JPH08508526A - Reusable poly (ethylene-vinyl alcohol) adhesive for electronic applications - Google Patents

Reusable poly (ethylene-vinyl alcohol) adhesive for electronic applications

Info

Publication number
JPH08508526A
JPH08508526A JP6522064A JP52206494A JPH08508526A JP H08508526 A JPH08508526 A JP H08508526A JP 6522064 A JP6522064 A JP 6522064A JP 52206494 A JP52206494 A JP 52206494A JP H08508526 A JPH08508526 A JP H08508526A
Authority
JP
Japan
Prior art keywords
adhesive
conductive
reusable
temperature
adhesive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6522064A
Other languages
Japanese (ja)
Inventor
プジョル、ジャン−マルク・ピー
ホガートン、ピーター・ビー
Original Assignee
ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー filed Critical ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー
Publication of JPH08508526A publication Critical patent/JPH08508526A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • C09J123/28Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/98Methods for disconnecting semiconductor or solid-state bodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29388Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/8388Hardening the adhesive by cooling, e.g. for thermoplastics or hot-melt adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01043Technetium [Tc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Abstract

(57)【要約】 本発明は、電子部品を接合するのに適する再使用可能半結晶熱可塑性接着剤組成物を提供する。この接着剤組成物は、好ましくは、1種以上のポリ(エチレン−ビニルアルコール)コポリマーを含有する接着剤フィルムとして提供される。 (57) Summary The present invention provides a reusable semi-crystalline thermoplastic adhesive composition suitable for joining electronic components. The adhesive composition is preferably provided as an adhesive film containing one or more poly (ethylene-vinyl alcohol) copolymers.

