a thickness of 3.0 to 10 mm is laid on the perm brick, and conductive wear bricks are further stacked on the second graphitized fiber felt. Floor construction method.
JP06158165A 1994-06-17 1994-06-17 Hearth of DC electric furnace and method of construction Expired - Fee Related JP3130208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06158165A JP3130208B2 (en) 1994-06-17 1994-06-17 Hearth of DC electric furnace and method of construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06158165A JP3130208B2 (en) 1994-06-17 1994-06-17 Hearth of DC electric furnace and method of construction

Publications (2)

Publication Number Publication Date
JPH085249A true JPH085249A (en) 1996-01-12
JP3130208B2 JP3130208B2 (en) 2001-01-31

Family

ID=15665695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06158165A Expired - Fee Related JP3130208B2 (en) 1994-06-17 1994-06-17 Hearth of DC electric furnace and method of construction

Country Status (1)

Country Link
JP (1) JP3130208B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159930A (en) * 2009-01-09 2010-07-22 Takuma Co Ltd Furnace bottom electrode structure of electric type plasma ash melting furnace
KR200461165Y1 (en) * 2009-04-20 2012-06-25 현대제철 주식회사 Tap hole structural of electric furnace
CN103727779A (en) * 2014-01-06 2014-04-16 攀枝花钢城集团瑞钢工业有限公司 Steel-making electric-arc furnace door opening building method
JP2017015330A (en) * 2015-07-01 2017-01-19 株式会社日向製錬所 Three-phase ac electrode type electric furnace
CN109959261A (en) * 2019-04-19 2019-07-02 鲁山县方圆工程技术有限公司 A kind of ferronickel electric furnace charcoal composite lining structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159930A (en) * 2009-01-09 2010-07-22 Takuma Co Ltd Furnace bottom electrode structure of electric type plasma ash melting furnace
KR200461165Y1 (en) * 2009-04-20 2012-06-25 현대제철 주식회사 Tap hole structural of electric furnace
CN103727779A (en) * 2014-01-06 2014-04-16 攀枝花钢城集团瑞钢工业有限公司 Steel-making electric-arc furnace door opening building method
CN103727779B (en) * 2014-01-06 2015-10-28 攀枝花钢城集团瑞钢工业有限公司 Electric furnace arrangement for producing steel stove gate building method
JP2017015330A (en) * 2015-07-01 2017-01-19 株式会社日向製錬所 Three-phase ac electrode type electric furnace
CN109959261A (en) * 2019-04-19 2019-07-02 鲁山县方圆工程技术有限公司 A kind of ferronickel electric furnace charcoal composite lining structure

Also Published As

Publication number Publication date
JP3130208B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
CN102203007B (en) Process for the production and treatment of graphite powders
RU2744131C2 (en) Cathode unit for aluminum manufacture
CN106565253A (en) Preparation method of graphite lining for metal furnace
JPH085249A (en) Furnace floor of dc electric furnace and execution method therefor
JPH0428990B2 (en)
JP5650903B2 (en) Spray repair material using used brick
US3787300A (en) Method for reduction of aluminum with improved reduction cell and anodes
AU571186B2 (en) Improved cell for the electrolytic production of aluminum
JPH07507263A (en) Refractory ceramic mixture lining the bottom of a DC electric furnace and method for repairing this lining
JP2728351B2 (en) Conductive ramming refractories
CN201680726U (en) Rotary single-phase electric arc furnace
US1312257A (en) Jesse c
JP6629433B2 (en) Cathode bottom for producing aluminum
DK181019B1 (en) Anode apparatus and methods regarding the same
JP6735064B2 (en) Hot repair material for DC electric furnace
JP2019117045A (en) Hot repair material for DC electric furnace
JPH0578178A (en) Electrically conductive monolithic refractory
JP4571522B2 (en) Conductive amorphous refractories for DC electric furnace hearth stamp construction
JP3535571B2 (en) DC arc furnace
RU2125621C1 (en) Lining of shell of cathode aluminum electrolyzer
SU857685A1 (en) Ore smelting furnace lining
CN1008940B (en) Be specially adapted to the furnace bottom of direct current electric arc furnace
CN104528689B (en) Powder filling method
JPS6036876A (en) Direct current arc furnace
Glastonbury Characterisation of an industrial Søderberg electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees