JPH0851630A - Movement compensation predicting encoder - Google Patents

Movement compensation predicting encoder

Info

Publication number
JPH0851630A
JPH0851630A JP20595494A JP20595494A JPH0851630A JP H0851630 A JPH0851630 A JP H0851630A JP 20595494 A JP20595494 A JP 20595494A JP 20595494 A JP20595494 A JP 20595494A JP H0851630 A JPH0851630 A JP H0851630A
Authority
JP
Japan
Prior art keywords
motion
signal
prediction
image signal
motion vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20595494A
Other languages
Japanese (ja)
Other versions
JP2897649B2 (en
Inventor
Kenji Sugiyama
賢二 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP20595494A priority Critical patent/JP2897649B2/en
Publication of JPH0851630A publication Critical patent/JPH0851630A/en
Application granted granted Critical
Publication of JP2897649B2 publication Critical patent/JP2897649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the encoding efficiency of a movement compensation predicting encoder. CONSTITUTION:This encoder is constituted of a precise MV detector 8 for obtaining a motion vector by accuracy higher than transmission accuracy (a transmission standard,) a precise movement compensator 9 for performing movement compensation by the obtained motion vector and obtaining prediction signals by the accuracy higher than the transmission accuracy, an MV value rounding device 14 and an MV encoder 15 for rounding the obtained motion vector to the transmission accuracy and encoding it and predictive encoding means (2-5) for encoding a prediction residual and the movement compensation is performed by the accuracy higher than the transmission accuracy on an encoding side. By not encoding an error by the accuracy limit of a movement compensation processing not provided with correlation between frames and encoding the essential change of pictures provided with correlation between the frames more faithfully for that, the next inter-frame prediction efficiency is improved and the general encoding efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像情報の記録、再
生、表示を行うシステムにおいて、フレーム間やフィー
ルド間予測を用いて画像をより少ない情報量でディジタ
ル化する高能率符号化装置であって、特に動き補償処理
を行うものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a high-efficiency coding apparatus for digitizing an image with a smaller amount of information by using interframe and interfield prediction in a system for recording, reproducing and displaying image information. In particular, the present invention relates to a device that performs motion compensation processing.

【0002】[0002]

【従来の技術】[Prior art]

<動き補償予測符号化装置>動画像の高能率符号化で
は、フレーム間やフィールド間(以下、フレーム間で代
表させる)の高い相関を利用し、フレーム間予測を行
う。特に最近では、画像の動きに合わせて予測に使うフ
レームの信号を空間的に移動させてから、フレーム間予
測を行う動き補償フレーム間予測が一般的となってい
る。
<Motion Compensation Predictive Coding Device> In high-efficiency coding of a moving image, inter-frame prediction is performed by utilizing high correlation between frames and fields (hereinafter, represented by frames). Particularly in recent years, motion-compensated inter-frame prediction has become common, in which a signal of a frame used for prediction is spatially moved according to the motion of an image and then inter-frame prediction is performed.

【0003】この様な動き補償フレーム間予測(以下、
動き補償予測と略す)を行う符号化装置の例を図4に示
す。画像入力1より入力された画像信号は、予測減算器
2と動きベクトル(以下、MVと略す)検出器23に与
えられる。予測減算器2では動き補償器24から与えら
れるフレーム間予測信号が入力画像信号から減算され、
予測残差信号がDCT3に与えられる。DCT3では8
×8画素のブロック単位で2次元離散コサイン変換(D
CT)が行われ、変換された予測残差信号(DCT係
数)が量子化器4に与えられる。量子化器4では所定の
ステップ幅で信号が量子化され、固定長符号が逆量子化
器13と可変長符号化器5に与えられる。
Such motion-compensated interframe prediction (hereinafter,
FIG. 4 shows an example of an encoding device that performs motion compensation prediction. The image signal input from the image input 1 is given to the predictive subtractor 2 and the motion vector (hereinafter abbreviated as MV) detector 23. In the prediction subtractor 2, the inter-frame prediction signal given from the motion compensator 24 is subtracted from the input image signal,
The prediction residual signal is provided to DCT3. 8 for DCT3
Two-dimensional discrete cosine transform (D
CT) is performed, and the transformed prediction residual signal (DCT coefficient) is given to the quantizer 4. The quantizer 4 quantizes the signal with a predetermined step width, and the fixed-length code is given to the inverse quantizer 13 and the variable-length encoder 5.

【0004】可変長符号化器5では固定長符号が可変長
符号化されて圧縮された符号となり多重化器6に与えら
れる。可変長符号化の具体的な方法は、DCTの2次元
配列をジグザグスキャンで1次元配列の信号列にし、非
0値はその値を、0はその連続数(ランレングス)をハ
フマン符号で符号化する。多重化器6では、予測残差の
符号とMV符号化器15から与えられるMV情報の符号
を多重化し、符号列として符号出力7から出力する。
In the variable-length encoder 5, the fixed-length code is variable-length-encoded into a compressed code, which is given to the multiplexer 6. A concrete method of variable-length coding is to convert a two-dimensional array of DCT into a one-dimensional array signal string by zigzag scanning, in which a non-zero value is the value, and 0 is the continuous number (run length) of the Huffman code. Turn into. The multiplexer 6 multiplexes the code of the prediction residual and the code of the MV information provided from the MV encoder 15, and outputs the code string from the code output 7.

【0005】一方、逆量子化器13では固定長符号が代
表値に置き換えられ、逆DCT12に与えられる。逆D
CT12ではDCT3の逆変換が行われ、再生された予
測残差信号が加算器11に与えられる。加算器11では
動き補償器24から与えられるフレーム間予測信号が予
測残差信号に加算され、再生された画像信号となり、画
像メモリ10に与えられる。画像メモリ10ではフレー
ム間予測に使われる画像が蓄えられ、必要に応じてMV
検出器23と動き補償器24に与えられる。
On the other hand, in the inverse quantizer 13, the fixed length code is replaced with the representative value and given to the inverse DCT 12. Reverse D
The inverse transform of DCT3 is performed in CT12, and the reproduced prediction residual signal is given to the adder 11. In the adder 11, the inter-frame prediction signal given from the motion compensator 24 is added to the prediction residual signal to be a reproduced image signal, which is given to the image memory 10. The image memory 10 stores images used for inter-frame prediction, and if necessary, MV
It is provided to the detector 23 and the motion compensator 24.

【0006】MV検出器23は入力画像信号と、画像メ
モリ10に蓄えられ予測に用いられる再生画像信号の間
のMVを求める。求められたMVは動き補償器24とM
V符号化器15に与えられる。MV符号化器15では復
号装置で動き補償を行うために必要なMV値の情報を符
号化し、符号を多重化器6に与える。動き補償器24
は、画像メモリ10に蓄えられた再生画像信号を、MV
値に従って空間的に移動させ、フレーム間予測信号とし
て予測減算器2と加算器11に与える。
The MV detector 23 determines the MV between the input image signal and the reproduced image signal stored in the image memory 10 and used for prediction. The obtained MV is calculated by the motion compensator 24 and M
It is provided to the V encoder 15. The MV encoder 15 encodes the information of the MV value required for motion compensation in the decoding device, and gives the code to the multiplexer 6. Motion compensator 24
Is a reproduction image signal stored in the image memory 10,
It is spatially moved according to the value and is given to the prediction subtractor 2 and the adder 11 as an inter-frame prediction signal.

【0007】MV精度および動き補償器24の動作は、
復号装置と同じ動き補償処理(すなわち、復号装置側の
精度)とするため、伝送精度(すなわち、伝送規格)に
合わせたものとする。伝送規格としてはMPEGなどの
国際標準を用いるのが一般的で、その場合のMV精度は
1/2画素数単位となる。1/2画素精度でのMV検出
は、一度画素精度でMVを求め、そのMVの周辺のみ1
/2画素精度で再度求め直す。また、動き補償器24で
の1/2画素位置の画素の作り方も規定され、隣接画素
の単純加算(Bi−Linear)によって作られる。
この様なMV検出や動き補償処理は、DCTブロックを
4個連結した16×16画素のマクロブロック単位で行
われる。
The operation of the MV accuracy and motion compensator 24 is
Since the motion compensation processing is the same as that of the decoding device (that is, the accuracy on the decoding device side), it is set to match the transmission accuracy (that is, transmission standard). As a transmission standard, an international standard such as MPEG is generally used, and the MV accuracy in that case is a unit of 1/2 pixel. For MV detection with 1/2 pixel accuracy, MV is calculated once with pixel accuracy, and only 1 around the MV is 1
Recalculate again with 2 pixel accuracy. In addition, how to create a pixel at the 1/2 pixel position in the motion compensator 24 is also defined, and it is created by simple addition (Bi-Linear) of adjacent pixels.
Such MV detection and motion compensation processing are performed in units of 16 × 16 pixel macroblocks in which four DCT blocks are connected.

【0008】なお、MV検出では再生画像信号が劣化し
ていると、適切なMVが求まらないことがあるので、予
測で用いるのと同じフレームの入力画像信号を別の画像
メモリに蓄積し、再生画像信号の代わりに用いることも
ある。
If the reproduced image signal is deteriorated in the MV detection, an appropriate MV may not be obtained. Therefore, the input image signal of the same frame used in the prediction is stored in another image memory. , It may be used instead of the reproduced image signal.

【0009】<復号化装置>次に、図4の符号化装置に
対応する復号化装置ついて説明する。図5は、その復号
化装置の一例を示す構成図である。符号入力51より与
えられた画像データは多重分離器52で予測算差の符号
と、MV情報の符号に分離され、予測算差の符号は可変
長復号器53に、MV値の符号はMV復号器55に与え
られる。可変長復号器53では可変長符号が固定長に戻
され、得られた固定長符号が逆量子化器13に与えられ
る。MV復号器55ではMV情報が復号され、得られた
MV値が動き補償器24に与えられる。
<Decoding Device> Next, a decoding device corresponding to the coding device of FIG. 4 will be described. FIG. 5 is a block diagram showing an example of the decoding apparatus. The image data given from the code input 51 is separated by the demultiplexer 52 into the code of the prediction difference and the code of the MV information. The code of the prediction difference is input to the variable length decoder 53 and the code of the MV value is MV decoded. Given to the container 55. In the variable length decoder 53, the variable length code is returned to the fixed length, and the obtained fixed length code is given to the inverse quantizer 13. The MV decoder 55 decodes the MV information, and the obtained MV value is given to the motion compensator 24.

【0010】逆量子化器13では、固定長符号に対応す
る量子化代表値が求められ、逆DCT12に与えられ
る。逆DCT12では図4のDCT3の逆変換処理が行
われ、これにより再生された予測残差信号が加算器11
に与えられる。加算器11では動き補償器24から与え
られるフレーム間予測信号が加算され、再生された画像
信号が画像出力54から出力されると共に画像メモリ1
0に与えられる。画像メモリ10ではフレーム間予測に
使われる再生画像が蓄えられ、必要に応じて動き補償器
24に出力される。動き補償器24では再生画像をMV
値に従って動き補償してフレーム間予測信号を作り、加
算器11に与える。MV値は符号化装置と同じものが使
われ、フレーム間予測信号は符号化装置と同じものにな
る。
In the inverse quantizer 13, the quantized representative value corresponding to the fixed length code is obtained and given to the inverse DCT 12. The inverse DCT 12 performs the inverse transformation process of the DCT 3 of FIG. 4, and the prediction residual signal reproduced by this is added by the adder 11
Given to. In the adder 11, the inter-frame prediction signal given from the motion compensator 24 is added, and the reproduced image signal is outputted from the image output 54 and the image memory 1
Given to 0. Reproduced images used for inter-frame prediction are stored in the image memory 10 and output to the motion compensator 24 as needed. In the motion compensator 24, the reproduced image is MV
Motion compensation is performed according to the value to create an inter-frame prediction signal, which is provided to the adder 11. The same MV value as that of the encoding device is used, and the inter-frame prediction signal becomes the same as that of the encoding device.

