JPH0851074A - Manufacture of polycrystalline semiconductor film - Google Patents

Manufacture of polycrystalline semiconductor film

Info

Publication number
JPH0851074A
JPH0851074A JP18566194A JP18566194A JPH0851074A JP H0851074 A JPH0851074 A JP H0851074A JP 18566194 A JP18566194 A JP 18566194A JP 18566194 A JP18566194 A JP 18566194A JP H0851074 A JPH0851074 A JP H0851074A
Authority
JP
Japan
Prior art keywords
semiconductor film
crystallization
energy
intensity
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18566194A
Other languages
Japanese (ja)
Inventor
Takashi Kuwabara
隆 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18566194A priority Critical patent/JPH0851074A/en
Publication of JPH0851074A publication Critical patent/JPH0851074A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrain a region which is not enough in crystal uniformity from increasing in a polycrystalline semiconductor film by a method wherein the semiconductor film is irradiated with a sheet-like pulsed laser beam which has two different energy intensity distributions, one is high enough in intensity for crystallization at its center along a major axis and the other is not enough in intensity for crystallization along a minor axis. CONSTITUTION:A sheet-like beam which has two different energy intensity distributions, one is high enough in intensity for crystallization through all area or at its center along a major axis and the other is like a trapezoid along its minor axis. That is, the energy distribution along the minor axis is lower than a certain energy distribution required for crystallization and another energy level required for crystallizing a preceding region in a beam scanning direction and increases gradually in intensity. By this setup, a region which is not enough in crystal uniformity can be restrained from increasing in a polycrystalline semiconductor film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多結晶半導体膜の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polycrystalline semiconductor film.

【0002】[0002]

【従来の技術】近年、高画質・高精細の液晶表示装置を
実現すべく、その画素或いは周辺回路の駆動デバイスで
ある薄膜トランジスタの種々の高性能化技術が開発され
ている。例えば、デバイス特性を左右する活性層材料の
高品質化技術として、非晶質シリコン膜を出発材料と
し、エキシマレーザアニール法によって薄膜多結晶シリ
コン膜を形成する技術が開発されている。
2. Description of the Related Art In recent years, various techniques for improving the performance of thin film transistors, which are driving devices for pixels or peripheral circuits, have been developed in order to realize high-quality and high-definition liquid crystal display devices. For example, as a technique for improving the quality of an active layer material that influences device characteristics, a technique for forming a thin film polycrystalline silicon film by using an excimer laser annealing method with an amorphous silicon film as a starting material has been developed.

【0003】従来のエキシマレーザアニール法では、ホ
モジナイザーなどの光学系を用い、レーザビームのエネ
ルギープロファイルを矩形状に加工する。そして、図6
に示すように、大面積基板10に対してレーザアニール
を行う場合には、レーザビーム11を走査し、この際、
図7(a)にも示すように、レーザビーム11のスポッ
ト形状を正方形又は長方形に加工し、半導体薄膜の結晶
の均一化を図るために、ビーム走査方向に重複部12…
を形成しつつビームを走査するとともに、次のビーム走
査においては、同図(b)に示すように、既結晶化領域
に対しても重複部13…を形成しつつ上記と同様にビー
ム走査方向に重複部12…を形成するようにしている。
In the conventional excimer laser annealing method, an energy profile of a laser beam is processed into a rectangular shape by using an optical system such as a homogenizer. And FIG.
As shown in, when laser annealing is performed on the large area substrate 10, the laser beam 11 is scanned, and at this time,
As shown in FIG. 7A, the spot shape of the laser beam 11 is processed into a square or a rectangle, and in order to make the crystal of the semiconductor thin film uniform, the overlapping portion 12 in the beam scanning direction ...
While the beam is scanned while forming the beam, in the next beam scanning, as shown in FIG. 7B, the overlapping portion 13 ... The overlapping portion 12 ... Is formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記ビ
ーム走査の重複部では結晶の均一化は完全でなく、この
ビーム走査の重複部が多くなればそれだけ結晶均一性が
不十分な領域が増えることになり、薄膜トランジスタ等
の高性能化が図れない。また、ビーム走査を何度も繰り
返して行うため、結晶化プロセスに時間がかかるという
欠点がある。更に、レーザビームのプロファイルが矩形
状であることによっても結晶品質の向上が図れないとい
う欠点もある。
However, the uniformity of the crystal is not perfect in the overlapping portion of the beam scanning, and the more the overlapping portion of the beam scanning, the more the region where the crystal uniformity is insufficient increases. Therefore, high performance of thin film transistors and the like cannot be achieved. Further, since beam scanning is repeated many times, there is a drawback that the crystallization process takes time. Further, there is a drawback that the crystal quality cannot be improved even if the profile of the laser beam is rectangular.

