JPH0851082A - Suscepter of semiconductor manufacturing device - Google Patents

Suscepter of semiconductor manufacturing device

Info

Publication number
JPH0851082A
JPH0851082A JP20603694A JP20603694A JPH0851082A JP H0851082 A JPH0851082 A JP H0851082A JP 20603694 A JP20603694 A JP 20603694A JP 20603694 A JP20603694 A JP 20603694A JP H0851082 A JPH0851082 A JP H0851082A
Authority
JP
Japan
Prior art keywords
substrate
exhaust
plasma
susceptor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20603694A
Other languages
Japanese (ja)
Inventor
Atsuhiko Suda
敦彦 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP20603694A priority Critical patent/JPH0851082A/en
Publication of JPH0851082A publication Critical patent/JPH0851082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a CVD device to be enhanced in stability of plasma discharge and uniformity of electrical field distribution at the time when a film is formed or gas cleaning is carried out and to be improved in film quality and gas cleaning uniformity. CONSTITUTION:In a CVD device of double-bath structure, an exhaust groove 18 which enables an inner tank to communicate with an outer tank is cut in a suscepter where a substrate is placed, and an exhaust vent 17 communicating with the exhaust groove 18 is provided to the corners of the substrate respectively to make reactive gas that flows over the substrate uniform in flow when the substrate is rectangular in shape, and thus plasma is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマCVD装置、特
に2重槽構造のプラズマCVD装置に於いて基板を載置
するサセプタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus, and more particularly to a susceptor for mounting a substrate in a plasma CVD apparatus having a double tank structure.

【0002】[0002]

【従来の技術】半導体製造工程の1つに基板上に所定の
成膜を行うプラズマCVD(Chemical Vap
or Deposition)成膜工程がある。該工程
は対峙する一対の電極が設けられた気密な処理室に基板
を装填し、該処理室内に反応ガスを供給しつつ前記電極
に高周波電力を印加してプラズマを発生させ、気相のガ
ス分子をプラズマにより分離させ、基板表面に薄膜を生
成するものである。
2. Description of the Related Art Plasma CVD (Chemical Vap) for forming a predetermined film on a substrate in one of semiconductor manufacturing processes.
or Deposition) film forming step. In this step, a substrate is loaded in an airtight processing chamber provided with a pair of electrodes facing each other, high frequency power is applied to the electrodes while supplying a reaction gas into the processing chamber to generate plasma, and gas in a gas phase is generated. The molecules are separated by plasma to form a thin film on the substrate surface.

【0003】又近年、プラズマによる成膜と同様にプラ
ズマによる処理室内を清掃するガスクリーニング方法が
注目を集めている。これは、成膜と同様に、NF3 等の
クリーニングガスを処理室内に供給しながら、電極に高
周波電力を印加してプラズマを発生させ、気相のクリー
ニングガス分子をプラズマにより分離して、電極表面や
処理室内壁に付着・堆積した膜をエッチングして除去す
るものである。
Further, in recent years, a gas cleaning method for cleaning the inside of a processing chamber by plasma has attracted attention as well as film formation by plasma. Similar to the film formation, while supplying a cleaning gas such as NF 3 into the processing chamber, high-frequency power is applied to the electrodes to generate plasma, gas phase cleaning gas molecules are separated by the plasma, and the electrodes are separated. The film adhered / deposited on the surface or the inner wall of the processing chamber is removed by etching.

【0004】上記したガスクリーニング方法は、処理室
を降温し、大気開放して分解し、物理的な清掃を行う従
来からの清掃作業に比較して、処理室の温度降下や大気
開放或は真空排気や温度上昇といった付随工程を省略す
ることができる為、稼働率向上に非常に有効である。
The above gas cleaning method lowers the temperature of the processing chamber, releases it to the atmosphere, or vacuums it, as compared with the conventional cleaning work in which the temperature of the processing chamber is lowered, the atmosphere is opened to the atmosphere for decomposition, and physical cleaning is performed. Since it is possible to omit ancillary steps such as exhaust and temperature rise, it is very effective in improving the operating rate.