Description

【発明の詳細な説明】 電子用途のための再使用可能ポリ(エチレン−ビニルアルコール)接着剤 発明の分野 本発明は接着剤組成物に関し、特に、電子用途に用いるのに特に適する特性を 有するポリ(エチレン−ビニルアルコール)接着剤組成物に関する。特に、この 接着剤組成物は集積回路、剛性回路または可撓性回路での使用において再使用可 能(reworkable)またはリペア可能(repairable)である。さらに詳しくは、接 着剤組成物は導電性基材上に半導体をマウントするためのフリップチップ直接取 付けフィルムに有用である。 発明の背景 ポケット計算機、時計およびラップトップコンピュータのような電子デバイス は広範囲の半導体ベースの集積回路エレメントを用いる。典型的には、半導体は ウエハにおいて製造され、次いで個々のチップにカットされる。これらのチップ は、典型的には単一チップのパッケージ中に組み込まれ、ある種のはんだ付け操 作により回路板に取り付けられる。しかしながら、製品の寸法を減らしたり製品 の性能を増大させるために、パッケージされていないチップを直接回路板に取り 付ける場合もある。この「フリップチップ(flip-chip)」パッケージング法の 利点は、I/Oカウント、クロック率周波数および出力密度の増大が予想される 。 フリップチップ接合に用いられる最も一般的な取付手段ははんだ衝突相互結合 である。この方法では、冶金的なはんだのジョイントにより、チップと基材との 間に機械的および電気的相互結合の両方が提供される。この方法は本質的にピッ チの制限を有し、チップと基材との間のCTEおよび弾性モジュラスの不整合の 影響を受けやすい。このような不整合ははんだジョイントにおける高い剪断スト レスとなり、アセンブリの信頼性を阻害し得る。R.R.ツマラ(Tummalla)およ びE.J.リマスジュースキ(Rwmaszewski)、マイクロエレクトロニクス・パッ ケージング・ハンドブック(バン・ノストランド・ラインホルド社、1989年 )、第280〜309頁;第366〜391頁、およびK.中村、日経マイクロ デバイス、1987年6月、を参照のこと。このようなストレスの結果としては んだジョ イントまたはチップ中にクラッキングが生じると、そのクラッキングにより終末 的な破壊が即座に生じる。 はんだ衝突フリップチップ接合に代わるものが米国特許第4,749,120号 (ハタダ(Hatada))および米国特許第4,942,140号(ドツブキ(Dotsub uki))に開示されている。これらの文献には、チップと基材との間の圧力が課 された電子結合を維持する液体硬化性接着系が開示されている。界面における接 着剤の存在は剪断力を緩和し、熱膨張の係数(CTE)および弾性モジュリ(mo duli)の不整合を調節する。しかしながら、有用であるためには、この接着剤は このようなストレスの存在下および100℃以上の温度においても安定な結合力 を維持可能である必要がある。このレベルの安定性を提供するためには、上記文 献によれば、高度に架橋可能な接着剤の使用が予想される。 液体接着剤において注意すべき点は、ダイ(die)を位置させる間中ダイ接合 表面が完全に濡れるように過剰に塗布する必要があることであり、その結果、過 剰のものは望ましくない領域に流動し得ることである。さらに、これらのような 硬化性材料は再使用不可能といわなくとも困難である。 液体系に伴う問題を解決するために、接着剤は自己支持フィルムの形態におい て提供されうる。フィルムはダイの正確な寸法にカットすることができ、そのこ とにより、ダイ接合に必要な正確な面積において適当量の接着剤が提供される。 米国特許第4,820,446号(プルドーム(prud'homme))には、電子用途に 用いるリペア可能な熱可塑性接着剤が開示されている。しかしながら、これおよ び他の関連接着剤の欠点は、ストレスおよび温度の増加に伴って高い変形を示す 傾向にあり、結合安定性が劣化することである。したがって、このような接着剤 は限られたストレスを含む用途のみ有用である。したがって、このような接着剤 は軽量で可撓性の回路を熱的なストレスが最小限である他の構成物に接合するた めにほぼ排他的に用いられる。 特定の高度に架橋可能な熱硬化性接着剤フィルムは高ストレスの用途に適する けれども、このような接着剤は再使用不可能である欠点を有する。このような高 温において優れた剪断強度を示す再使用不可能な接着剤組成物の例は、米国特許 第4,769,399号(シェンツ(Schenz))に開示されている。 プジョールら、米国特許第5,143,785号および同時係属出願第0781 6854号(ホールら)には、電子用途のための再使用可能な架橋性系が開示さ れている。これらの系は非常に望ましい再使用特性を提供するけれども、非反応 性再使用可能接着剤は、例えば、シェルフライフが増大されるなどのようなそれ 以上の利点を提供する。 米国特許第5,061,549号(ショーズ)は、電子用途に有用な熱活性化接 着剤フィルムについて説明する。この接着剤の主要な構成成分は70〜280℃ のバイカット(Vicat)軟化温度を有する熱可塑性ポリマーである。ショーズは 多くの熱可塑性ポリマーを例示するが(第3欄、第14〜48行)、半結晶ポリ マーの利点の認識に欠ける。非晶質熱可塑性ポリマーは短い接合時間および接合 後の回路部品のリペア可能性/再使用可能性を提供するけれども、これらはガラ ス転移温度を越えた場合に高いレベルの寸法安定性を提供するほどの強度を有さ ず、または接合中に優れた濡れを提供する融点(Tm)の近傍における急勾配の 粘度/温度グラデェントを有しない。 欧州特許出願第302,620A2(エクソン化学社)には、イソシアネート および粘着化剤との組み合わせにおけるポリ(エチレン−ビニルアルコール)ベ ースの架橋性ホットメルト接着剤が開示されている。熱硬化性接着剤系のように 、これらの接着剤は架橋した場合に再使用できない。さらに、このような接着剤 の硬化時間は15分より長く、消費電気製品の効率的な大量生産のためには望ま しくない。スチールの被覆のための接着剤としてポリ(エチレン−ビニルアルコ ール)を用いることは、H.ケンペ(Kempe)およびM.ケンペ、プラステ・カウ チュ(Plaste Kautsch)、第34巻、第210〜211頁、1987年に簡単 に説明されている。 熱可塑性および熱硬化性接着剤系の他にも、熱可塑性/熱硬化性ブレンドが電 子相互結合のために注目される。このような混合物は熱硬化性材料の高温性能を 改良するため、および/または熱硬化性材料の破壊強度を改良するために設計さ れてきた。例えば、米国特許第3,530,087号(ヘイズら);およびR.S. バ ウエル(Bauer)、「強化された高性能エポキシ樹脂;熱可塑性樹脂を用いる変 性」、第34回世界SAMPEシンポジュウム、5月8〜11日、1989年を 参照のこと。 しかしながら、熱可塑性接着剤、熱硬化性接着剤およびこれらの混合物の使用 にも拘わらず、FDCAのような、要求される用途のためのほとんどの現在知ら れている相互結合手段は上述の問題の適切な解決に失敗している。したがって、 中位の温度において迅速な接合を可能にし、重大なストレスおよび/または高温 、少なくとも使用温度の範囲、に耐えるのに十分なモジュラスをも有する非反応 性再使用可能な接着剤に対する要求は存在する。この接着剤は処理温度、すなわ ちチップの除去中に基材が劣化しないように十分に低い温度において再使用可能 であるべきである。また、室温において延長されたシェルライフを有する接着剤 (すなわち、保存安定なもの);意図される接合温度において低粘度を有し良好 な流動特性を提供するもの;85℃および相対湿度85%までの環境に耐え得る ような接着剤に対する要求も存在し、これは再配置のための意図する取り扱い温 度において実質的に非粘着性のフィルムとして提供される。 発明の要旨 本発明は電子部品を接合するのに有用な1種以上の半結晶ポリマーを含有する 再使用可能熱可塑性接着剤組成物を提供する。好ましくは、接着剤組成物は30 〜70℃、好ましくは40〜60℃のガラス転移温度Tg;115〜155℃、 好ましくは125〜145℃の結晶化温度Tcを有するポリ(エチレン−ビニル アルコール)コポリマーを含有する。Tmは、典型的には、130〜170℃、 好ましくは140〜160℃である。図2は、Tg、TcおよびTmが半結晶熱可 塑性コポリマー中のエチレンおよびビニルアルコールの相対量の関数であること を示す。 好ましくは、本発明の接着剤組成物はシランカップリング剤を含有し、伝導性 粒子および他の添加剤、特に接着剤フィルムの室温「タック」を制御するために 選択される添加剤を含んでよい。 本発明の接着剤組成物は硬化後の接着剤組成物のTcを20℃下回る温度にお いて50MPa、好ましくは100MPaを上回るモジュラスを有する。 本発明は2個の導電性表面の間に再使用可能接着剤接合を形成することにより 導電性接合されたコンポジットを形成するための方法を提供する。この方法は、 本発明の再使用可能接着剤フィルムを提供する工程;1個以上の導電性接合位置 を有する導電性基材を提供する工程;それぞれが導電性接合表面を有する1個以 上の導電性デバイスを提供する工程;それぞれの導電性接合位置とそれぞれの導 電性デバイスとの間に再使用可能接着剤を位置させる工程;および十分な熱およ び/または圧力を十分な時間印加することによりそれぞれの導電性接合位置とそ れぞれの導電性デバイスとの間に再使用可能接着剤接合を形成する工程;を包含 する。再使用可能接着剤は接着剤フィルムのTcを20℃下回る温度において5 0MPaを上回るモジュラスを有する。導電性基材は、典型的には、集積回路、 可撓性回路、剛性回路などに接合されるように取り付けられた導電性接合位置を 有する印刷回路板である。 本発明の接着剤のために必要な時間は、200℃以下、好ましくは185℃以 下において、典型的には30秒より少なく、好ましくは20秒より少ない。 ここで用いる半結晶ポリマーとは、結晶挙動を示すポリマーと定義される。半 結晶ポリマーは結晶融解およびガラス転移温度の両方を示す。例えば、オジアン (Odian)、重合の原理(第2版)、ジョン・ワイレイ&サンズ、ニューヨーク 、1981年、第25および30頁、を参照のこと。 ここで用いる「融解温度」とは、半結晶ポリマーにおいて固体から液体への相 転移が生じる温度をいう。 ここで用いる「結晶温度」または「再結晶温度」とは、半結晶ポリマーにおい て液体から固体への相転移が生じる温度をいう。というのも、半結晶ポリマーは 、個液相転移においては、試みられる温度、すなわち固体から液体への転移のた めの加熱、または液体から固体への転移のための冷却、に依存するヒステリシス を示すからである。 本発明の再使用可能接着剤は、典型的には200℃未満、好ましくは170℃ 未満の温度において基材から完全に除去可能である。本発明の再使用可能接着剤 は、典型的にはTmにおいて完全に除去可能である。極度に高い温度に使用する と基材またはそれらの上の導電性デバイスは劣化するからである。残渣を除去す るために適当な溶媒を使用してよい。再使用可能接着剤フィルムは銅、金、銀、 アルミニウム、ニッケルおよびはんだのような導電性材料;セラミック、ガラス 、シリコンおよびエポキシ/ガラス積層体のような絶縁体;およびポリイミドお よびPETのようなポリマーフィルムから成る群から選択される基材から除去可 能である。 図面の簡単な説明 図1は、それらの上で本発明の接着剤組成物を使用しうる集積回路、プリント 回路板の模式的な平面図である。 図2は、エチレン含有量の関数としての温度(Tc、Tm、Tg)のプロットを 示す。 図3は、本発明の接着剤についての温度の関数としての弾性モジュラスを示す 。 詳細な説明 本発明の再使用可能接着剤組成物は30℃〜70℃のTg、115℃〜155 ℃のTcおよび130℃〜170℃のTmを有する1種以上の半結晶熱可塑性ポリ (エチレン−ビニルアルコール)コポリマーを用いて製造しうる。この接着剤フ ィルムは使用温度に望まれる範囲にわたり十分に高い剪断強度を有するが、その Tcを上回ると剪断強度の十分に迅速な低下を示し、そのため、融解温度Tmにお いて、この接着剤は再使用可能である。ここで用いる「剪断強度」とは、ガラス 基材からチップを外すのに要する力をいう。 通常、当業者はエチレンとビニルアルコールとのコポリマーを接着剤組成物中 のポリマー成分として用いようとしない。これらのコポリマーは本質的に「非粘 着性」だからである。これらのコポリマーは大気中の酸素に対する低い透過性が 知られており、それ故、食品、例えば、プラスチックのケチャプ用ボトルを作製 するのに用いる樹脂の成分、のためのパッケージング材料としての用途を有する 。電子ダイ取付用途に用いる接着剤は、マイクロ電子回路チップ、接着剤および チップが接合される基材の間の熱膨張の係数(CTE)の「不整合」のために極 度に高い レベルのストレスを受ける。非晶質の熱可塑性ポリマーがこのように高いストレ スを受ける接着剤用途に用いられると、チップと基材との間の電気的な結合を維 持するための十分な耐クリープ性を保証するためにポリマーのTgは環境で用い る時に遭遇する最大温度(Tmax)を越えることを要求される。これが多くのダ イ取付接着剤が「硬化される」(化学的に架橋される)ことによりTgをTmaxを 上回って上げる理由である。 本発明の接着剤に用いる半結晶ポリマーにおいて、Tgより高い再結晶温度( Tc)を上回る温度においてストレスの緩和と共に劣化クリープが生じる。した がって、一般に半結晶ポリマーは非晶質熱可塑性ポリマーから導かれたものより も高いTmaxの値で接着剤を提供する。再使用可能接着剤用途に好ましい半結晶 ポリマーは、図3に示すように、再結晶温度(Tc)と融解温度(Tm)との間で モジュラスの鋭い減少を有するものである。 本発明の接着剤は、典型的には剥離ライナー上に被覆されたフィルム型材料で ある。処方におけるポリマーの熱可塑的性状により、この組成物は迅速接合接着 剤であり、これらはリペア可能である。ポリ(エチレン−ビニルアルコール)の 半結晶性により、比較的低いTgにも拘わらず、高温における高い寸法安定性が 保たれる。このポリマーは再結晶後の高い凝集力の結合を保証する結晶化温度( 115℃〜155℃)を有する。また、半結晶は、接合操作中に優れた濡れを導 くTm近傍における急勾配の粘度/温度グラデェントを提供する(図3を参照の こと)。 本発明の再使用可能な接着剤フィルムは、好ましくは室温において少なくとも 1カ月の間保存安定であり、接合温度において十分に低い粘度を有して良好に流 動特性を提供し、中位の温度、例えば、145℃〜225℃、より好ましくは1 50℃〜215℃、そして最も好ましくは160℃〜200℃において迅速に接 合可能であり、そして相対湿度85%における85℃までの条件により実質的に 影響されない。 本発明の再使用可能の接着剤は電子用途に特に有用である。多くのタイプの電 子部品は1個以上のシリコンチップを有する。これらのチップは、通常方形また は正方形の形状であり、そして微小寸法、例えば、横方向数ミリメーター(mm) のものである。それそれのチップはすなくとも1個、しばしば多くの導電性末端 を有し、これは所望の回路を完結するために基材上の導電性経路を電気的に結合 する必要がある。この経路は基材に接合された金属、例えば、銀、金、銅などの 薄いフィルム、または導電性であるか、またはその中に伝導性粒子が存在するこ とにより導電性とされた接着剤またはインクのストリップからなりうる。 本発明の再使用可能接着剤はFDCA接合法における取付手段として特に有用 である。FDCA接合法は剥き出しのチップを直接導電性基材に接合する。特定 のチップは接着剤層をブリッジし、基材に直接結合するために取り付けられた突 起を有する(突起化チップ)。突起化されていないチップは、典型的に連続した 伝導性粒子を有する接着剤を用いて接合されて、基材とチップの間に導電性経路 を形成する。FDCA接合は、「レベル−1マイクロ電子相互結合のための接着 剤の使用の研究」、P.B.ホガートン(P.B.Hogerton)ら、電子パッケージ ング材料サイエンス、シンポシア・プロシーディングス(Symposia Proceedings )、4月24〜29日、1989年に説明されている。 典型的な商業的な接合温度は145℃〜225℃の範囲であり、より典型的に は160℃〜200℃である。従来の接着剤を用いると、接合時間は数分〜数時 間の間であるが、商業的に実行できる電子部品の大量生産アセンブリのために本 発明の接着剤は30秒未満、好ましくは20秒未満の接合時間を有する。 本発明の再使用可能接着剤組成物は、好ましくは意図される取り扱い温度にお いて非粘着性または僅かな粘着性のフィルムとして提供される。液状またはペー スト状接着剤に対するこのような接着剤フィルムの利点は、取り扱いの容易、チ ップの正確な配列、接着されるべきチップへの正確な量の接着剤の塗布、および 最小限の無駄である。 処理温度は、チップが基材へ接合されるのに接着剤が用いられる温度である。 この温度は処理の間にチップまたは基材が損傷しないよう十分に低く、接着剤が チップを基材に接合するよう十分高い必要がある。 図1は、その上に本発明の接着剤組成物を用いるのに特に好適な集積回路、プ リント回路板を示す模式平面図である。プリント回路板10は可撓性回路末端2 0、プリント回路板末端30およびプリント回路板末端40を有する。本発明の 接着剤は、例えば、可撓性回路50を可撓性回路末端20へ;プリント回路板6 0をプリント回路板末端30へ;TAB、すなわち、テープ自動化接合、リード フレーム70をプリント回路板末端40へ接合するのに用いる。 TABリードフレーム72はプリント回路板10に接合される。プリント回路 板60はフリップチップ61〜66を有する。フリップチップ66はプリント回 路板60に接合する前である。本発明の接着剤はフリップチップ61〜66をプ リント回路板60に接合するのに用いうる。液晶ディスプレイ80も図1に示す 。液晶ディスプレイ80はそれに接合された可撓性回路50を有する。フリップ チップ90およびTABリードフレーム100も液晶ディスプレイ80に接合さ れる。 図2は、本発明の接着剤のエチレン含有量の関数としての融解点(Tm)のプ ロットA、結晶化温度(Tc)のプロットBおよびガラス転移点(Tg)のプロッ トCを示す。このプロットは本発明の典型的な接着剤の一般化された例に過ぎず 、用いうるコポリマーまたは接着剤のタイプを限定することを意味いない。図2 における接着剤は56%のエチレンに対して55℃のTg、142℃のTc、およ び180〜230℃において10〜30秒の接合時間を有する。用いられるコポ リマーの分子量は図2に例示されるように溶融粘度と相関する。図3は、本発明 の接着剤のための温度の関数としての弾性モジュラス(E')のプロットを示す 。Mで示す最大モジュラスは100MPaに対応し、Nで示す最低モジュラスは 50MPaに対応する。本発明の接着剤はTcを20℃下回る温度において50 MPaを上回るモジュラスを有する。図3に示される温度ラインBは、この接着 剤のTcを20℃下回る温度に対応する。図3に示すラインAはこの接着剤のTc を示す。図3におけるモジュラスと温度とのプロット200は、この接着剤がTc を200℃下回る温度において100MPaを上回るモジュラスを有すること を示す。 カップリング剤 本発明の接着剤組成物は用いる基材に対する接着性を補助するためのカップリ ング剤も含有しうる。シランカップリング剤が好ましく、これは、好ましくは組 成物0.1〜5重量%、好ましくは1重量%の量で提供される。 好ましいシランカップリング剤は、式 P(4-n)SiZn [式中、Pは12個までの炭素原子の有機置換基、例えば、プロピルであるが、 メルカプト、エポキシ、グリシドキシ、アクリリル、メタクリリル、およびアミ ノのような官能性置換基を有すべきものであり;Zは加水分解可能基、例えば、 アルコキシ、好ましくはメトキシまたはエトキシであり、nは1、2または3、 好ましくは3である。] で示す構造を有する。 シランカップリング剤の他にもチタネートおよびジルコネートカップリング剤 も用いうる。例えば、エルセビール応用科学出版により出版された、A.J.キン ロック(Kinroch)により編集された、「構造的接着剤(Structural Adhesives )」におけるJ.クロミン(Cromyn)によるカップリンク剤の章、1968年、 第269〜312頁、を参照のこと。第270頁にエポキシおよびアミンシラン カップリング剤の例が示される。第306〜308頁には、チタネートおよびジ ルコネートカップリング剤の使用が説明されている。 他の添加剤 例えば、米国特許第4,606,962号(レイレク(Reylek)ら)および同第 4,740,657号(ツカゴスキー(Tsukagoski)ら)に説明されるような伝導 性粒子は所望により接着剤組成物に添加されうる。レイレクは、接着剤の接合温 度において少なくとも変形可能である電気および熱伝導性粒子を実質的に純粋な 金、銀の球状粒子として説明する。粒子の厚さは粒子間の接着剤の厚さを上回る 。レイレクにおいて説明される粒子は、好ましくは、実質的に球状であり、銀ま たは金または「はんだの表面層および銅または非金属コアのようにより高い融解 性金属コア」のような1種以上の材料のような金属で作製される(第4欄、第2 0〜21行)。 このような、およびその他の伝導性粒子(例えば、非球状のものおよび/また は接着剤の厚さを下回る厚さを有するもの)は本発明の接着剤組成物に用いるの に好ましい。 本発明の接着剤組成物中に含有される伝導性粒子はその中にランダムに分散さ れるか、または所望の構造の均一な配列に並べられてよい。伝導性粒子の使用を 節約するために、個々の導電体が接触する接着剤フィルムのセグメント中のみに これらを位置させうる。 その他のフィラーも接着剤組成物に添加しうる。フィラーの使用は増大された 接着性、より高いモジュラスおよび低減された熱膨張の係数の利点を提供しうる 。有用なフィラーは、シリカ粒子、シリケート粒子、水晶粒子、セラミック粒子 、ガラスバブル、不活性ファイバーおよびマイカ粒子を含むがこれらに限定され ない。好ましくは、フィラーは微結晶シリカ粒子である。 接着剤組成物が低いイオン不純物レベルを有することは重要である。電子業界 は接着剤の低い抽出可能なイオン含有量を指定する。仕様書には、10ppmを下 回るCl-、Na+、K+およびNH4 +とある。このような極端に低いイオン含有 量は金属の腐食を防ぎ、いずれかの導電性金属粒子が存在する場合を除き接着剤 の導電性をできるだけ低く保つために重要である。 以下の実施例において、これらは例示に過ぎず、限定されずすべての%は重量 基準である。 実施例1〜6 表1に示す成分および量を用いて以下に示すように本発明の発明の接着剤組成 物を調製した。最初に、ポリマーをメタノールおよび水中に60℃において溶解 させた。この溶液がまだ暖かいうちにシリカおよび伝導性粒子を加えた。ナイフ コーターを用いて接着剤組成物をテフロンTMフィルム上に注型した。ナイフと裏 材料との間の距離を調節することにより接着剤の厚さを20および40μmの間 に設定した。接着剤フィルムを50℃で1時間乾燥し、デシケーター中で保存し た。 実施例7 実施例1、2、4、5、6のそれぞれについてダイ剪断強度を測定することに より接着剤を評価した。試験の目的は基材からチップを剪断するのに要する力を 決定することにある。接着強度は、25mm×25mm×1mmのガラススライドに接 合された2mm×2mm×1mmのガラスチップにおいて剪断テスターを用いることに より測定した。 チップをスライド上に接合するのに以下の方法を用いた。チップをフィルム上 に置き、熱活性化および圧力を加えることにより接着剤を粘着性とすることによ り接着剤をガラスチップに移した。チップが剥離裏材料から除去されたときには 、これは接着剤の均一層で覆われた。次いで、これをスライドの上に置き、2. 5MPaの圧力下180℃において数秒間ダイ接合機で接合を行った。 マイクロ電子用途における接着剤の選択および使用のための仕様書は6MPa (ミル標準(MILSTD)、883C、方法5011)の最小接合強度を要求 する。表2の結果は、ポリ(エチレン−ビニルアルコール)接着剤組成物により 高い接着が得られることを示す。 実施例8 フリップチップ直接取付法により、実施例1〜6の接着剤組成物を用いてガラ ス基材上の回路にシリコンチップを接合した。試験用チップ(0.5mm×7mm× 7mm)は120のゴールド突起化パッド(パッドピッチ:0.2mm)を支持して おり、 電気的結合を形成する。この回路は、4プローブ抵抗測定が可能なように変形さ れたインジウム錫オキシドとした。このインジウム錫オキシドは厚さ0.1μmで あり、20オーム/スクエアのシート抵抗を有していた。 ホットプレート表面上で150〜180℃に加熱し、軽い圧力を加えることに よりチップの上にフィルムをラミネートすることにより接着剤フィルムをチップ の活性表面に移した。ラミネートされた構造物を数秒後にホットプレートから除 去した。 基材上に導電性電極でチップを配列した後に最終的なガラス上へのフリップチ ップの取り付けを行った。接合は、200℃の温度で30秒間圧(約10MPa )を加えることにより行った。 4プローブ法を用いて結合間抵抗を測定した。平均抵抗、最小および最大抵抗 を決定した。表3に示す結果は測定された抵抗である。これらは真の結合間抵抗 の2倍である。2個の接触が測定中に含まれるからである。また、これらはガラ ス基材上のインジウム錫オキシド回路の抵抗およびシリコンチップ上の金突起を 結合するアルミニウムストラップの抵抗も含む。これらの考慮より、2オームを 下回る値は良好な結合間抵抗であると考えられる。 表3の結果は、ガラス上にフリップチップを接合するためにポリ(エチレン− ビニルアルコール)組成物を用いた場合に良好な電気的結合が得られることを示 す。 実施例9 実施例8由来の試験試料(実施例3および4)の環境試験を熱エージングおよ び湿度エージングのもとで行った。 100℃における1000時間の熱エージングの間に実施例3の接着剤組成物 は回路を開くことなく電気的な結合を維持した。 60℃、相対湿度(RH)95%における1000時間の湿度エージング中に 、実施例4の接着剤組成物は回路を開くことなく電気的結合を維持した。 実施例10 実施例1の接着剤組成物を、可撓性回路を印刷回路板に接合するのに用いた。 可撓性回路は銅で金属化され、厚さ12μmの鉛−錫はんだの層で保護された幅 10mm×厚さ50μmのポリイミドテープからなる。このテープは0.4mmのピッ チにおいて間をあけた17個の導電性ラインを有していた。このプリント回路板 は、銅および厚さ12μmの鉛−錫はんだで金属化された同様のピッチを有する FR−4エポキシガラスラミネートである。 熱活性化および僅な圧力を用いて3mm×8mmの接着剤フィルムの一片を可撓性 回路上に移した。このテープをこの板上に置きストリップを揃え、テープ上に2 MPaの圧力をかけ、同時にホットバー型接合機を用いて接着剤を200℃に3 0秒間加熱することによりこの板への最終的な接合を行った。 4プローブ法を用いて結合間抵抗を測定した。平均抵抗、最小抵抗および最大 抵抗を決定した。表4および5に示す結果は測定された抵抗値である。これらは 真の結合間抵抗の2倍である。それぞれの試験試料には2個の結合があるからで ある。また、これらは回路板の抵抗および可撓性回路の抵抗も含む。これらの考 慮より、0.5オームを下回る値は良好な相互結合であると考えられる。 表4の結果は、板上に可撓性回路を接合するためにポリ(エチレン−ビニルア ルコール)を用いた場合に良好な電気的結合が得られることを示す。 実施例11 接着剤のリペア可能性を試験するために以下の方法を用いた。実施例10に説 明するように試験試料を調製した。この試験試料由来のエポキシガラスラミネー ト基材を150℃に加熱した。この温度において、可撓性回路は容易に剥離除去 された。この板の上の接着剤の残渣は拭って除去した。実施例10に説明した接 合操作を用いて新しい接着剤の片を用いて200℃で30秒間で新しい可撓性回 路をこの板に接合した。再使用の前後に得られた結合を表5に示す。 再使用の後の接着剤に重大な変化は見られない。良好な電気的結合が再び得ら れた。ポリ(エチレン−ビニルアルコール)組成物はリペア可能な接着剤である 。 実施例12 湿度エージング、熱エージングおよび熱循環のもとで実施例10由来の試験試 料の環境試験を行った。1000時間の試験後に結合間抵抗を測定した。 表6に示す結果は、接触抵抗の重大な劣化は生じていないことを示す。このポ リ(エチレン−ビニルアルコール)組成物は環境試験のもとで高い安定性を示す 。 以下の比較例は高分子量樹脂組成物として非晶質熱可塑性ポリマーのみ用いる フィルム接着剤は、典型的な使用環境において見られる甚だしい温度−湿度条件 下で適切な低い接触抵抗を維持することができないことを示す。 比較非晶質ポリマーA 「B76」と呼ばれる熱可塑性ポリ(ビニルブチラール)樹脂から厚さ30μ mのフィルム接着剤を調製した。B76は平均分子量約50,000、Tg50℃ であり、これはモンサント化学社、セントルイス、MO、より入手できる。この フィ ルム接着剤はまずB76ポリマーをキシレンに溶解し、これにイソプロパノール および水を順に加えて調製した、溶媒相が95重量%(キシレン:イソプロパノ ール=60:40)、そして水5重量%の、固形分70%の溶液から注型した。 フィルム接着剤は、このポリマー溶液をテフロンTMフィルム基材上にナイフ被覆 することにより調製した。ナイフと裏材料との間の距離を調節することにより接 着剤の厚さを20〜40μmの間に調節した。接着剤を80℃で1時間乾燥させ 、接合および試験の前にデシケーター中で保存した。 このフィルム接着剤を用いてシリコン試験チップをインジウム−錫オキシド被 覆ガラス基材に接合し、実施例8の操作を用いてこれを試験した。以下の接合条 件を用いた。温度=185℃、圧力=140KPa、接合時間=30秒。結果を 以下の表7に示す。 室温であるけれども、接触抵抗は安定しない。「B76」熱可塑性接着剤は電 子ダイ取付接着剤用途には不適当であると判断された。したがって、実施例9で 行ったようなより厳しい環境試験は行わなかった。 比較非晶質ポリマーB 「B98」と呼ばれる熱可塑性ポリ(ビニルブチラール)樹脂から厚さ28μ mのフィルム接着剤を調製した。「B98」は37,000の重量平均分子量、6 5℃のTgを有し、モンサント化学社、セントルイス、MO、より入手できる。 このフィルム接着剤は、まず「B98」ポリマーをキシレン中に溶解し、次いで 、イソプロパノールおよび水を連続して加えることにより調製した、溶媒相が9 5重量 %(キシレン:イソプロパノール=60:40)および水5重量%の、固形分8 5%の溶液から注型した。このポリマー液をテフロンTMフィルム基材上にナイフ 被覆することにより接着剤フィルムを調製した。ナイフと裏材料との間の距離を 調節することにより接着剤の厚さを20〜40μmに調製した。接着剤を80℃ で1時間乾燥させ、接合および試験の前にデシケーター中で保存した。 この接着剤フィルムを用いてシリコーン試験チップをインジウム−錫オキシド 被覆ガラス基材に接合し、実施例8の操作を用いてこれを試験した。以下の接合 条件を用いた。温度=275℃、圧力=70KPa、接合時間=10秒。接合圧 を開放する前にこの試験接合を35℃に冷却した。結果を以下の表8に示す。 この「B98」フィルム接着剤は室温エージング試験は合格したと判断され、 実施例9で行ったのと同様の環境試験に供された。以下の環境条件を用いた。温 度=60℃、相対湿度=95%、時間=73時間。環境エージング試験の結果は 、元々の60ペアの内100,000オームを下回る接触抵抗を有したのは3ペ アのみであった。従って、「B98」熱可塑性ポリマーは電子ダイ取付接着剤用 途に適していないと判断された。 本発明の視野および精神から離れることのない本発明の種々の変形および改変 は当業者に明白である。Detailed Description of the Invention     Reusable poly (ethylene-vinyl alcohol) adhesive for electronic applications                               Field of the invention   The present invention relates to adhesive compositions, especially those having properties particularly suitable for use in electronic applications. A poly (ethylene-vinyl alcohol) adhesive composition having the same. Especially this Adhesive composition is reusable for use in integrated, rigid or flexible circuits It is reworkable or repairable. For more details, The adhesive composition is a flip chip direct mounting method for mounting a semiconductor on a conductive substrate. It is useful for attaching films.                               BACKGROUND OF THE INVENTION   Electronic devices such as pocket calculators, watches and laptop computers Uses a wide range of semiconductor-based integrated circuit elements. Typically, semiconductors It is manufactured on a wafer and then cut into individual chips. These chips Are typically packaged in a single-chip package and require some soldering operation. It is attached to the circuit board depending on the product. However, reducing the product size Unpackaged chips directly onto the circuit board to increase performance of the It may be attached. This “flip-chip” packaging method Benefits are expected to increase I / O count, clock rate frequency and power density .   The most common attachment method used for flip-chip bonding is solder bump interconnection Is. In this method, a metallurgical solder joint is used to bond the chip to the substrate. Both mechanical and electrical interconnections are provided therebetween. This method is essentially Of the CTE and elastic modulus mismatch between the chip and the substrate. easily influenced. Such misalignment causes high shear stresses in the solder joint. And the reliability of the assembly may be impaired. RR Tummalla and And E.J.Rwmaszewski, Microelectronics Pack Caging Handbook (Van Nostrand Reinhold, 1989) ), 280-309; 366-391, and K. Nakamura, Nikkei Micro. See Devices, June 1987. As a result of such stress Danjo If cracking occurs in the insert or chip, it will end Destruction immediately occurs.   An alternative to solder bump flip chip bonding is US Pat. No. 4,749,120 (Hatada) and US Pat. No. 4,942,140 (Dotsubki). uki)). These documents impose pressure between the chip and the substrate. A liquid curable adhesive system that maintains an established electronic bond is disclosed. Contact at the interface The presence of the adhesive mitigates the shear forces, and the coefficient of thermal expansion (CTE) and elastic modulus (mo duli) inconsistency. However, to be useful, this adhesive Stable bond strength in the presence of such stress and at temperatures above 100 ° C Need to be maintainable. To provide this level of stability, the statement above Contributions envisage the use of highly crosslinkable adhesives.   One thing to keep in mind with liquid adhesives is die bonding during the positioning of the die. It is necessary to over coat the surface so that it is completely wet, and as a result The surplus is that it can flow to unwanted areas. Moreover, like these Curable materials are difficult, if not reusable.   To solve the problems associated with liquid systems, the adhesive is in the form of a self-supporting film. Can be provided. The film can be cut to the exact size of the die, Provides the proper amount of adhesive in the exact area required for die bonding. U.S. Pat. No. 4,820,446 (prud'homme) for electronic applications A repairable thermoplastic adhesive for use is disclosed. However, this and And other related adhesive shortcomings show high deformation with increasing stress and temperature The tendency is that the bond stability deteriorates. Therefore, such an adhesive Is only useful in applications involving limited stress. Therefore, such an adhesive Is a lightweight, flexible circuit that joins other components with minimal thermal stress Used almost exclusively for   Certain highly crosslinkable thermosetting adhesive films are suitable for high stress applications However, such adhesives have the drawback of being non-reusable. Such high Examples of non-reusable adhesive compositions that exhibit excellent shear strength at elevated temperature are described in US Pat. No. 4,769,399 (Schenz).   Peugeot et al., US Pat. No. 5,143,785 and co-pending application 0781 6854 (Hall et al.) Discloses a reusable crosslinkable system for electronic applications. Have been. Although these systems offer highly desirable reuse properties, they are non-reactive Reusable adhesives can be used in the same way as, for example, shelf life is increased. It provides the above advantages.   U.S. Pat. No. 5,061,549 (Shaw's) is a thermally activated connection useful for electronic applications. The adhesive film will be described. The main constituent of this adhesive is 70 ~ 280 ℃ Is a thermoplastic polymer having a Vicat softening temperature. Shorts Although many thermoplastic polymers are illustrated (column 3, lines 14-48), semi-crystalline poly Lack of recognition of Mer's advantage. Amorphous thermoplastic polymers have short joining times and joining Although they offer the repairability / reusability of later circuit components, these are Sufficient to provide a high level of dimensional stability above the transition temperature Or a melting point (T) that provides excellent wetting during bonding.m) Of steep slopes Has no viscosity / temperature gradient.   