【0005】本発明は、上記の事情に鑑み、結晶品質の
向上と結晶化プロセスの時間短縮化を図ることができる
多結晶半導体膜の製造方法を提供することを目的とす
る。
In view of the above circumstances, it is an object of the present invention to provide a method for producing a polycrystalline semiconductor film, which can improve the crystal quality and shorten the crystallization process time.

【0006】[0006]

【課題を解決するための手段】本発明の多結晶半導体膜
の製造方法は、上記の課題を解決するために、非晶質半
導体膜にパルスレーザビームを照射して非晶質半導体膜
を溶融・固化させることにより、多結晶半導体膜を製造
する方法において、長軸方向には結晶化に必要な一定の
エネルギー強度分布を少なくとも中央部に持ち、短軸方
向には結晶化に必要な一定のエネルギー強度分布部分及
びビーム走査方向に対して先行する領域に前記結晶化に
必要なエネルギーよりも小さいエネルギー強度分布部分
を持つシート状のパルスレーザビームを非晶質半導体膜
に照射し、少なくとも短軸方向に結晶化する領域が重複
し得る送りピッチで走査することを特徴とする。
In order to solve the above-mentioned problems, a method for manufacturing a polycrystalline semiconductor film according to the present invention is directed to irradiating a pulsed laser beam on an amorphous semiconductor film to melt the amorphous semiconductor film. In the method of manufacturing a polycrystalline semiconductor film by solidifying, a constant energy intensity distribution required for crystallization is provided at least in the central portion in the major axis direction, and a constant energy intensity distribution required for crystallization in the minor axis direction. Irradiating the amorphous semiconductor film with a sheet-shaped pulsed laser beam having an energy intensity distribution part and a region preceding the beam scanning direction with an energy intensity distribution part smaller than the energy required for the crystallization, and at least a short axis It is characterized in that scanning is performed at a feed pitch such that regions crystallized in the directions may overlap.

【0007】[0007]

【作用】上記の構成によれば、シート状ビームを用いる
ので、スポット形状が正方形又は長方形に加工されたレ
ーザビームを用いる場合に比べ、ビーム走査の重複部を
格段に少なくすることができ、結晶均一性が不十分な領
域の増加を抑えて結晶品質を向上させることができる。
また、パルスレーザビームがシート状であることによ
り、走査回数を少なくすることができ、結晶化プロセス
の時間短縮を図ることができる。更に、短軸方向には結
晶化に必要な一定のエネルギー強度分布部分及びビーム
走査方向に対して先行する領域に前記結晶化に必要なエ
ネルギーよりも小さいエネルギー強度分布部分を持つの
で、非晶質半導体膜と多結晶化した半導体膜との間で急
激に性質が変化する部分が発生するのを回避し、多結晶
半導体膜の結晶性の均一化を高めて結晶品質をより向上
させることができる。或いは、上記結晶化エネルギー強
度よりも低いエネルギー強度によって非晶質半導体膜か
らの脱ガス処理が行われることになり、膜剥離等を回避
して結晶品質のより一層の向上を図ることができる。
According to the above construction, since the sheet-shaped beam is used, the overlapping portion of the beam scanning can be significantly reduced as compared with the case where the laser beam whose spot shape is square or rectangular is used. The crystal quality can be improved by suppressing an increase in the region where the uniformity is insufficient.
Further, since the pulsed laser beam has a sheet shape, the number of times of scanning can be reduced, and the time for the crystallization process can be shortened. In addition, since there is a constant energy intensity distribution portion required for crystallization in the minor axis direction and an energy intensity distribution portion smaller than the energy required for the crystallization in the region preceding the beam scanning direction, the amorphous It is possible to avoid the occurrence of a portion where the property changes abruptly between the semiconductor film and the polycrystallized semiconductor film, improve the uniformity of the crystallinity of the polycrystal semiconductor film, and further improve the crystal quality. . Alternatively, the degassing process from the amorphous semiconductor film is performed with an energy intensity lower than the crystallization energy intensity, so that peeling of the film or the like can be avoided and the crystal quality can be further improved.

【0008】[0008]

【実施例】以下、本発明をその実施例を示す図に基づい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.

【0009】図1は、本発明の多結晶半導体膜の製造方
法を実施するレーザ照射装置の光学系を示した斜視図で
あり、図2はその側面図である。レーザ光源1からのパ
ルスレーザビーム(例えばエキシマレーザビーム)2の
進行方向光路上には、全反射ミラー3がビーム方向に対
して略45°傾けて配置されている。ミラー3にて反射
されたビーム2は、ビーム整形光学系4に入射される。
FIG. 1 is a perspective view showing an optical system of a laser irradiation apparatus for carrying out the method for producing a polycrystalline semiconductor film of the present invention, and FIG. 2 is a side view thereof. A total reflection mirror 3 is arranged on the optical path of a pulse laser beam (eg, excimer laser beam) 2 from a laser light source 1 in a direction inclined by about 45 ° with respect to the beam direction. The beam 2 reflected by the mirror 3 is incident on the beam shaping optical system 4.

【0010】ビーム整形光学系4は、例えば二つの二曲
面円柱レンズを備えて構成され、ビーム2を所定幅のシ
ート状ビーム2′に加工し、これをガラス基板6上に形
成した非晶質シリコン膜5に向けて照射する。
The beam shaping optical system 4 comprises, for example, two double-curved cylindrical lenses, the beam 2 is processed into a sheet-like beam 2'having a predetermined width, and this is formed on a glass substrate 6 in an amorphous state. Irradiation is directed toward the silicon film 5.

【0011】上記シート状ビームは、図3(a)或いは
(b)に示すように、長軸方向には結晶化に必要な一定
のエネルギー強度分布を全域において或いは中央部に持
ち、短軸方向には、図4(a)又は(b)に示すような
台形状の分布を持つ。即ち、短軸方向には結晶化に必要
な一定のエネルギー強度分布部分及びビーム走査方向に
対して先行する領域に前記結晶化に必要なエネルギーよ
りも小さくて徐々に強度が大きくなるエネルギー強度分
布部分が形成されている。この台形状のエネルギー強度
分布は、ビーム焦点位置をずらしたり、矩形状の分布を
得るためのスリットを取り払うなどして回折を起こせさ
せることにより得ることもできる。
As shown in FIG. 3 (a) or 3 (b), the above-mentioned sheet-like beam has a constant energy intensity distribution necessary for crystallization in the long axis direction in the entire region or in the central portion, and in the short axis direction. Has a trapezoidal distribution as shown in FIG. That is, a constant energy intensity distribution portion required for crystallization in the minor axis direction and an energy intensity distribution portion in which the energy is smaller than the energy required for the crystallization and gradually increases in the region preceding the beam scanning direction. Are formed. This trapezoidal energy intensity distribution can also be obtained by causing diffraction by shifting the beam focus position or removing a slit for obtaining a rectangular distribution.

【0012】上記ミラー3及びビーム整形光学系4は、
相互の位置関係を保持した状態でビーム走査方向(短軸
方向に一致し図中矢印にて示す方向)に一体的に移動す
るように構成されるとともに、短軸方向に結晶化する領
域が重複し得る送りピッチでビーム走査が行われるよう
になっている。
The mirror 3 and the beam shaping optical system 4 are
It is configured to move integrally in the beam scanning direction (matching the short-axis direction and indicated by the arrow in the figure) while maintaining the mutual positional relationship, and the regions that crystallize in the short-axis direction overlap. Beam scanning is performed at a possible feed pitch.