【0011】[0011]

【発明が解決しようとする課題】動き補償予測符号化で
は、予測残差成分を符号化し、復号画像が入力信号によ
り近くなるようにする。この予測残差成分には、絵柄そ
のものがフレームごとに変化する本質的な画像の変化の
他に、動き補償処理が必ずしも理想的でないために起こ
る精度限界による誤差が含まれる。本質的な画像の変化
はフレーム毎に徐々に変化するものなので、忠実に符号
化することで、次のフレームの予測誤差を少なくでき
る。しかし、動き補償処理の精度限界による誤差はフレ
ーム毎に変化するので、符号化してもそのフレームの忠
実度が向上するだけで、次のフレームの予測には貢献し
ない。本質的な画像の変化はフレーム間で相関をもつ
が、精度限界による誤差はフレーム間で相関をもたない
ためである。
In motion-compensated predictive coding, the prediction residual component is coded so that the decoded image is closer to the input signal. The prediction residual component includes not only an essential image change in which the pattern itself changes from frame to frame but also an error due to the accuracy limit that occurs because the motion compensation process is not necessarily ideal. Since the essential change of the image gradually changes for each frame, by faithfully encoding, the prediction error of the next frame can be reduced. However, since the error due to the accuracy limit of the motion compensation process changes for each frame, even if the coding is performed, the fidelity of the frame is improved, and it does not contribute to the prediction of the next frame. This is because the essential change of the image is correlated between frames, but the error due to the accuracy limit is not correlated between frames.

【0012】本発明は以上の点に着目してなされたもの
で、伝送精度より高い精度で動き補償を行うことで、動
き補償処理の精度限界による誤差を符号化せず、その分
本質的な画像の変化をより忠実に符号化することで、次
のフレーム間予測効率を改善し、総合的な符号化効率を
向上させた動き補償予測符号化装置を提供することを目
的とする。
The present invention has been made by paying attention to the above points. By performing motion compensation with a higher accuracy than transmission accuracy, an error due to the accuracy limit of motion compensation processing is not coded, and accordingly, it is essential. It is an object of the present invention to provide a motion-compensated predictive coding device that improves the next inter-frame prediction efficiency and the overall coding efficiency by more faithfully coding changes in images.

【0013】[0013]

【課題を解決するための手段】本発明は、動画像を画像
間予測符号化する際に、伝送精度より高い精度で、入力
画像信号と予測に用いる画像信号の間の動きベクトルを
求め、その動きベクトルに従って予測に用いる画像信号
を動き補償した信号でフレーム間予測符号化を行い、一
方、求めた動きベクトルを伝送精度に丸め、伝送精度に
なった動きベクトル値を符号化して伝送する動き補償予
測符号化装置である。
According to the present invention, when a moving picture is inter-picture predictively coded, a motion vector between an input picture signal and a picture signal used for prediction is obtained with higher accuracy than transmission accuracy, and Motion compensation that performs interframe predictive coding with a motion-compensated signal of the image signal used for prediction according to the motion vector, rounds the obtained motion vector to transmission accuracy, and encodes the motion vector value that has become transmission accuracy for transmission. This is a predictive coding device.

【0014】また、動画像を画像間予測符号化する際
に、伝送精度で入力画像信号と予測に用いる画像信号の
間の動きベクトルを求め、その動きベクトルに従って予
測に用いる画像信号を動き補償した伝送精度のフレーム
間予測信号を得て、そのフレーム間予測信号と入力画像
信号の間で、伝送精度より高い精度で微小動きベクトル
を求め、その微小動きベクトルに従って予測信号または
入力画像信号を高精度で動き補償した信号でフレーム間
予測符号化を行い、この符号化に対応する局部復号では
伝送精度の予測信号を用いる動き補償予測符号化装置で
ある。
Further, when the moving picture is subjected to inter-picture predictive coding, a motion vector between the input picture signal and the picture signal used for prediction is obtained with transmission accuracy, and the picture signal used for prediction is motion-compensated according to the motion vector. Obtains an inter-frame prediction signal with transmission accuracy, obtains a small motion vector between the inter-frame prediction signal and the input image signal with a higher accuracy than the transmission accuracy, and accurately calculates the prediction signal or the input image signal according to the small motion vector. Is a motion-compensated predictive coding apparatus that performs inter-frame predictive coding with a signal whose motion is compensated in 1. and uses a predictive signal of transmission accuracy in local decoding corresponding to this coding.

【0015】[0015]

【作用】本発明の符号化装置では、伝送精度より高い精
度で動き補償を行うので、精度限界による誤差は軽減さ
れる。そのため、従来その誤差の符号化に費やされてい
た符号はいらなくなり、その分が画像本来の変化の符号
化に使えることになる。しかし、復号側の動き補償は伝
送精度と同じ精度で行れるので、精度限界による誤差は
従来と同じだけ存在し、符号化されていないので忠実度
が悪いものとなる。
In the encoding apparatus of the present invention, motion compensation is performed with a higher precision than the transmission precision, so errors due to the precision limit are reduced. Therefore, the code conventionally used for coding the error is unnecessary, and the code can be used for coding the original change of the image. However, since the motion compensation on the decoding side can be performed with the same precision as the transmission precision, the error due to the precision limit is the same as in the conventional case, and since it is not coded, the fidelity becomes poor.

【0016】結果として予測残差成分の中で、本質的な
画像の変化はより忠実に符号化され、精度限界による誤
差は忠実に符号化されなくなる。精度限界による誤差は
次の画像のフレーム間予測に影響を与えず、一方、本質
的な画像の変化がより忠実に符号化されていることは予
測効率改善に寄与し、総合的に予測効率が改善される。
As a result, in the prediction residual component, the essential image change is more faithfully encoded, and the error due to the accuracy limit is not faithfully encoded. The error due to the accuracy limit does not affect the inter-frame prediction of the next image, while the more faithful coding of the essential image changes contributes to improved prediction efficiency, which leads to overall prediction efficiency. Be improved.

【0017】[0017]

【実施例】【Example】

<符号化装置1>図1は符号化装置の第1の実施例を示
す構成図である。図4の従来例と同じ部分には、同じ番
号を付してある。図4の従来例とはMV検出器23、動
き補償器24の代わりに精細MV検出器8、精細動補償
器9があり、さらにMV値丸め器14が存在する点が構
成上異なる。図1で、図4の従来例と動作上異なるのは
フレーム間予測処理で、予測残差の符号化動作は従来例
と同じである。
<Encoder 1> FIG. 1 is a block diagram showing the first embodiment of the encoder. The same parts as those in the conventional example shown in FIG. 4 are denoted by the same reference numerals. The configuration is different from the conventional example of FIG. 4 in that a fine MV detector 8 and a fine motion compensator 9 are provided instead of the MV detector 23 and the motion compensator 24, and that an MV value rounder 14 is further provided. In FIG. 1, the difference from the conventional example in FIG. 4 in operation lies in the inter-frame prediction processing, and the coding operation of the prediction residual is the same as in the conventional example.

【0018】画像入力1より入力された画像信号は予測
減算器2で精細動補償器9から与えられるフレーム間予
測信号が減算され、予測残差信号となりDCT3に与え
られる。DCT3、量子化器4、可変長符号化器5、多
重化器6、逆量子化器13、逆DCT12、加算器1
1、画像メモリ10の動作は従来例と同じである。
The predictive subtractor 2 subtracts the inter-frame predictive signal supplied from the fine motion compensator 9 from the image signal input from the image input 1 to provide a predictive residual signal to the DCT 3. DCT 3, quantizer 4, variable length encoder 5, multiplexer 6, inverse quantizer 13, inverse DCT 12, adder 1
1. The operation of the image memory 10 is the same as the conventional example.

【0019】一方、精細MV検出器8、精細動補償器9
の構成と動作は、基本的には従来例のMV検出器23、
動き補償器24と同じであるが、その精度などが異な
る。動きベクトル(MV)の精度は、従来例では伝送精
度(伝送規格の精度)である1/2画素精度であるが、
本実施例では伝送精度(伝送規格)より高い精度である
1/6画素精度とする。その様子を図6に示す。1/6
画素精度のMV検出は、一度画素精度でMVを求め、そ
のMVの周辺のみ1/6画素精度で、再度求め直す。精
細MV検出器8で求められた高精度MV情報は、精細動
補償器9とMV値丸め器14に与えられる。
On the other hand, the fine MV detector 8 and the fine motion compensator 9
The configuration and operation of the MV detector 23 are basically the same as those of the conventional MV detector 23,
The motion compensator 24 is the same as the motion compensator 24, but its accuracy is different. The accuracy of the motion vector (MV) is 1/2 pixel accuracy which is the transmission accuracy (accuracy of the transmission standard) in the conventional example.
In this embodiment, the accuracy is 1/6 pixel, which is higher than the transmission accuracy (transmission standard). This is shown in FIG. 1/6
In the pixel-accurate MV detection, the MV is obtained once with the pixel precision, and only the periphery of the MV is obtained again with the 1/6 pixel precision. The high precision MV information obtained by the fine MV detector 8 is given to the fine motion compensator 9 and the MV value rounder 14.

【0020】精細動補償器9では、精細MV検出器8に
合わせてMVの精度を細かくし、さらに本来の画素以外
の位置の画素の作り方も高精度化される。具体的には、
図7に示される様に、従来例が隣接画素のみによるBi
−Linear(単なる2次の線形補間)であったのに
対し(同図(A))、さらに周辺の画素も用いた高精度
(高次)のリサンプル処理によって作られる(同図
(B))。
In the fine motion compensator 9, the precision of the MV is made finer in accordance with the fine MV detector 8, and the method of forming pixels at positions other than the original pixels is also made highly precise. In particular,
As shown in FIG. 7, in the conventional example, Bi using only adjacent pixels is used.
-Linear (simple quadratic linear interpolation) ((A) in the figure), but it is also created by high-precision (high-order) re-sampling processing that also uses peripheral pixels ((B) in the figure). ).

【0021】MV値丸め器14は、高精度の動きベクト
ル値を伝送精度(伝送規格)に合わせるために下位情報
を捨てて(丸めて)精度を落とし、伝送精度と同じ精度
の動きベクトル値として、MV値符号化器15に与え
る。具体的には、図6で破線で囲われた1/6画素精度
での9個のMVが、1/2画素精度で同一MVと見なさ
れる。MV値符号化器15は従来例と同様にMV値を符
号化する。
The MV value rounding unit 14 discards (rounds) lower information in order to match a highly accurate motion vector value with the transmission accuracy (transmission standard) to reduce the accuracy, and as a motion vector value with the same accuracy as the transmission accuracy. , MV value encoder 15. Specifically, nine MVs with 1/6 pixel precision surrounded by a broken line in FIG. 6 are regarded as the same MV with 1/2 pixel precision. The MV value encoder 15 encodes the MV value as in the conventional example.

【0022】本実施例では、符号化装置と復号化装置で
動き補償の動作が異なる。フレーム間予測は巡回動作と
なるので、符号化装置と復号化装置の間の違いは累積さ
れる。そこで、MV値の丸めによる誤差が、片方に偏ら
ないようにする必要があり、精度を伝送精度の偶数倍の
精度である1/6画素としているのはこのためである。
1/6画素精度を1/2画素精度に丸めた場合には、1
/2画素精度間にある偶数個の1/6画素の各点が2分
されて両側の1/2画素精度にされ、誤差のバランスが
とれる。この誤差はフレーム間で相関はないので、累積
しても大きな問題は起こらない。
In this embodiment, the motion compensation operation differs between the encoding device and the decoding device. Since inter-frame prediction is a cyclic operation, the differences between the coding device and the decoding device are cumulative. Therefore, it is necessary to prevent the error due to the rounding of the MV value from being biased to one side, and this is the reason why the precision is set to 1/6 pixel, which is a precision that is an even multiple of the transmission precision.
If 1/6 pixel precision is rounded to 1/2 pixel precision, 1
Even-numbered 1/6 pixel points between the / 2 pixel precisions are divided into two to have the 1/2 pixel precision on both sides, and the error is balanced. Since this error has no correlation between frames, it does not cause a big problem even if accumulated.

【0023】なお、動き補償の方法は、片方向予測の他
にMPEGなどで用いられる双方向予測(B−pict
ure)でも同様である。
In addition to the unidirectional prediction, the motion compensation method includes bidirectional prediction (B-pict) used in MPEG and the like.
ure) is the same.

【0024】<符号化装置2>図2は符号化装置の第2
の実施例を示す構成図である。図4の従来例と同じ部分
には、同じ番号を付してある。図4の従来例とは微小M
V検出器21と微小動き補償器22がある点が構成上異
なる。同図で、動作上従来例と異なるのは微小MV検出
器21と微小動き補償器22だけで、MV検出器23、
動き補償器24を含め他の部分の構成及び動作は従来例
と同じである。
<Encoding Device 2> FIG. 2 shows the second encoding device.
It is a block diagram which shows the Example of. The same parts as those in the conventional example shown in FIG. 4 are denoted by the same reference numerals. Smaller M than the conventional example of FIG.
The configuration is different in that there is a V detector 21 and a small motion compensator 22. In the figure, what is different from the conventional example in operation is only the minute MV detector 21 and the minute motion compensator 22, and the MV detector 23,
The configuration and operation of other parts including the motion compensator 24 are the same as those of the conventional example.

【0025】画像入力1より入力された画像信号は予測
減算器2、微小MV検出器21、MV検出器23に与え
られる。予測減算器2では、入力画像から高精度な動き
補償が行われたフレーム間予測画像が減算され、予測残
差がDCT3に与えられる。DCT3、量子化器4、可
変長符号化器5、多重化器6、MV符号化器15、逆量
子化器13、逆DCT12、加算器11、画像メモリ1
0、MV検出器23の動作は従来例と同じである。動き
補償器24の動作も従来例と同じであるが、動き補償器
24からのフレーム間予測信号は予測減算器2の代わり
に微小MV検出器21と微小動補償器22に与えられ
る。
The image signal input from the image input 1 is given to the predictive subtractor 2, the minute MV detector 21 and the MV detector 23. The predictive subtractor 2 subtracts the inter-frame predicted image that has been subjected to highly accurate motion compensation from the input image, and provides the prediction residual to the DCT 3. DCT 3, quantizer 4, variable length encoder 5, multiplexer 6, MV encoder 15, inverse quantizer 13, inverse DCT 12, adder 11, image memory 1
0, the operation of the MV detector 23 is the same as the conventional example. The operation of the motion compensator 24 is also the same as the conventional example, but the inter-frame prediction signal from the motion compensator 24 is given to the minute MV detector 21 and the minute motion compensator 22 instead of the predictive subtractor 2.

【0026】微小MV検出器21は、フレーム間予測信
号と、入力信号の間の微小な動きのずれを微小MVとし
て求める。ここで、フレーム間予測信号は、すでに伝送
精度の1/2画素精度で動き補償されているので、微小
MVはそれより細かなものとなり、精度は伝送精度より
細かくする。具体的な精度を実施例1と同様に1/6画
素精度とすると、MVは水平及び垂直に−2/6,−1
/6,0,+1/6,+2/6の5種類の値が設定さ
れ、5×5の25種類のベクトルの中からMVが選ばれ
る。
The minute MV detector 21 obtains a minute movement difference between the inter-frame prediction signal and the input signal as a minute MV. Here, since the inter-frame prediction signal has already been motion-compensated with 1/2 pixel precision of the transmission precision, the minute MV becomes finer than that, and the precision is made finer than the transmission precision. If the specific accuracy is 1/6 pixel accuracy as in the first embodiment, MV is -2/6 and -1 in the horizontal and vertical directions.
Five kinds of values of / 6, 0, +1/6 and +2/6 are set, and MV is selected from 25 kinds of 5 × 5 vectors.

【0027】微小動き補償器22は微小MV検出器21
から与えられる微小MVの精度で、実施例1と同様に高
次リサンプルにより動き補償を行う。この様に本実施例
は、第1の実施例の精細MV検出器8、精細動補償器9
で行われていた処理で、伝送精度より高精度の処理部分
を分離し、予測減算器2の方のみに適用したものであ
る。この場合では、加算器11には動き補償器24から
のフレーム間予測信号が入力されるので、局部復号画像
は従来例と同じになり、符号化装置と復号化装置の間の
誤差は起こらなくなる。
The minute motion compensator 22 is a minute MV detector 21.
The motion compensation is performed by the high-order resampling as in the first embodiment with the precision of the minute MV given by As described above, this embodiment is based on the fine MV detector 8 and the fine motion compensator 9 of the first embodiment.
In the processing performed in (1), the processing portion having higher precision than the transmission precision is separated and applied only to the predictive subtractor 2. In this case, since the inter-frame prediction signal from the motion compensator 24 is input to the adder 11, the locally decoded image becomes the same as in the conventional example, and the error between the encoding device and the decoding device does not occur. .