【0005】プラズマCVD装置に於いて、これら成膜
とガスクリーニングを効率よく行う為の処理室構造とし
て、処理室を内槽と外槽に区分する2槽構造が挙げられ
る。即ち、成膜を内槽で行うことにより、プラズマ密度
を上げて成膜の高効率化を図りながら、成膜に伴う処理
室内への反応副生成物の付着を内槽で止めることができ
る。更にガスクリーニングに於いては、成膜同様にクリ
ーニングの高効率化が図れるばかりでなく、成膜に影響
するクリーニング残渣を早期に排除できる。
In the plasma CVD apparatus, a two-chamber structure that divides the processing chamber into an inner tank and an outer tank is mentioned as a processing chamber structure for efficiently performing the film formation and the gas cleaning. That is, by performing the film formation in the inner tank, the deposition of reaction by-products in the processing chamber due to the film formation can be stopped in the inner tank while increasing the plasma density to improve the efficiency of the film formation. Further, in the gas cleaning, not only the efficiency of cleaning can be improved similarly to the film formation, but also the cleaning residue that affects the film formation can be eliminated at an early stage.

【0006】次に図5に於いて、2重槽構造のプラズマ
CVD装置の概略を説明する。
Next, referring to FIG. 5, an outline of a plasma CVD apparatus having a double tank structure will be described.

【0007】処理室1の天井面には内槽室壁2が設けら
れ、該内槽室壁2の内部に絶縁体3を介して上部電極カ
ソード4が設けられている。該カソード4は内部が中空
となっており、該中空部7にガス導入管5が連通してい
る。又、前記カソード4の下面には前記ガス導入管5か
ら中空部7に導入された反応ガスを分散供給する為の多
数の細孔6がシャワー状に穿設されている。又、前記ガ
ス導入管5には高周波電源8が接続されている。
An inner tank chamber wall 2 is provided on the ceiling surface of the processing chamber 1, and an upper electrode cathode 4 is provided inside the inner tank chamber wall 2 via an insulator 3. The inside of the cathode 4 is hollow, and the gas introducing pipe 5 communicates with the hollow portion 7. Further, a large number of pores 6 for showering the reaction gas introduced into the hollow portion 7 from the gas introduction pipe 5 are formed on the lower surface of the cathode 4 in a shower shape. A high frequency power source 8 is connected to the gas introduction pipe 5.

【0008】前記内槽室壁2の下方に前記カソード4と
対峙して下部電極アノード9が昇降可能に設けられ、該
アノード9上にサセプタ10が設けられ、該サセプタ1
0上に被処理基板11が載置される。前記サセプタ10
は前記内槽室壁2の下端開口部を閉塞し、処理室1内に
内槽室12と外槽室15を画成する。前記サセプタ10
の周辺には前記内槽室12と外槽室15とを連通する排
気孔13が所要数穿設されている。尚、図では処理室1
に設けられる基板搬入搬出口を省略しており、又図中1
4は排出口である。
A lower electrode anode 9 is provided below the inner tank chamber wall 2 so as to face the cathode 4 and is movable up and down, and a susceptor 10 is provided on the anode 9 and the susceptor 1 is provided.
The substrate 11 to be processed is placed on the substrate 0. The susceptor 10
Closes the lower end opening of the inner tank chamber wall 2 to define an inner tank chamber 12 and an outer tank chamber 15 in the processing chamber 1. The susceptor 10
A required number of exhaust holes 13 that communicate the inner tank chamber 12 and the outer tank chamber 15 are formed around the periphery of the. In the figure, the processing chamber 1
The substrate loading and unloading port provided at the
4 is an outlet.

【0009】アノード9を下げた状態で被処理基板11
を前記サセプタ10に設置し、アノード9を上昇させて
前記内槽室12を画成し、前記ガス導入管5から前記中
空部7に反応ガスを導入し、細孔6より分散供給しつつ
前記カソード4に高周波電力を印加して内槽室12にプ
ラズマを発生させる。発生するプラズマは内槽室12と
いう狭小な空間に限定される為、高密度となる。高密度
プラズマにより高効率の膜生成が行える。反応後のガス
は前記排気孔13を経て前記外槽室15に流出し、更に
前記排気口14を経て排出される。
The substrate 11 to be processed with the anode 9 lowered.
Is installed in the susceptor 10, the anode 9 is raised to define the inner tank chamber 12, the reaction gas is introduced from the gas introduction pipe 5 into the hollow portion 7, and is dispersed and supplied from the pores 6 while High frequency power is applied to the cathode 4 to generate plasma in the inner tank chamber 12. The generated plasma has a high density because it is limited to a narrow space such as the inner tank chamber 12. High-density plasma enables highly efficient film formation. The gas after the reaction flows into the outer tank chamber 15 through the exhaust hole 13 and is further discharged through the exhaust port 14.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記2重槽
構造のCVD装置に於いて成膜時のプラズマの安定性、
ガスクリーニングの均一性は、内槽室12内を流れる反
応ガスの流量分布の均一性、内外槽間に於ける排気構造
等が大きく影響する。
By the way, in the above-mentioned double tank structure CVD apparatus, stability of plasma during film formation,
The uniformity of the gas cleaning is greatly affected by the uniformity of the flow rate distribution of the reaction gas flowing in the inner tank chamber 12, the exhaust structure between the inner and outer tanks, and the like.

【0011】特に、被処理基板が液晶表示器の表示板等
の様に矩形形状であると周辺部、特に4隅部でのプラズ
マ密度の不均一を生じ、又ガスの均一流が得られ難く、
プラズマの安定性、ガス流量の被処理基板全面での均一
性を得る排気構造の開発は重要な課題となっていた。
In particular, when the substrate to be processed has a rectangular shape such as a display plate of a liquid crystal display, the plasma density becomes nonuniform in the peripheral portion, particularly at the four corners, and it is difficult to obtain a uniform gas flow. ,
The development of an exhaust structure that achieves plasma stability and gas flow rate uniformity over the entire substrate has been an important issue.

【0012】本発明は斯かる実情に鑑み、成膜時に於い
ても、ガスクリーニング時に於いてもプラズマ放電の安
定性、電界分布の均一性を図り、成膜品質、ガスクリー
ニングの均一性を向上させようとするものである。
In view of the above situation, the present invention improves plasma deposition stability and electric field distribution uniformity both during film formation and during gas cleaning to improve film formation quality and gas cleaning uniformity. It is the one to try.

【0013】[0013]

【課題を解決するための手段】本発明は、2重槽構造の
プラズマCVD装置に於いて、基板を載置するサセプタ
に内槽室と外槽室間を連通する排気溝を形成し、又基板
が矩形形状である場合に排気溝に連通する排気口を基板
の稜角部近傍に設け、又プラズマ中の荷電粒子が中性化
する以上の長さを有する排気溝である、更に排気孔が基
板の対角線に対して幅30mm以内に存在する半導体製造
装置のサセプタに係るものである。
According to the present invention, in a plasma CVD apparatus having a double tank structure, an exhaust groove for communicating between an inner tank chamber and an outer tank chamber is formed in a susceptor on which a substrate is placed, and When the substrate has a rectangular shape, an exhaust port communicating with the exhaust groove is provided in the vicinity of the ridge of the substrate, and the exhaust groove has a length longer than that of neutralizing charged particles in plasma. The present invention relates to a susceptor of a semiconductor manufacturing apparatus existing within a width of 30 mm with respect to a diagonal line of a substrate.

【0014】[0014]

【作用】稜角部から均等にガス排気することができ、基
板上を流れる反応ガスの流れが均一化され、プラズマが
安定し、膜厚分布のない、均質な成膜が行われ、又均質
なガスクリーニングを行える。
The gas can be exhausted evenly from the ridges, the flow of the reaction gas flowing on the substrate is made uniform, the plasma is stable, and the film formation is uniform without film thickness distribution. Can perform gas cleaning.

【0015】[0015]

【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0016】内外槽間の排気は、前記サセプタ10を介
して行われる。本発明は該サセプタ10、特に角型の被
処理基板11を対象としたをサセプタを改良することで
プラズマ放電の安定性、電界分布の均一性を改善するも
のである。
Exhaust between the inner and outer tanks is performed through the susceptor 10. The present invention aims to improve the stability of plasma discharge and the uniformity of electric field distribution by improving the susceptor for the susceptor 10, particularly the rectangular substrate 11 to be processed.

【0017】図1、図2に於いて第1の実施例を説明す
る。
A first embodiment will be described with reference to FIGS.

【0018】尚、本実施例の実施の対象となる2重槽構
造のCVD装置自体の構成は図5で説明したものと同様
である。
The structure of the CVD apparatus itself having a double tank structure, which is the object of the present embodiment, is the same as that described with reference to FIG.

【0019】矩形の平板20の上面周辺を低く形成し、
中央部に被処理基板載置用の台座16を形成し、台座1
6の下面周辺部に排気流路を形成する。該台座16の排
気流路を除く中央部分が被処理基板11の載置スペース
となる。
The rectangular upper surface of the flat plate 20 is formed low,
A pedestal 16 for mounting a substrate to be processed is formed in the center, and the pedestal 1
An exhaust passage is formed in the peripheral portion of the lower surface of 6. The central portion of the pedestal 16 excluding the exhaust passage serves as a mounting space for the substrate 11 to be processed.

【0020】前記台座16の4隅、対角線上、若しくは
対角線に対して幅±30mmの範囲にそれぞれ排気口17
を穿設し、前記平板20の裏面に前記台座16の周辺に
相当し、一端が前記排気口17に連通し、他端が行止ま
りとなっている排気溝18を、各排気口17に関して刻
設する。又、各排気溝18の他端は平板20が載置され
るサセプタ受台(図示せず)に形成された排気導孔に連
通し、該排気導孔を介して内槽室12の外部に連通して
いる。
The exhaust ports 17 are provided at the four corners of the pedestal 16, on the diagonal line, or within a width of ± 30 mm with respect to the diagonal line.
An exhaust groove 18 corresponding to the periphery of the pedestal 16 is formed on the back surface of the flat plate 20, one end of which communicates with the exhaust port 17 and the other end of which is a dead end for each exhaust port 17. Set up. Further, the other end of each exhaust groove 18 communicates with an exhaust guide hole formed in a susceptor pedestal (not shown) on which the flat plate 20 is placed, and is connected to the outside of the inner tank chamber 12 through the exhaust guide hole. It is in communication.

【0021】前記排気溝18の長さはコンダンタンスを
等しくする為全て同一とし、更に前記排気溝18の長さ
は内槽室12内のプラズマが排気溝18に流入した場合
に、プラズマ中の荷電粒子が中性化する充分な長さ、好
ましくは10mm以上とし、プラズマの外槽室15内への
漏れを防止している。
The lengths of the exhaust grooves 18 are all the same for equalizing the conductance, and further, the lengths of the exhaust grooves 18 are the same as the charges in the plasma when the plasma in the inner chamber 12 flows into the exhaust grooves 18. The length is set to a sufficient length for neutralizing the particles, preferably 10 mm or more, to prevent plasma from leaking into the outer tank chamber 15.

【0022】ガス導入管5より反応ガスを導入し、カソ
ード4、アノード9間に高周波電力を供給して、内槽室
12内にプラズマを発生させる。内槽室12内に導入さ
れた反応ガスは前記排気口17より排気溝18に流入
し、該排気溝18を流通して外槽室15内に排気され
る。
A reaction gas is introduced through the gas introduction pipe 5, and high-frequency power is supplied between the cathode 4 and the anode 9 to generate plasma in the inner tank chamber 12. The reaction gas introduced into the inner tank chamber 12 flows into the exhaust groove 18 through the exhaust port 17, flows through the exhaust groove 18 and is exhausted into the outer tank chamber 15.

【0023】上記した様に、前記排気口17が被処理基
板11の対角線上にあるので、反応ガスが被処理基板1
1の4箇所の稜角部に向かって流れ、而も前記排気溝1
8は全てコンダクタンスが等しくされているので、反応
ガスの流れは被処理基板11全面に渡って均等となり、
従来成膜速度の低下が見られた稜角部での成膜速度が被
処理基板11中央部と同様となる。
As described above, since the exhaust port 17 is located on the diagonal line of the substrate 11 to be processed, the reaction gas is the substrate 1 to be processed.
1 toward the four ridges, and the exhaust groove 1
Since all 8 have the same conductance, the flow of the reaction gas becomes uniform over the entire surface of the substrate 11 to be processed,
The film forming speed at the ridge portion where the film forming speed is conventionally decreased is similar to that at the central part of the substrate 11 to be processed.