【0013】図5は、ビーム走査の様子を表した模式図
である。例えば、短軸方向のビームエネルギーの均一部
分(平坦部分)の幅を約1mm、エネルギーが徐々に大
きくなる部分(傾斜部分)の幅を約0.5mm、n−1
番目のビーム走査とn番目のビーム走査の間隔を約0.
5mmとしている。従って、この例では、n番目のビー
ム走査で均一のエネルギー(結晶化エネルギー)が照射
される領域は全て、事前にn−1番目のビーム走査でエ
ネルギーが徐々に大きくなる部分の照射を既に受けた領
域となる。なお、これは例示であり、当該ビーム幅や走
査ピッチ等に限定されず、他の例として、ビーム走査ピ
ッチを傾斜部分の幅よりも短くするようにしてもよい。
FIG. 5 is a schematic diagram showing the state of beam scanning. For example, the width of the uniform portion (flat portion) of the beam energy in the minor axis direction is about 1 mm, the width of the portion where the energy gradually increases (inclined portion) is about 0.5 mm, n-1.
The interval between the nth beam scan and the nth beam scan is about 0.
It is set to 5 mm. Therefore, in this example, all the areas to which uniform energy (crystallization energy) is irradiated in the n-th beam scanning have already been irradiated with the portion in which the energy gradually increases in the (n-1) -th beam scanning in advance. It becomes an area. Note that this is an example, and the beam width and the scanning pitch are not limited thereto, and as another example, the beam scanning pitch may be shorter than the width of the inclined portion.

【0014】ここで、レーザのピークエネルギー密度を
200〜500mJ/cm2 、基板温度を室温〜400
℃、非晶質シリコン膜5の膜厚を50nmとし、図5に
示したビーム幅やピッチを設定してビーム走査を行った
場合には、最大結晶粒径が約500nmの多結晶シリコ
ン膜5′を得ることができた。
Here, the peak energy density of the laser is 200 to 500 mJ / cm 2 , and the substrate temperature is room temperature to 400.
In the case where the beam scanning is performed by setting the beam width and pitch shown in FIG. 5 at 50 ° C. and the film thickness of the amorphous silicon film 5 is 50 nm, the maximum crystal grain size of the polycrystalline silicon film 5 is about 500 nm. I was able to obtain

【0015】以上のように、本発明では、シート状ビー
ム2′を用いるから、スポット形状が正方形又は長方形
に加工されたレーザビームを用いる場合に比べ、ビーム
走査の重複部を格段に少なくすることができ、結晶均一
性が不十分な領域の増加を抑えて結晶品質を向上させる
ことができる。また、パルスレーザビームがシート状で
あることにより、走査回数を少なくすることができ、結
晶化プロセスの時間短縮を図ることができる。特に、シ
ート状ビーム2′の幅を基板6の幅よりも幾分広くして
おくことにより、1回のビーム走査で基板6上の非晶質
シリコン膜5を全て結晶化させることができる。
As described above, according to the present invention, since the sheet-shaped beam 2'is used, the overlapping portion of the beam scanning is remarkably reduced as compared with the case of using the laser beam whose spot shape is square or rectangular. It is possible to suppress the increase of the region where the crystal uniformity is insufficient and improve the crystal quality. Further, since the pulsed laser beam has a sheet shape, the number of times of scanning can be reduced, and the time for the crystallization process can be shortened. In particular, by setting the width of the sheet-shaped beam 2 ′ to be slightly wider than the width of the substrate 6, the amorphous silicon film 5 on the substrate 6 can be entirely crystallized by one beam scanning.

【0016】また、短軸方向には結晶化に必要な一定の
エネルギー強度分布部分及びビーム走査方向に対して先
行する領域に前記結晶化に必要なエネルギーよりも小さ
いエネルギー強度分布部分を持つので、非晶質半導体膜
と多結晶化した半導体膜との間で急激に性質が変化する
部分が発生するのを回避し、多結晶半導体膜の結晶性の
均一化を高めて結晶品質をより向上させることができ
る。或いは、上記エネルギーが徐々に大きくなる部分に
おける結晶化エネルギーよりも低いエネルギーにて非晶
質半導体膜からの脱ガス処理が行われることになり、膜
剥離等を回避して結晶品質のより一層の向上を図ること
ができる。
Further, since there is a constant energy intensity distribution portion required for crystallization in the minor axis direction and an energy intensity distribution portion smaller than the energy required for the crystallization in a region preceding the beam scanning direction, Avoiding the occurrence of a portion where the property changes abruptly between the amorphous semiconductor film and the polycrystallized semiconductor film, and improving the crystallinity of the polycrystal semiconductor film to improve the crystal quality. be able to. Alternatively, the degassing treatment from the amorphous semiconductor film is performed with energy lower than the crystallization energy in the portion where the above-mentioned energy gradually increases, and film peeling or the like is avoided to further improve the crystal quality. It is possible to improve.

【0017】[0017]

【発明の効果】このように、本発明によれば、シート状
ビームを走査することによって結晶均一性が不十分な領
域の増加を抑えて結晶品質を向上させることができると
ともに、走査回数を少なくして結晶化プロセスの時間短
縮を図ることができる。また、短軸方向には結晶化に必
要なエネルギーよりも小さいエネルギー強度分布部分を
持つので、結晶品質をより向上させることができるとい
う効果を奏する。
As described above, according to the present invention, by scanning the sheet-like beam, it is possible to suppress the increase in the region where the crystal uniformity is insufficient and improve the crystal quality, and to reduce the number of scans. Thus, the time required for the crystallization process can be shortened. In addition, since there is an energy intensity distribution portion smaller than the energy required for crystallization in the minor axis direction, there is an effect that the crystal quality can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多結晶半導体膜の製造方法を実施する
レーザ照射装置の光学系を示す斜視図である。
FIG. 1 is a perspective view showing an optical system of a laser irradiation apparatus for carrying out a method for producing a polycrystalline semiconductor film of the present invention.

【図2】図1の側面図である。FIG. 2 is a side view of FIG.

【図3】本発明のシート状ビームにおける長軸方向のエ
ネルギープロファイルを示す説明図である。
FIG. 3 is an explanatory view showing an energy profile in a long axis direction in the sheet-like beam of the present invention.

【図4】本発明のシート状ビームにおける短軸方向のエ
ネルギープロファイルを示す説明図である。
FIG. 4 is an explanatory diagram showing an energy profile in the minor axis direction of the sheet-like beam of the present invention.

【図5】本発明のビーム走査の様子を表した模式図であ
る。
FIG. 5 is a schematic view showing a state of beam scanning according to the present invention.

【図6】従来のエキシマレーザアニール法による多結晶
半導体膜の製造方法を示す説明図である。
FIG. 6 is an explanatory view showing a method for manufacturing a polycrystalline semiconductor film by a conventional excimer laser annealing method.

【図7】従来のエキシマレーザアニール法において重複
部が形成される様子を示した説明図である。
FIG. 7 is an explanatory diagram showing a manner in which an overlapping portion is formed in a conventional excimer laser annealing method.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 パルスレーザビーム 2′ シート状ビーム 3 ミラー 4 ビーム整形光学系 5 非晶質シリコン膜 5′ 多結晶シリコン膜 1 Laser Light Source 2 Pulse Laser Beam 2'Sheet Beam 3 Mirror 4 Beam Shaping Optical System 5 Amorphous Silicon Film 5'Polycrystalline Silicon Film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/336 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/336

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非晶質半導体膜にパルスレーザビームを
照射して非晶質半導体膜を溶融・固化させることによ
り、多結晶半導体膜を製造する方法において、長軸方向
には結晶化に必要な一定のエネルギー強度分布を少なく
とも中央部に持ち、短軸方向には結晶化に必要な一定の
エネルギー強度分布部分及びビーム走査方向に対して先
行する領域に前記結晶化に必要なエネルギーよりも小さ
いエネルギー強度分布部分を持つシート状のパルスレー
ザビームを非晶質半導体膜に照射し、少なくとも短軸方
向に結晶化する領域が重複し得る送りピッチで走査する
ことを特徴とする多結晶半導体膜の製造方法。
1. A method for producing a polycrystalline semiconductor film by irradiating an amorphous semiconductor film with a pulsed laser beam to melt and solidify the amorphous semiconductor film, which is required for crystallization in the major axis direction. Has a constant energy intensity distribution at least in the central portion, and has a constant energy intensity distribution portion required for crystallization in the minor axis direction and a region preceding the beam scanning direction is smaller than the energy required for the crystallization. The amorphous semiconductor film is irradiated with a sheet-shaped pulsed laser beam having an energy intensity distribution portion, and scanning is performed at a feed pitch such that at least regions to be crystallized in the short axis direction overlap with each other. Production method.
JP18566194A 1994-08-08 1994-08-08 Manufacture of polycrystalline semiconductor film Pending JPH0851074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18566194A JPH0851074A (en) 1994-08-08 1994-08-08 Manufacture of polycrystalline semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18566194A JPH0851074A (en) 1994-08-08 1994-08-08 Manufacture of polycrystalline semiconductor film

Publications (1)

Publication Number Publication Date
JPH0851074A true JPH0851074A (en) 1996-02-20

Family

ID=16174663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18566194A Pending JPH0851074A (en) 1994-08-08 1994-08-08 Manufacture of polycrystalline semiconductor film

Country Status (1)

Country Link
JP (1) JPH0851074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031719A1 (en) * 1997-12-17 1999-06-24 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
US6947452B2 (en) 1995-02-02 2005-09-20 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US7061017B2 (en) 1996-08-19 2006-06-13 Sanyo Electric Co., Ltd. Laser anneal method of a semiconductor layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947452B2 (en) 1995-02-02 2005-09-20 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US7208358B2 (en) 1995-02-02 2007-04-24 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US7517774B2 (en) 1995-02-02 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US7939435B2 (en) * 1995-02-02 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US7061017B2 (en) 1996-08-19 2006-06-13 Sanyo Electric Co., Ltd. Laser anneal method of a semiconductor layer
US7439114B2 (en) 1996-08-19 2008-10-21 Sanyo Electric Co., Ltd. Laser anneal method of a semiconductor layer
WO1999031719A1 (en) * 1997-12-17 1999-06-24 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
US6806498B2 (en) 1997-12-17 2004-10-19 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method and apparatus for producing the same, and semiconductor device and method of producing the same

Similar Documents

Publication Publication Date Title
US20090218577A1 (en) High throughput crystallization of thin films
US8598588B2 (en) Systems and methods for processing a film, and thin films
JP5789011B2 (en) Linear scanning continuous transverse solidification of thin films.
US6239913B1 (en) Laser optical apparatus
US5432122A (en) Method of making a thin film transistor by overlapping annealing using lasers
US8796159B2 (en) Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
JP3033120B2 (en) Manufacturing method of semiconductor thin film
US20040053450A1 (en) Method and system for providing a single-scan, continous motion sequential lateral solidification
JP4443646B2 (en) Method for manufacturing polycrystalline semiconductor film
JP3054310B2 (en) Laser processing method for semiconductor device
US20020102821A1 (en) Mask pattern design to improve quality uniformity in lateral laser crystallized poly-Si films
JP2006196539A (en) Method and device for manufacturing polycrystalline semiconductor thin film
JP2000058478A (en) Excimer laser annealing system and production of semiconductor film
JPH0851074A (en) Manufacture of polycrystalline semiconductor film
JPH08213341A (en) Laser annealing and irradiation with laser beam
JP2003109911A (en) Device and method for treating thin film and thin film device
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP3201395B2 (en) Semiconductor thin film manufacturing method
JP2003037079A (en) Method and device for irradiating laser light
JPH11243057A (en) Method and device for manufacturing semiconductor device
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JPH0945632A (en) Laser annealing method and melting crystallizing method of semiconductor film
JPH11345769A (en) Manufacture of semiconductor thin-film and annealing device
JP2008218493A (en) Method of manufacturing semiconductor film, and semiconductor film manufacturing apparatus
JPH11345768A (en) Manufacture of semiconductor thin film