【0028】<符号化装置3>図3は符号化装置の第3
の実施例を示す構成図である。図2の第2の実施例と同
じ部分には、同じ番号を付してある。図3で、第2の実
施例とは微小動き補償器22の挿入位置が構成上異な
る。
<Encoding Device 3> FIG. 3 shows the third encoding device.
It is a block diagram which shows the Example of. The same parts as those in the second embodiment shown in FIG. 2 are designated by the same reference numerals. In FIG. 3, the insertion position of the small motion compensator 22 is different from that of the second embodiment in structure.

【0029】画像入力1より入力された画像信号は微小
動補償器22、微小MV検出器21、MV検出器23に
与えられる。微小動補償器22では、微小MV検出器2
1から与えられる微小MV値に従って、図2の場合と同
様に1画素以下の微小な動き補償が行われ、その結果が
予測減算器2に与えられる。予測減算器2では入力画像
そのままの代わりに、微小な動き補償が行われた入力画
像からフレーム間予測画像が減算され、予測残差がDC
T3に与えられる。DCT3、量子化器4、可変長符号
化器5、多重化器6、MV符号化器15、逆量子化器1
3、逆DCT12、加算器11、画像メモリ10、MV
検出器23、動き補償器24の動作は第2の実施例と同
じである。
The image signal input from the image input 1 is given to the minute motion compensator 22, the minute MV detector 21, and the MV detector 23. In the minute motion compensator 22, the minute MV detector 2
In accordance with the minute MV value given from 1, the minute motion compensation of one pixel or less is performed as in the case of FIG. 2, and the result is given to the predictive subtractor 2. The prediction subtractor 2 subtracts the inter-frame prediction image from the input image that has been subjected to the slight motion compensation instead of the input image as it is, and the prediction residual is DC.
Given to T3. DCT 3, quantizer 4, variable length encoder 5, multiplexer 6, MV encoder 15, inverse quantizer 1
3, inverse DCT 12, adder 11, image memory 10, MV
The operations of the detector 23 and the motion compensator 24 are the same as those in the second embodiment.

【0030】微小MV検出器21は、図2の場合と基本
的には同じであるが、予測信号を基準にして入力画像信
号の方を動かすためのMVを求めるので、入力が逆にな
る。本実施例は、第2の実施例同様に、局部復号画像は
従来例と同じになり、符号化装置と復号化装置の間の誤
差は起こらない。さらに、予測信号と入力信号の両方に
リサンプル処理が適用されることで、周波数特性のバラ
ンスがとれるといった利点もある。これは、動き補償の
リサンプル処理によって起こる周波数特性劣化に関し
て、従来例や実施例1では予測信号の方のみに起こり、
ミスマッチとなりやすかったものが、予測信号と入力信
号の両方に適用されることで、バランスがとれるためで
ある。
The minute MV detector 21 is basically the same as the case of FIG. 2, but since the MV for moving the input image signal is calculated with the predicted signal as a reference, the input is reversed. In this embodiment, as in the second embodiment, the locally decoded image is the same as in the conventional example, and no error occurs between the encoding device and the decoding device. Furthermore, there is an advantage that the frequency characteristics can be balanced by applying the resample processing to both the prediction signal and the input signal. With respect to the frequency characteristic deterioration caused by the re-sampling process of motion compensation, this occurs only in the prediction signal in the conventional example and the first embodiment.
This is because what was likely to be a mismatch is balanced by being applied to both the prediction signal and the input signal.

【0031】また、双方の信号の周波数特性の劣化によ
り、各信号で独立に存在する折り返し歪み成分が抑圧さ
れるので、本来の画像の動きでない誤差成分はより少な
くなり、本実施例の目的に適した処理となる。
Further, since the aliasing distortion component independently present in each signal is suppressed due to the deterioration of the frequency characteristics of both signals, the error component which is not the original motion of the image is reduced, and for the purpose of this embodiment. It becomes a suitable treatment.

【0032】<復号化装置>図1〜図3に示した動き補
償予測符号化装置に対応する復号化装置は、図4の従来
例と同じなり、新たな復号化装置が必要となるわけでは
ない。
<Decoding Device> The decoding device corresponding to the motion compensation predictive coding device shown in FIGS. 1 to 3 is the same as the conventional example shown in FIG. 4, and a new decoding device is not required. Absent.

【0033】[0033]

【発明の効果】本発明の符号化装置では、伝送精度(伝
送規格)より高い精度で動き補償を行うので、予測残差
成分の中で、本質的な画像の変化はより忠実に符号化さ
れ、精度限界による誤差は忠実に符号化されなくなる。
精度限界による誤差は次の画像のフレーム間予測に影響
を与えず、一方、本質的な画像の変化がより忠実に符号
化されることでフレーム間予測が改善され、総合的に予
測効率が向上する。予測効率が改善されることで、符号
化すべき予測残差が少なくなり、符号化効率が改善され
る。
In the encoding apparatus of the present invention, motion compensation is performed with a higher precision than the transmission precision (transmission standard), so essential changes in the image are more faithfully encoded in the prediction residual component. , The error due to the accuracy limit is not faithfully encoded.
Errors due to accuracy limits do not affect the inter-frame prediction of the next image, while essential frame changes are more faithfully coded to improve inter-frame prediction and improve overall prediction efficiency. To do. Since the prediction efficiency is improved, the prediction residual to be coded is reduced, and the coding efficiency is improved.

【0034】一方、各フレームにおいては、精度限界に
よる誤差の増加は空間的な位置のずれを招くことになる
が、伝送精度(伝送規格)の動き補償精度が1/2画素
なら視覚的にはあまり問題とならず、本質的な画像変化
の忠実度は向上しているので、主観的な画質も望ましい
ものになる。その結果、より少ない符号量で必要な再生
画質を得ることが可能になる。
On the other hand, in each frame, an increase in the error due to the accuracy limit causes a spatial displacement, but if the motion compensation accuracy of the transmission accuracy (transmission standard) is 1/2 pixel, it is visually Subjective image quality is also desirable because it is less of a problem and the fidelity of essential image changes is improved. As a result, it becomes possible to obtain the required reproduction image quality with a smaller code amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である符号化装置の構成
例を示す図である。
FIG. 1 is a diagram illustrating a configuration example of an encoding device that is a first embodiment of the present invention.

【図2】本発明の第2の実施例である符号化装置の構成
例を示す図である。
FIG. 2 is a diagram showing a configuration example of an encoding device which is a second embodiment of the present invention.

【図3】本発明の第3の実施例である符号化装置の構成
例を示す図である。
FIG. 3 is a diagram showing a configuration example of an encoding device which is a third embodiment of the present invention.

【図4】従来の符号化装置の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of a conventional encoding device.

【図5】従来の復号化装置の構成例を示す図である。FIG. 5 is a diagram showing a configuration example of a conventional decoding device.

【図6】精細動きベクトルとその丸め処理の様子を示す
図である。
FIG. 6 is a diagram showing a fine motion vector and a state of rounding processing thereof.

【図7】従来例と実施例のリサンプル処理の様子を示す
図である。
FIG. 7 is a diagram showing a state of resample processing in a conventional example and an example.

【符号の説明】[Explanation of symbols]

1…画像入力、2…予測減算器、3…DCT、4…量子
化器、5…可変長符号化器、6…多重化器、7…符号出
力、8…精細MV検出器、9…精細動補償器、10…画
像メモリ、11…加算器、12…逆DCT、13…逆量
子化器、14…MV丸め器、15…MV符号化器、21
…微小MV検出器、22…微小動補償器、23…MV検
出器、24…動き補償器、51…符号入力、52…多重
分離器、53…可変長復号器、54…画像出力、55…
MV復号器。
1 ... Image input, 2 ... Predictive subtractor, 3 ... DCT, 4 ... Quantizer, 5 ... Variable length encoder, 6 ... Multiplexer, 7 ... Code output, 8 ... Fine MV detector, 9 ... Fine Motion compensator, 10 ... Image memory, 11 ... Adder, 12 ... Inverse DCT, 13 ... Inverse quantizer, 14 ... MV rounder, 15 ... MV encoder, 21
... micro MV detector, 22 ... micro motion compensator, 23 ... MV detector, 24 ... motion compensator, 51 ... code input, 52 ... demultiplexer, 53 ... variable length decoder, 54 ... image output, 55 ...
MV decoder.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】動画像を動き補償画像間予測符号化する装
置において、 伝送精度よりも高い精度で、入力画像信号と予測に用い
る画像信号との間の動きベクトルを求める手段と、 前記動きベクトルに従って予測に用いる画像信号を動き
補償し、伝送精度よりも高い精度で予測信号を得る動き
補償手段と、 前記動きベクトルを伝送精度に丸め、伝送精度になった
動きベクトル値を符号化する手段と、 入力画像信号から前記予測信号を減算した残差を符号化
する予測符号化手段とからなることを特徴とする動き補
償予測符号化装置。
1. An apparatus for performing motion compensation inter-picture predictive coding of a moving image, means for obtaining a motion vector between an input image signal and an image signal used for prediction with a higher accuracy than transmission accuracy, and the motion vector. Motion compensating means for motion-compensating an image signal used for prediction in accordance with the above, and obtaining a prediction signal with higher accuracy than transmission accuracy; and means for rounding the motion vector to transmission accuracy and encoding a motion vector value with transmission accuracy. A motion compensation predictive coding apparatus, comprising: a predictive coding means for coding a residual obtained by subtracting the predictive signal from an input image signal.
【請求項2】動画像を動き補償画像間予測符号化する装
置において、 伝送精度で、入力画像信号と予測に用いる再生画像信号
との間の動きベクトルを求める手段と、 前記動きベクトルに従って予測に用いる画像信号を動き
補償し、伝送精度の予測信号を得る動き補償手段と、 入力画像信号と前記伝送精度の予測信号との間で、前記
動きベクトルより高い精度で画素間隔以下の微小動きベ
クトルを求める手段と、 前記微小動きベクトルに従って前記伝送精度の予測信号
をリサンプルにより動き補償し、微小動き補償予測信号
を得る微小動き補償手段と、 入力画像信号から前記微小動き補償予測信号を減算した
残差を符号化する予測符号化手段と、 前記伝送精度の予測信号を用いて、前記予測符号化手段
に対応する復号処理を行い再生画像信号を得る局部復号
手段とからなることを特徴とする動き補償予測符号化装
置。
2. An apparatus for motion-compensated inter-picture predictive coding of a moving picture, a means for obtaining a motion vector between an input image signal and a reproduced image signal used for prediction with transmission accuracy, and predicting according to the motion vector. Between the input image signal and the prediction signal of the transmission accuracy, a small motion vector with a precision higher than the motion vector and smaller than or equal to the pixel interval is provided between the motion compensation means for motion-compensating the image signal to be used and obtaining the prediction signal of the transmission accuracy. Means for obtaining, a motion compensation means for re-sampling the predicted signal of the transmission accuracy according to the minute motion vector to obtain a minute motion compensated predicted signal, and a residue obtained by subtracting the minute motion compensated predicted signal from an input image signal. A predictive coding unit for coding the difference and a predicted image signal of the transmission accuracy are used to perform a decoding process corresponding to the predictive coding unit to perform a reproduction image signal. Motion compensated predictive coding apparatus characterized by comprising a local decoding means for obtaining.
【請求項3】動画像を動き補償画像間予測符号化する装
置において、 入力画像信号と予測に用いる画像信号との間の動きベク
トルを求める手段と、 前記動きベクトルに従って予測に用いる画像信号を動き
補償し、予測信号を得る動き補償手段と、 入力画像信号と前記動き補償手段で得られた予測信号と
の間で、前記動きベクトルより高い精度で画素間隔以下
の微小動きベクトルを求める手段と、 前記微小動きベクトルに従って入力画像信号をリサンプ
ルにより動き補償し、微小動き補償信号を得る微小動き
補償手段と、 前記微小動き補償信号から前記予測信号を減算した残差
を符号化する予測符号化手段とからなることを特徴とす
る動き補償予測符号化装置。
3. An apparatus for performing motion compensation inter-picture predictive coding of a moving image, a means for obtaining a motion vector between an input image signal and an image signal used for prediction, and a motion of the image signal used for prediction according to the motion vector. Motion compensation means for compensating to obtain a prediction signal, and means for obtaining a minute motion vector having a pixel interval or less with a higher accuracy than the motion vector between the input image signal and the prediction signal obtained by the motion compensation means, A small motion compensating unit that obtains a small motion compensation signal by performing motion compensation on an input image signal according to the small motion vector, and a predictive encoding unit that encodes a residual obtained by subtracting the prediction signal from the small motion compensation signal. A motion-compensated predictive coding device comprising:
JP20595494A 1994-08-08 1994-08-08 Motion compensated predictive coding device Expired - Fee Related JP2897649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20595494A JP2897649B2 (en) 1994-08-08 1994-08-08 Motion compensated predictive coding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20595494A JP2897649B2 (en) 1994-08-08 1994-08-08 Motion compensated predictive coding device