【0024】而して、矩形基板での成膜の膜厚、膜質の
均一性が大幅に向上する。
Thus, the uniformity of film thickness and film quality on the rectangular substrate is greatly improved.

【0025】プロセス条件によっては、大ガス流量によ
る成膜、ガスクリーニングを行う場合もある。この場合
は、排気コンダクタンスが拡大する様排気口の数、配置
を変更する。図3、図4は本発明の他の実施例を示す。
Depending on the process conditions, film formation and gas cleaning may be performed at a large gas flow rate. In this case, the number and arrangement of exhaust ports are changed so that the exhaust conductance increases. 3 and 4 show another embodiment of the present invention.

【0026】前記台座16の4隅に対角線を挾み2個宛
て、計8個の排気口17を穿設し、各排気口17に連通
する排気溝19を刻設する。該各排気溝19は図示しな
い排気導孔に連通し、該排気導孔を介して内槽室12の
外部に連通している。
A total of eight exhaust ports 17 are provided at two corners of the pedestal 16 with two diagonal lines in between, and exhaust grooves 19 communicating with each exhaust port 17 are formed. Each of the exhaust grooves 19 communicates with an exhaust guide hole (not shown) and communicates with the outside of the inner tank chamber 12 through the exhaust guide hole.

【0027】前記排気溝19の長さはコンダンタンスを
等しくする為全て同一とし、更に前記排気溝18の長さ
は内槽室12内のプラズマが排気溝18に流入した場合
に、プラズマ中の荷電粒子が中性化するに充分な長さ、
好ましくは10mm以上であることは言う迄もない。
The lengths of the exhaust grooves 19 are all the same for equalizing the conductance, and further, the length of the exhaust grooves 18 is the same as the charge in the plasma when the plasma in the inner tank chamber 12 flows into the exhaust grooves 18. Long enough to neutralize the particles,
It goes without saying that the thickness is preferably 10 mm or more.

【0028】尚、前記排気口17の数、大きさ、排気溝
の長さ等は、内槽室12に導入する反応ガスの流量とカ
ソード4に供給される高周波電力により前記排気口17
にプラズマが集中し、異常放電が起きない様に設定す
る。
The number and size of the exhaust ports 17, the length of the exhaust groove, etc. are determined by the flow rate of the reaction gas introduced into the inner tank chamber 12 and the high frequency power supplied to the cathode 4.
Set so that plasma is not concentrated and abnormal discharge does not occur.

【0029】[0029]

【発明の効果】以上述べた如く本発明によれば、矩形形
状の被処理基板の4稜角部から排気する様にしたので、
反応ガスの流れが被処理基板全面で均一となり、成膜時
のプラズマ放電の安定性、電界分布の均一性及び膜厚、
膜質の均一性が大幅に向上すると共にガスクリーニング
の均一性の向上を図ることができる。
As described above, according to the present invention, the exhaust gas is exhausted from the four ridges of the rectangular substrate to be processed.
The flow of the reaction gas becomes uniform over the entire surface of the substrate to be processed, stability of plasma discharge during film formation, uniformity of electric field distribution and film thickness,
The uniformity of the film quality can be significantly improved, and the uniformity of gas cleaning can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す平面図である。FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】図1のA−A矢視図である。FIG. 2 is a view as viewed in the direction of arrows AA in FIG. 1;

【図3】本発明の他の実施例を示す平面図である。FIG. 3 is a plan view showing another embodiment of the present invention.

【図4】図3のB−B矢視図である。FIG. 4 is a view taken along the line BB of FIG.

【図5】2重槽構造のCVD装置の立断面図である。FIG. 5 is a vertical cross-sectional view of a CVD apparatus having a double tank structure.

【符号の説明】[Explanation of symbols]

4 カソード 9 アノード 10 サセプタ 11 被処理基板 12 内槽室 15 外槽室 17 排気口 18 排気溝 19 排気溝 4 Cathode 9 Anode 10 Susceptor 11 Substrate 12 Inner Tank Chamber 15 Outer Tank Chamber 17 Exhaust Port 18 Exhaust Groove 19 Exhaust Groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2重槽構造のプラズマCVD装置に於い
て、基板を載置するサセプタに内槽室と外槽室間を連通
する排気溝を形成したことを特徴とする半導体製造装置
のサセプタ。
1. A susceptor for a semiconductor manufacturing apparatus, characterized in that in a plasma CVD apparatus having a double tank structure, an exhaust groove is formed in a susceptor on which a substrate is placed and which communicates between an inner tank chamber and an outer tank chamber. .
【請求項2】 基板が矩形形状である場合に排気溝に連
通する排気口を基板の稜角部近傍に設けた請求項1の半
導体製造装置のサセプタ。
2. The susceptor for a semiconductor manufacturing apparatus according to claim 1, wherein when the substrate has a rectangular shape, an exhaust port communicating with the exhaust groove is provided near a ridge of the substrate.
【請求項3】 排気溝が、プラズマ中の荷電粒子が中性
化する以上の長さを有する排気溝である請求項1の半導
体製造装置のサセプタ。
3. The susceptor for a semiconductor manufacturing apparatus according to claim 1, wherein the exhaust groove is an exhaust groove having a length that is equal to or longer than the neutralization of charged particles in plasma.
【請求項4】 排気口が基板の対角線に対して幅30mm
以内に存在することを特徴とする半導体製造装置のサセ
プタ。
4. The exhaust port has a width of 30 mm with respect to the diagonal line of the substrate.
A susceptor for a semiconductor manufacturing apparatus characterized by being present within.
JP20603694A 1994-08-08 1994-08-08 Suscepter of semiconductor manufacturing device Pending JPH0851082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20603694A JPH0851082A (en) 1994-08-08 1994-08-08 Suscepter of semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20603694A JPH0851082A (en) 1994-08-08 1994-08-08 Suscepter of semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JPH0851082A true JPH0851082A (en) 1996-02-20

Family

ID=16516841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20603694A Pending JPH0851082A (en) 1994-08-08 1994-08-08 Suscepter of semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JPH0851082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234793A (en) * 2010-04-21 2011-11-09 揖斐电株式会社 Carbon component and method for manufacturing the same
JP2014170742A (en) * 2013-02-28 2014-09-18 Novellus Systems Incorporated Ceramic showerhead with embedded rf electrode for capacitively coupled plasma reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234793A (en) * 2010-04-21 2011-11-09 揖斐电株式会社 Carbon component and method for manufacturing the same
US9156743B2 (en) 2010-04-21 2015-10-13 Ibiden Co., Ltd. Carbon component and method for manufacturing the same
JP2014170742A (en) * 2013-02-28 2014-09-18 Novellus Systems Incorporated Ceramic showerhead with embedded rf electrode for capacitively coupled plasma reactor

Similar Documents

Publication Publication Date Title
US7392759B2 (en) Remote plasma apparatus for processing substrate with two types of gases
US6878234B2 (en) Plasma processing device and exhaust ring
US6103304A (en) Chemical vapor deposition apparatus
US5556474A (en) Plasma processing apparatus
US8097120B2 (en) Process tuning gas injection from the substrate edge
JP3002448B1 (en) Substrate processing equipment
JP5506379B2 (en) Method and apparatus for improving uniformity of large area substrates
KR20170047155A (en) Semiconductor Manufacturing System Including Deposition Apparatus
US6344420B1 (en) Plasma processing method and plasma processing apparatus
US20080283086A1 (en) Substrate processing apparatus and cleaning method therefor
KR20000062949A (en) Plasma CVD Film-Forming Device
JPH09330884A (en) Epitaxial growth device
JP2004327767A (en) Plasma processing apparatus
JP2001189308A (en) Device and method for plasma treatment
US20020124866A1 (en) Plasma film-forming apparatus and cleaning method for the same
US20180258531A1 (en) Diffuser design for flowable cvd
JPH0851082A (en) Suscepter of semiconductor manufacturing device
TW202343534A (en) Semiconductor processing chamber adapter
KR20200021404A (en) Coating material for processing chambers
JP2848755B2 (en) Plasma CVD equipment
JPH02184022A (en) Cvd electrode
JPH1022279A (en) Inductive coupled plasma cvd device
JPH02200784A (en) Cvd electrode
JPH09223672A (en) Method and device for plasma treatment
JP3282326B2 (en) Plasma processing equipment