European Patent Application No. 302,620A2 (Exxon Chemical Co.) contains isocyanates And poly (ethylene-vinyl alcohol) resin in combination with a tackifier A crosslinkable hot melt adhesive is disclosed. Like a thermosetting adhesive system , These adhesives cannot be reused when crosslinked. Furthermore, such an adhesive Curing time of more than 15 minutes is desirable for efficient mass production of consumer electronics Not good. Poly (ethylene-vinyl alcohol) as an adhesive for coating steel H. Kempe and M. Kempe, Plaste Kau Ju (Plaste Kautsch), Vol. 34, pp. 210-211, brief 1987. Explained.   In addition to thermoplastic and thermosetting adhesive systems, thermoplastic / thermosetting blends are electrically conductive. Attention is paid to the child interconnection. Such a mixture improves the high temperature performance of thermosetting materials. Designed to improve and / or improve the fracture strength of thermoset materials It has come. For example, U.S. Pat. No. 3,530,087 (Haze et al.); And RS. Ba Bauer, “Reinforced high performance epoxy resin; Sex, 34th World SAMPE Symposium, May 8-11, 1989 See.   However, the use of thermoplastic adhesives, thermosetting adhesives and mixtures thereof Nevertheless, most current known for required applications, such as FDCA The interconnection means that have been used have failed to adequately solve the above problems. Therefore, Allows rapid bonding at moderate temperatures, severe stress and / or high temperatures Non-reactive, which also has a modulus sufficient to withstand at least the temperature range of use There is a need for sex reusable adhesives. This adhesive has different processing temperatures, Reusable at temperatures low enough so that the substrate does not deteriorate during chip removal Should be. Also, an adhesive having an extended shell life at room temperature (Ie, storage stable); good with low viscosity at intended bonding temperature Provides excellent flow characteristics; can withstand environments up to 85 ° C and 85% relative humidity There is also a requirement for such adhesives, which is the intended handling temperature for repositioning. Provided as a substantially tack free film.                               Summary of the invention   The present invention contains one or more semi-crystalline polymers useful for joining electronic components A reusable thermoplastic adhesive composition is provided. Preferably, the adhesive composition is 30 To 70 ° C., preferably 40 to 60 ° C. glass transition temperature Tg115-155 ° C., Crystallization temperature T of preferably 125 to 145 ° C.cWith poly (ethylene-vinyl Alcohol) copolymer. TmIs typically 130-170 ° C., It is preferably 140 to 160 ° C. Figure 2 shows Tg, TcAnd TmCan be semi-crystalline Being a function of the relative amounts of ethylene and vinyl alcohol in the plastic copolymer Is shown.   Preferably, the adhesive composition of the present invention contains a silane coupling agent and is conductive. To control the room temperature "tack" of particles and other additives, especially adhesive films It may include selected additives.   The adhesive composition of the present invention has a T of the adhesive composition after curing.cBelow 20 ° C And have a modulus above 50 MPa, preferably above 100 MPa.   The present invention provides a reusable adhesive bond between two electrically conductive surfaces. A method for forming a conductively bonded composite is provided. This method Providing a reusable adhesive film of the present invention; one or more electrically conductive bond locations Providing a conductive substrate having: one or more each having a conductive bonding surface Providing a conductive device on top; each conductive bonding location and each conductive Locating the reusable adhesive with the electrically conductive device; and sufficient heat and And / or pressure is applied for a sufficient period of time so that the Forming a reusable adhesive bond with each conductive device; To do. Reusable adhesive is T of adhesive filmcAt a temperature 20 ° C below It has a modulus above 0 MPa. The conductive substrate is typically an integrated circuit, The conductive joint position attached so as to be joined to a flexible circuit, a rigid circuit, etc. It has a printed circuit board.   The time required for the adhesive of the present invention is 200 ° C or lower, preferably 185 ° C or lower. Below, it is typically less than 30 seconds, preferably less than 20 seconds.   As used herein, a semi-crystalline polymer is defined as a polymer that exhibits crystalline behavior. Half Crystalline polymers exhibit both crystal melting and glass transition temperatures. For example, Ozian (Odian), Principle of Polymerization (2nd Edition), John Wiley & Sons, New York , 1981, pages 25 and 30.   As used herein, "melting temperature" refers to the phase from a solid to a liquid in a semicrystalline polymer. The temperature at which the transition occurs.   As used herein, "crystallization temperature" or "recrystallization temperature" refers to a semi-crystalline polymer. The temperature at which a liquid-to-solid phase transition occurs. After all, semi-crystalline polymers In the solid-liquid phase transition, the temperature that is tried, that is, the transition from solid to liquid Hysteresis depending on heating for cooling, or cooling for the transition from liquid to solid This is because   The reusable adhesives of the present invention are typically less than 200 ° C, preferably 170 ° C. It can be completely removed from the substrate at temperatures below. Reusable adhesive of the invention Is typically TmCan be completely removed at. Used for extremely high temperatures And substrates or conductive devices on them deteriorate. Remove residue A suitable solvent may be used for this purpose. Reusable adhesive film is made of copper, gold, silver, Conductive materials such as aluminum, nickel and solder; ceramics, glass , Insulators such as silicon and epoxy / glass laminates; and polyimide and And removable from substrates selected from the group consisting of polymer films such as PET Noh.                             Brief description of the drawings   FIG. 1 shows integrated circuits, prints on which the adhesive composition of the invention may be used. It is a schematic plan view of a circuit board.   FIG. 2 shows the temperature as a function of ethylene content (Tc, Tm, Tg) Plot Show.   FIG. 3 shows the elastic modulus as a function of temperature for the adhesives of the present invention. .                               Detailed description   The reusable adhesive composition of the present invention has a T of 30 ° C to 70 ° C.g, 115 ° C to 155 ℃ TcAnd T of 130 ° C to 170 ° CmOne or more semi-crystalline thermoplastic poly with It can be manufactured using an (ethylene-vinyl alcohol) copolymer. This glue The film has a sufficiently high shear strength over the desired range of operating temperatures, TcAbove 20 ° C, the shear strength decreases sufficiently rapidly that the melting temperature TmTo Moreover, the adhesive is reusable. "Shear strength" used here means glass The force required to remove the chip from the substrate.   Generally, one of ordinary skill in the art would appreciate the copolymer of ethylene and vinyl alcohol in an adhesive composition. Is not used as a polymer component of. These copolymers are essentially "non-sticky". This is because it is "wearability". These copolymers have a low permeability to atmospheric oxygen. Known and hence making bottles for food, eg plastic ketchup Has the use as a packaging material for the resin component, which is used to . Adhesives used for electronic die attachment applications include microelectronic circuit chips, adhesives and Due to the "mismatch" in the coefficient of thermal expansion (CTE) between the substrates to which the chips are bonded, High Receive a level of stress. Amorphous thermoplastic polymers have such high stress levels. When used in adhesive applications, it maintains the electrical bond between the chip and the substrate. T of the polymer to ensure sufficient creep resistance to holdgUsed in the environment Maximum temperature (Tmax) Is required. This is a lot of B. When the mounting adhesive is "cured" (chemically crosslinked), TgTo TmaxTo This is the reason for raising it.   In the semi-crystalline polymer used in the adhesive of the present invention, TgHigher recrystallization temperature ( TcDeterioration creep occurs along with the relaxation of stress at temperatures above). did Thus, in general, semi-crystalline polymers are better than those derived from amorphous thermoplastic polymers. High TmaxProvide the adhesive with a value of. Preferred semi-crystals for reusable adhesive applications The polymer has a recrystallization temperature (Tc) And melting temperature (TmBetween) It has a sharp decrease in modulus.   The adhesive of the present invention is typically a film-type material coated on a release liner. is there. Due to the thermoplastic nature of the polymer in the formulation, this composition provides a fast bond adhesion Agents, which are repairable. Of poly (ethylene-vinyl alcohol) Relatively low T due to semi-crystallinitygNevertheless, high dimensional stability at high temperatures To be kept. This polymer ensures a high cohesive bond after recrystallization with a crystallization temperature ( 115 ° C to 155 ° C). The semi-crystal also leads to excellent wetting during the bonding operation. TmProvides a steep viscosity / temperature gradient in the vicinity (see Figure 3) thing).   The reusable adhesive film of the present invention is preferably at least at room temperature. It is stable for storage for 1 month, has a sufficiently low viscosity at the bonding temperature and flows well. Provides kinetic properties at moderate temperatures, for example 145 ° C to 225 ° C, more preferably 1 Rapid contact at 50 ° C to 215 ° C, and most preferably 160 ° C to 200 ° C. Is possible, and is substantially dependent on conditions up to 85 ° C at 85% relative humidity. Not affected.   The reusable adhesives of the present invention are particularly useful in electronic applications. Many types of electricity The child part has one or more silicon chips. These chips are usually square or Is a square shape and has a small dimension, for example a few millimeters (mm) in the lateral direction belongs to. It has at least one tip, often many conductive ends. Which electrically couples the conductive paths on the substrate to complete the desired circuit. There is a need to. This path is for metals such as silver, gold, copper, etc. bonded to the substrate. Thin film, or conductive, or with conductive particles present in it It may consist of a strip of adhesive or ink rendered more conductive by.   The reusable adhesive of the present invention is particularly useful as an attachment means in the FDCA bonding method. Is. In the FDCA bonding method, the bare chip is directly bonded to the conductive base material. specific The tips of the ridges are mounted to bridge the adhesive layer and bond directly to the substrate. It has an origin (protruding tip). Non-protruded chips are typically continuous Bonded using an adhesive with conductive particles to provide a conductive path between the substrate and the chip. To form FDCA junctions are "adhesion for level-1 microelectronic interconnections. Research on the Use of Agents ", P. B. Hogerton et al., Electronic packaging Materials Science, Symposia Proceedings ), April 24-29, 1989.   Typical commercial bonding temperatures range from 145 ° C to 225 ° C, more typically Is 160 ° C to 200 ° C. Bonding time from minutes to hours when using conventional adhesives In between, but for the mass production assembly of commercially viable electronic components The inventive adhesive has a bonding time of less than 30 seconds, preferably less than 20 seconds.   The reusable adhesive composition of the present invention is preferably at the intended handling temperature. And is provided as a non-tacky or slightly tacky film. Liquid or page The advantage of such an adhesive film over a string adhesive is that it is easy to handle and Precise alignment of the tips, application of the correct amount of glue to the chips to be glued, and Minimal waste.   The processing temperature is the temperature at which the adhesive is used to bond the chip to the substrate. This temperature is low enough to prevent damage to the chip or substrate during processing It must be high enough to bond the chip to the substrate.   FIG. 1 illustrates an integrated circuit, particularly suitable for using the adhesive composition of the present invention thereon. It is a schematic plan view which shows a lint circuit board. The printed circuit board 10 has flexible circuit ends 2 0, printed circuit board end 30 and printed circuit board end 40. Of the present invention The adhesive may, for example, bring the flexible circuit 50 to the flexible circuit end 20; the printed circuit board 6; 0 to printed circuit board end 30; TAB, ie tape automated bonding, lead Used to join frame 70 to printed circuit board end 40.   The TAB lead frame 72 is bonded to the printed circuit board 10. Printed circuit The plate 60 has flip chips 61 to 66. Flip chip 66 prints Before joining to the road plate 60. The adhesive of the present invention is suitable for the flip chips 61 to 66. It can be used to bond to the lint circuit board 60. The liquid crystal display 80 is also shown in FIG. . Liquid crystal display 80 has flexible circuit 50 bonded thereto. Flip The chip 90 and the TAB lead frame 100 are also bonded to the liquid crystal display 80. Be done.   FIG. 2 shows the melting point (T as a function of ethylene content of the adhesives of the invention.m) Lot A, crystallization temperature (Tc) Plot B and the glass transition point (Tg) C is shown. This plot is only a generalized example of a typical adhesive of the present invention. It is not meant to limit the types of copolymers or adhesives that can be used. FIG. Adhesive at 55 ° C T for 56% ethyleneg, T at 142 ℃c, And And a bonding time of 10 to 30 seconds at 180 to 230 ° C. Copo used The molecular weight of the limer correlates with melt viscosity as illustrated in FIG. FIG. 3 shows the present invention. Shows a plot of elastic modulus (E ') as a function of temperature for various adhesives . The maximum modulus indicated by M corresponds to 100 MPa, and the minimum modulus indicated by N is It corresponds to 50 MPa. The adhesive of the present invention is TcAt a temperature 20 ° C below It has a modulus above MPa. The temperature line B shown in FIG. Agent TcCorresponds to a temperature below 20 ° C. Line A shown in FIG. 3 is T of this adhesive.c Is shown. The modulus vs. temperature plot 200 in FIG. 3 shows that this adhesive has a Tc Having a modulus above 100 MPa at a temperature below 200 ° C. Is shown.   Coupling agent   The adhesive composition of the present invention is a coupling agent for assisting adhesion to the substrate used. A stinging agent may also be included. Silane coupling agents are preferred, which are preferably The product is provided in an amount of 0.1-5% by weight, preferably 1% by weight.   Preferred silane coupling agents have the formula           P(4-n)SiZn [Wherein P is an organic substituent of up to 12 carbon atoms, for example propyl, Mercapto, epoxy, glycidoxy, acrylyl, methacrylyl, and ami Z should have a functional substituent such as Z; Z is a hydrolyzable group, eg, Alkoxy, preferably methoxy or ethoxy, n is 1, 2 or 3, It is preferably 3. ] It has the structure shown in.   In addition to silane coupling agents, titanate and zirconate coupling agents Can also be used. For example, AJ Kin, published by Elsevier Applied Science Publishing "Structural Adhesives," edited by Kinroch. ) ”By J. Cromyn on the coupling agent chapter, 1968, See pages 269-312. Epoxy and amine silanes on page 270 Examples of coupling agents are given. Pp. 306-308, titanate and di The use of luconate coupling agents is described.   Other additives   For example, US Pat. No. 4,606,962 (Reylek et al.) And the same. Conduction as described in 4,740,657 (Tsukagoski et al.) Particles may optionally be added to the adhesive composition. Raylek is the adhesive bonding temperature Electrically and thermally conductive particles that are at least deformable in degrees are substantially pure It will be described as gold and silver spherical particles. Particle thickness exceeds adhesive thickness between particles . The particles described in Raylek are preferably substantially spherical and have a silver or silver content. Or higher melting like gold or "solder surface layer and copper or non-metal core Made of a metal such as one or more materials such as a "metal core" (col. 4, second) Lines 0-21).   Such and other conductive particles (eg non-spherical and / or Having a thickness less than that of the adhesive) is used in the adhesive composition of the present invention. Preferred.   The conductive particles contained in the adhesive composition of the present invention are randomly dispersed therein. Or may be arranged in a uniform array of the desired structure. The use of conductive particles To save money, only in the segments of the adhesive film where the individual conductors make contact. These can be located.   Other fillers may also be added to the adhesive composition. Increased use of fillers Can provide advantages of adhesion, higher modulus and reduced coefficient of thermal expansion . Useful fillers are silica particles, silicate particles, quartz particles, ceramic particles. , Glass bubbles, inert fibers and mica particles, including but not limited to Absent. Preferably, the filler is microcrystalline silica particles.   It is important that the adhesive composition have low ionic impurity levels. Electronics industry Specifies a low extractable ionic content of the adhesive. Specifications are below 10ppm Cl around-, Na+, K+And NHFour +a. Such extremely low ion content The amount prevents the metal from corroding and is an adhesive unless any conductive metal particles are present. It is important to keep the conductivity of the as low as possible.   In the following examples, these are merely illustrative and are not limiting and all percentages are by weight. It is a standard.                               Examples 1-6   The adhesive composition of the present invention as shown below using the ingredients and amounts shown in Table 1 Was prepared. First, dissolve the polymer in methanol and water at 60 ° C. Let Silica and conductive particles were added while the solution was still warm. knife Teflon adhesive composition using a coaterTMCast on film. Knife and back Adjust the distance between the material to adjust the adhesive thickness between 20 and 40 μm Set to. Dry the adhesive film at 50 ° C for 1 hour and store in a dessicator It was                                 Example 7   For measuring die shear strength for each of Examples 1, 2, 4, 5, and 6. The adhesive was evaluated more. The purpose of the test is to determine the force required to shear the chip from the substrate. To decide. Adhesive strength is 25mm x 25mm x 1mm Using a shear tester on a combined 2mm x 2mm x 1mm glass chip More measured.   The following method was used to bond the tip onto the slide. Chip on film The adhesive by making it adhesive by applying heat activation and pressure. The adhesive was transferred to a glass chip. When the chip is removed from the release backing , Which was covered with a uniform layer of adhesive. Then place it on the slide, 2. Bonding was performed for several seconds at 180 ° C. under a pressure of 5 MPa using a die bonding machine.   Specification for adhesive selection and use in microelectronic applications is 6 MPa (Mill standard (MILSTD), 883C, method 5011) minimum bond strength required To do. The results in Table 2 are for the poly (ethylene-vinyl alcohol) adhesive composition. It shows that a high adhesion is obtained.                                 Example 8   The flip-chip direct attachment method was used to remove the adhesive compositions of Examples 1-6. A silicon chip was bonded to the circuit on the substrate. Test tip (0.5mm × 7mm × 7mm) supports 120 gold bump pads (pad pitch: 0.2mm) Yes, Form an electrical connection. This circuit has been modified to allow 4-probe resistance measurements. Indium tin oxide. This indium tin oxide has a thickness of 0.1 μm And had a sheet resistance of 20 ohms / square.   Heating to 150-180 ℃ on the hot plate surface and applying light pressure Chip the adhesive film by laminating the film on the chip more Were transferred to the active surface of. Remove the laminated structure from the hot plate after a few seconds. I left.   After arranging the chips with conductive electrodes on the substrate, the final flip-chip on glass. I installed the cap. Bonding is performed at a temperature of 200 ° C for 30 seconds under pressure (about 10 MPa). ) Was added.   The inter-bond resistance was measured using the 4-probe method. Average resistance, minimum and maximum resistance It was determined. The results shown in Table 3 are the measured resistance. These are the true inter-bond resistances Is twice that of This is because two contacts are included in the measurement. Also, these are The resistance of the indium tin oxide circuit on the substrate and the gold bumps on the silicon chip. It also includes the resistance of the aluminum straps that bind. 2 ohms from these considerations Values below are considered good inter-bond resistance.   The results in Table 3 show that poly (ethylene- It has been shown that good electrical coupling is obtained with the (vinyl alcohol) composition. You                               Example 9   Environmental testing of test samples from Example 8 (Examples 3 and 4) was performed by thermal aging and And humidity aging.   The adhesive composition of Example 3 during 1000 hours of heat aging at 100 ° C. Maintained the electrical connection without opening the circuit.   During humidity aging for 1000 hours at 60 ° C and 95% relative humidity (RH) The adhesive composition of Example 4, maintained the electrical bond without opening the circuit.                               Example 10   The adhesive composition of Example 1 was used to bond flexible circuits to printed circuit boards. Flexible circuit metallized with copper and protected by a layer of lead-tin solder 12 μm thick It is composed of a 10 mm × 50 μm thick polyimide tape. This tape has a 0.4mm pitch It had 17 conductive lines spaced apart at the end. This printed circuit board Has a similar pitch metallized with copper and 12 μm thick lead-tin solder FR-4 epoxy glass laminate.   Flexible piece of 3mm x 8mm adhesive film using heat activation and slight pressure Moved to the circuit. Place this tape on this board and align the strips. Applying a pressure of MPa, and at the same time, the adhesive was heated to 200 ° C. using a hot bar-type joining machine. The final bond to this plate was made by heating for 0 seconds.   The inter-bond resistance was measured using the 4-probe method. Average resistance, minimum resistance and maximum Determined resistance. The results shown in Tables 4 and 5 are the measured resistance values. They are Twice the true intercoupling resistance. Because each test sample has two bonds is there. They also include circuit board resistances and flexible circuit resistances. These thoughts By reason, values below 0.5 ohms are considered good interconnects.   The results in Table 4 show that poly (ethylene-vinyl acetate) was used to bond flexible circuits onto boards. It is shown that good electrical coupling can be obtained when using Rucor).                               Example 11   The following method was used to test the repairability of the adhesive. Explanation to Example 10 Test samples were prepared as revealed. Epoxy glass laminae derived from this test sample The substrate was heated to 150 ° C. At this temperature, the flexible circuit easily peels away Was done. The adhesive residue on this board was wiped away. The connection described in Example 10 Using the gluing procedure, use a piece of new adhesive to create a new flexible spin at 200 ° C for 30 seconds. The lane was joined to this plate. The bindings obtained before and after reuse are shown in Table 5.   There is no significant change in the adhesive after reuse. Good electrical coupling is regained It was Poly (ethylene-vinyl alcohol) composition is a repairable adhesive .   Example 12   The test sample from Example 10 under humidity aging, heat aging and heat cycling. The environmental test was conducted. Interbond resistance was measured after 1000 hours of testing.   The results shown in Table 6 show that no significant deterioration in contact resistance occurred. This port Li (ethylene-vinyl alcohol) composition shows high stability under environmental test .   The following comparative examples use only amorphous thermoplastic polymers as high molecular weight resin compositions Film adhesives have the extreme temperature-humidity conditions found in typical operating environments. It shows that it is not possible to maintain an adequately low contact resistance below.   Comparative amorphous polymer A   30μ thick from thermoplastic poly (vinyl butyral) resin called "B76" A m film adhesive was prepared. B76 has an average molecular weight of about 50,000, Tg50 ° C Which is available from Monsanto Chemical Company, St. Louis, MO. this Phil Rum adhesive is prepared by first dissolving B76 polymer in xylene and adding it to isopropanol. 95% by weight of solvent phase (xylene: isopropanol = 60:40) and 5% by weight of water, cast from a solution of 70% solids. For film adhesive, use this polymer solution with TeflonTMKnife coating on film substrate Prepared. The connection is made by adjusting the distance between the knife and the backing. The thickness of the adhesive was adjusted to 20-40 μm. Allow the adhesive to dry at 80 ° C for 1 hour , Stored in desiccator prior to conjugation and testing.   This film adhesive was used to coat a silicon test chip with an indium-tin oxide coating. It was bonded to a covered glass substrate and tested using the procedure of Example 8. The following joints The case was used. Temperature = 185 ° C., pressure = 140 KPa, bonding time = 30 seconds. The result The results are shown in Table 7 below.   Although at room temperature, the contact resistance is not stable. "B76" thermoplastic adhesive is electrically It was determined to be unsuitable for use as a child die attachment adhesive. Therefore, in Example 9, No more rigorous environmental testing was done.   Comparative amorphous polymer B   28μ thickness from thermoplastic poly (vinyl butyral) resin called "B98" A m film adhesive was prepared. "B98" is a weight average molecular weight of 37,000, 6 5 ° C TgAvailable from Monsanto Chemical Co., St. Louis, MO. This film adhesive was prepared by first dissolving the "B98" polymer in xylene and then , Isopropanol and water were added in succession, and the solvent phase was 9 5 weight % (Xylene: isopropanol = 60: 40) and 5% by weight of water, solids 8 Cast from a 5% solution. This polymer liquid is TeflonTMKnife on film substrate An adhesive film was prepared by coating. The distance between the knife and the backing The thickness of the adhesive was adjusted to 20 to 40 μm by adjusting. 80 ° C adhesive Dry for 1 hour and store in a dessicator prior to joining and testing.   This adhesive film was used to bond silicone test chips to indium-tin oxide. It was bonded to a coated glass substrate and tested using the procedure of Example 8. Join below Conditions were used. Temperature = 275 ° C., pressure = 70 KPa, bonding time = 10 seconds. Bonding pressure The test joint was cooled to 35 ° C. before opening. The results are shown in Table 8 below.   This "B98" film adhesive was judged to have passed the room temperature aging test, It was subjected to the same environmental tests as done in Example 9. The following environmental conditions were used. Warm Degree = 60 ° C., relative humidity = 95%, time = 73 hours. The results of the environmental aging test are 3 of the original 60 pairs had a contact resistance of less than 100,000 ohms It was only a. Therefore, the "B98" thermoplastic polymer is for electronic die attach adhesives. It was judged that it was not suitable for the way.   Various modifications and alterations of this invention without departing from the scope and spirit of this invention. Will be apparent to those skilled in the art.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI H01L 21/60 311 8824−4E H01L 21/60 311Q // H01L 21/52 7220−4E 21/52 E (72)発明者 ホガートン、ピーター・ビー アメリカ合衆国 55133―3427、ミネソタ 州、セント・ポール、ポスト・オフィス・ ボックス33427番(番地の表示なし)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI H01L 21/60 311 8824-4E H01L 21/60 311Q // H01L 21/52 7220-4E 21/52 E (72 Inventor Hogerton, Peter B. Post Office Box 33427 (St. Paul, St. Paul, Minnesota, 55133-3427, USA) (No street address)

Claims (1)

【特許請求の範囲】 1.30〜70℃のTg、115〜155℃のTcを有する1種以上の半結晶ポ リ(エチレン−ビニルアルコール)コポリマー、および伝導性粒子、カップリン グ剤およびフィラーから成る群から選択される少なくとも1種の添加剤を含有す る再使用可能な熱可塑性接着剤組成物であって、該接着剤組成物のTcを20℃ 下回る温度において50MPaを上回るモジュラスを有し、ミル標準883C、 方法5011により測定された10MPaを上回る接合強度を提供する接着剤組 成物。 2.前記組成物が40℃〜60℃のTgおよび125〜145℃のTcを有する 請求項1記載の再使用可能な熱可塑性接着剤組成物。 3.前記接着剤フィルムが、硬化後の接着剤組成物のTcを20℃下回る温度 において100MPaを上回るモジュラスを有する請求項1記載の再使用可能な 接着剤組成物。 4.0.1〜5重量%のシランカップリング剤を有する請求項1記載の再使用 可能な熱可塑性接着剤組成物。 5.前記シランカップリング剤が、式 P(4-n)SiZn [式中、Pは12個の炭素原子までの有機置換基、例えば、プロピルであるが、 これはメルカプト、エポキシ、グリシドキシ、アクリリル、メタクリリルおよび アミノから成る群から選択される官能性置換基を有するべきであり;Zは加水分 解可能基であり、そしてnは1、2または3である。] で示される請求項4記載の接着剤組成物。 6.(a)請求項1記載の再使用可能な接着剤フィルムを提供する工程; (b)1箇所以上の導電性接合位置を有する導電性基材を提供する工程; (c)それぞれ導電性接合表面を有する1個以上の導電性デバイスを提供する 工程; (d)それぞれの該1箇所以上の導電性接合位置とそれぞれの該1個以上の導 電性デバイスの導電性接合表面との間に前記再使用可能な接着剤を位置させる工 程 ;および (e)それぞれの導電性接合位置とそれぞれの導電性接合表面との間に再使用 可能な接着剤接合を形成するのに十分な熱および/または圧力を十分な時間印加 する工程; を包含する、2個の導電性表面の間に再使用可能な接着剤接合を形成することに より導電性接合されたコンポジットを形成するための方法であって、 該1個以上の再使用可能な接着剤接合のそれぞれが、接着剤フィルムのTcを 20℃下回る温度において50MPaを上回るモジュラスを有する方法。 7.前記導伝性基材がプリント回路板である請求項6記載の方法。 8.1個以上の前記導電性デバイスが集積回路および可撓性回路から選択され る請求項7記載の方法。 9.前記導電性接合表面が金、銀、銅、アルミニウム、ニッケルおよびはんだ から成る群から選択される材料を有する請求項6記載の方法。 10.前記再使用可能な接着剤フィルムが145〜225℃の温度に加熱され て該再使用可能な接着剤接合を形成し、熱が30秒を下回って印加される請求項 6記載の方法。[Claims]   1.30 ~ 70 ℃ Tg, T at 115-155 ° CcHaving one or more semi-crystalline po Li (ethylene-vinyl alcohol) copolymer, and conductive particles, coupling Containing at least one additive selected from the group consisting of A reusable thermoplastic adhesive composition comprising:c20 ℃ Has a modulus above 50 MPa at temperatures below, mill standard 883C, Adhesive set providing bond strength greater than 10 MPa as measured by method 5011 Adult.   2. The composition has a T of 40 to 60 ° C.gAnd T of 125-145 ° CcHave The reusable thermoplastic adhesive composition of claim 1.   3. The adhesive film is T of the adhesive composition after curing.c20 ° C below Reusable according to claim 1, having a modulus above 100 MPa Adhesive composition.   Reuse according to claim 1, having from 4.0.1 to 5% by weight of silane coupling agent. Possible thermoplastic adhesive compositions.   5. The silane coupling agent has the formula           P(4-n)SiZn [Wherein P is an organic substituent of up to 12 carbon atoms, for example propyl, This includes mercapto, epoxy, glycidoxy, acrylyl, methacrylyl and Should have a functional substituent selected from the group consisting of amino; It is a solvable group and n is 1, 2 or 3. ] The adhesive composition according to claim 4, wherein   6. (A) providing a reusable adhesive film according to claim 1;   (B) providing a conductive substrate having one or more conductive bonding positions;   (C) Providing one or more conductive devices each having a conductive bonding surface. Process;   (D) Each of the one or more conductive joint positions and each of the one or more conductive joints. A step of positioning the reusable adhesive between the conductive bonding surface of the electronic device and Degree ;and   (E) Reuse between each conductive joint location and each conductive joint surface Applying sufficient heat and / or pressure for a sufficient time to form a possible adhesive bond Process of Forming a reusable adhesive bond between two electrically conductive surfaces including A method for forming a more conductively bonded composite, comprising:   Each of the one or more reusable adhesive joints has a T of adhesive film.cTo A method having a modulus above 50 MPa at a temperature below 20 ° C.   7. The method of claim 6, wherein the conductive substrate is a printed circuit board.   8. One or more of the conductive devices are selected from integrated circuits and flexible circuits The method according to claim 7, wherein   9. The conductive bonding surface is gold, silver, copper, aluminum, nickel and solder The method of claim 6 having a material selected from the group consisting of:   10. The reusable adhesive film is heated to a temperature of 145-225 ° C. Forming a reusable adhesive bond and heat is applied for less than 30 seconds. 6. The method according to 6.
JP6522064A 1993-04-05 1994-02-22 Reusable poly (ethylene-vinyl alcohol) adhesive for electronic applications Pending JPH08508526A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1334293A 1993-04-05 1993-04-05
US08/013,342 1993-04-05
PCT/US1994/002143 WO1994022972A1 (en) 1993-04-05 1994-02-22 Reworkable poly(ethylene-vinyl alcohol) adhesive for electronic applications

Publications (1)

Publication Number Publication Date
JPH08508526A true JPH08508526A (en) 1996-09-10

Family

ID=21759480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6522064A Pending JPH08508526A (en) 1993-04-05 1994-02-22 Reusable poly (ethylene-vinyl alcohol) adhesive for electronic applications

Country Status (6)

Country Link
EP (1) EP0699220A1 (en)
JP (1) JPH08508526A (en)
KR (1) KR960701965A (en)
CN (1) CN1120850A (en)
CA (1) CA2160003A1 (en)
WO (1) WO1994022972A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620651B2 (en) * 2001-10-23 2003-09-16 National Starch And Chemical Investment Holding Corporation Adhesive wafers for die attach application
US8026296B2 (en) 2005-12-20 2011-09-27 3M Innovative Properties Company Dental compositions including a thermally labile component, and the use thereof
US7896650B2 (en) 2005-12-20 2011-03-01 3M Innovative Properties Company Dental compositions including radiation-to-heat converters, and the use thereof
US7776940B2 (en) 2005-12-20 2010-08-17 3M Innovative Properties Company Methods for reducing bond strengths, dental compositions, and the use thereof

Also Published As

Publication number Publication date
EP0699220A1 (en) 1996-03-06
CN1120850A (en) 1996-04-17
CA2160003A1 (en) 1994-10-13
WO1994022972A1 (en) 1994-10-13
KR960701965A (en) 1996-03-28

Similar Documents

Publication Publication Date Title
US5672400A (en) Electronic assembly with semi-crystalline copolymer adhesive
US7341642B2 (en) Manufacturing method for electric device
EP0591174B1 (en) Reworkable adhesive for electronic applications
EP0898603B1 (en) Adhesive compositions and methods of use
JP4766200B2 (en) Adhesive composition and method for manufacturing semiconductor device
JP3801666B2 (en) Electrode connection method and connection member used therefor
EP0734576B1 (en) Anisotropic, electrically conductive adhesive film
KR20110082092A (en) Adhesive and connecting structure using the same
JP4098403B2 (en) Adhesive, bonding method, and assembly of mounting substrate
WO2010137445A1 (en) Adhesive composition, adhesive sheet for connection of circuit member, and process for manufacture of semiconductor device
JPH10335389A (en) Semiconductor device and sheet-shaped sealing material used for the same
JP4778078B2 (en) Adhesive composition, adhesive sheet, dicing die attach film, and semiconductor device
JPH08508526A (en) Reusable poly (ethylene-vinyl alcohol) adhesive for electronic applications
JP3976395B2 (en) Semiconductor device
JP3824651B2 (en) Electronic assembly using semi-crystalline copolymer adhesive
JP2012184288A (en) Adhesive for circuit connection, adhesive sheet for circuit connection, and method for producing semiconductor device
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JP2002167569A (en) Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
JP4635313B2 (en) Adhesive composition, adhesive composition for circuit connection, circuit connection material, connector and semiconductor device
JPH10294422A (en) Mounting method for electronic component
JP2001031915A (en) Anisotropically electroconductive film
JPH10195415A (en) Lead frame with thermosetting adhesive
JP2001031936A (en) Anisotropically electroconductive film