Publications (2)

Publication Number Publication Date
JPH0851630A true JPH0851630A (en) 1996-02-20
JP2897649B2 JP2897649B2 (en) 1999-05-31

Family

ID=16515458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20595494A Expired - Fee Related JP2897649B2 (en) 1994-08-08 1994-08-08 Motion compensated predictive coding device

Country Status (1)

Country Link
JP (1) JP2897649B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1725046A3 (en) * 1997-03-17 2009-05-13 Mitsubishi Denki Kabushiki Kaisha Video encoding and decoding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645515B2 (en) * 2006-04-20 2011-03-09 日本ビクター株式会社 Motion compensated image coding method and motion compensated image coding apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1725046A3 (en) * 1997-03-17 2009-05-13 Mitsubishi Denki Kabushiki Kaisha Video encoding and decoding
EP1725047A3 (en) * 1997-03-17 2009-05-13 Mitsubishi Denki Kabushiki Kaisha Video encoding and decoding
EP1725045A3 (en) * 1997-03-17 2009-05-13 Mitsubishi Denki Kabushiki Kaisha Video encoding and decoding
EP2252067A2 (en) * 1997-03-17 2010-11-17 Mitsubishi Denki Kabushiki Kaisha Video decoder and video decoding method
EP2252066A3 (en) * 1997-03-17 2011-02-02 Mitsubishi Denki Kabushiki Kaisha Video decoder and decoding method
EP2252067A3 (en) * 1997-03-17 2011-02-02 Mitsubishi Denki Kabushiki Kaisha Video decoder and video decoding method
EP2252065A3 (en) * 1997-03-17 2011-02-02 Mitsubishi Denki Kabushiki Kaisha Video decoding method
EP2252068A3 (en) * 1997-03-17 2011-02-02 Mitsubishi Denki Kabushiki Kaisha Video decoding method
US8098734B2 (en) 1997-03-17 2012-01-17 Mitsubishi Denki Kabushiki Kaisha Video encoder, video decoder, video encoding method, video decoding method, and video encoding and decoding system
US8170105B2 (en) 1997-03-17 2012-05-01 Mitsubishi Denki Kabushiki Kaisha Video decoder and video decoding method
US8194742B2 (en) 1997-03-17 2012-06-05 Mitsubishi Denki Kabushiki Kaisha Video decoder

Also Published As

Publication number Publication date
JP2897649B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JP2897763B2 (en) Motion compensation coding device, decoding device, coding method and decoding method
JP3856262B2 (en) Motion compensation encoding apparatus, motion compensation encoding method, and motion compensation code recording medium
KR100311294B1 (en) Image signal encoding method and image signal encoding apparatus and image signal decoding method and image signal decoding apparatus
US6650708B1 (en) Video signal encoding apparatus
JP3092610B2 (en) Moving picture decoding method, computer-readable recording medium on which the method is recorded, and moving picture decoding apparatus
US7379501B2 (en) Differential coding of interpolation filters
JP4863333B2 (en) Method and apparatus for creating high resolution still images
US20060291563A1 (en) Interpolation apparatus and method for motion vector compensation
JPH11275592A (en) Moving image code stream converter and its method
JPH04177992A (en) Picture coder having hierarchical structure
KR20040054746A (en) Method and apparatus for spatial scalable compression
JPH0537915A (en) Method and device for coding image signal
KR20040106364A (en) System and method for providing single-layer video encoded bitstreams suitable for reduced-complexity decoding
JP3348612B2 (en) Inter-block prediction coding device, inter-block prediction decoding device, inter-block prediction coding method, inter-block prediction decoding method, and inter-block prediction coding / decoding device
US6219103B1 (en) Motion-compensated predictive coding with video format conversion
JPH11168731A (en) Motion vector detection method and system for executing the method
US7577201B2 (en) Apparatus and method for converting resolution of compressed video
JPH09182085A (en) Image encoding device, image decoding device, image encoding method, image decoding method, image transmitting method and recording medium
JP3532709B2 (en) Moving picture coding method and apparatus
JP2897649B2 (en) Motion compensated predictive coding device
JP3159327B2 (en) Video data decoding device
US6490321B1 (en) Apparatus and method of encoding/decoding moving picture using second encoder/decoder to transform predictive error signal for each field
JP3804237B2 (en) Motion compensated video coding apparatus and method
JPH0622291A (en) Decoding method and device capable of resolution conversion
JPH10276436A (en) Motion compensation encoding and decoding device, and motion compensation encoding and decoding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees