JPH0850828A - Electric wire covering method and apparatus utilizing vertical type cooling water tank - Google Patents

Electric wire covering method and apparatus utilizing vertical type cooling water tank

Info

Publication number
JPH0850828A
JPH0850828A JP6183613A JP18361394A JPH0850828A JP H0850828 A JPH0850828 A JP H0850828A JP 6183613 A JP6183613 A JP 6183613A JP 18361394 A JP18361394 A JP 18361394A JP H0850828 A JPH0850828 A JP H0850828A
Authority
JP
Japan
Prior art keywords
water tank
cooling water
electric wire
vertical
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6183613A
Other languages
Japanese (ja)
Other versions
JP3032936B2 (en
Inventor
Ichiro Ozawa
一郎 小沢
Osamu Shikibu
修 式部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP6183613A priority Critical patent/JP3032936B2/en
Publication of JPH0850828A publication Critical patent/JPH0850828A/en
Application granted granted Critical
Publication of JP3032936B2 publication Critical patent/JP3032936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To lower the driving cost by penetrating a covered electric wire which is covered from a through hole at the lower end of a seal cylinder to the open part by hot dip coating method, cooling the electric wire, and jetting compressed air upward from a through hole of a cooling water tank. CONSTITUTION:A covered electric wire 7 at high temperature immediate after hot dip coating process is introduced to a cooling water tank 2B through a through hole 2X of a second nozzle 2M installed in the lower end part of a seal cylinder 2A positioned under the cooling water tank 2B. The electric wire 7 at high temperature introduced into the water tank 2B is cooled by water in the water pole 18 and the temperature becomes low and the electric wire 7 is led out of the water tank 2B while the covering being fixed. Attributed to the pressure, compressed air P in the cylinder 2A rushes in a communication part 2Z of a first nozzle 2K from a space between a seal cylinder side open part 2V of the nozzle 2K and the wire 7 and jets to the water tank 2B from the space of a water tank side open part 2V and the wire 7. Strong upward air current generated in the open part 2V and downward water current which are flowing out to the communication part 2Z from the same open part 2V come into collision against each other, resulting in air-tight state can be maintained stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は押出し加工により導体を
被覆する電線被覆装置、とりわけ縦型冷却水槽を用いた
電線被覆方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric wire coating apparatus for coating a conductor by extrusion processing, and more particularly to an electric wire coating method and apparatus using a vertical cooling water tank.

【0002】[0002]

【従来の技術】従来、電線被覆工程においては熱溶融被
覆の内でも押出被覆が一般的に採用されている。これは
熱可塑性樹脂を加熱溶融状態で導体の表面に塗着させ、
これを冷却凝固させて連続した被覆面を形成させるもの
である。このような構成による従来の電線被覆装置の側
面図を図6に示す。
2. Description of the Related Art Heretofore, extrusion coating has been generally adopted among heat melting coatings in the electric wire coating process. This is because the thermoplastic resin is applied to the surface of the conductor in a molten state by heating,
This is cooled and solidified to form a continuous coated surface. FIG. 6 shows a side view of a conventional electric wire coating device having such a configuration.

【0003】同図に示す電線被覆装置では、サプライド
ラム51から繰り出された導体52がキャプスタン53
A〜53Cを経てエクストルーダ54に導入される。エ
クストルーダ54では、ホッパー54Aより投入された
熱可塑性樹脂を加熱溶融状態にして、導体52表面に塗
着させて押出被覆を行なう。被覆処理後の電線は、複数
基の架台60上に配設された長尺の横型冷却水槽55、
56に順次導入され、この工程で水冷されて被覆が凝固
定着される。横型冷却水槽55、56を出た被覆電線5
8はキャプスタン53D〜53Jを経由して、プーリ付
きモータ57まで導かれ、被覆電線巻取器59で巻き取
られる構成になっている。
In the electric wire coating apparatus shown in FIG. 1, the conductor 52 fed from the supply drum 51 is a capstan 53.
It is introduced into the extruder 54 through A to 53C. In the extruder 54, the thermoplastic resin charged from the hopper 54A is heated and melted, and is applied to the surface of the conductor 52 for extrusion coating. The electric wire after the coating treatment is a long horizontal cooling water tank 55 arranged on a plurality of mounts 60,
Introduced sequentially into 56, water cooled in this step to solidify and fix the coating. The covered electric wire 5 exiting the horizontal cooling water tanks 55 and 56
8 is guided to the motor 57 with a pulley via the capstans 53D to 53J and wound by the covered electric wire winder 59.

【0004】[0004]

【発明が解決しようとする課題】前記のように従来の電
線被覆装置では、押出成形後の高温度の被覆電線を、横
型すなわち水平方向に伸びた冷却水槽に浸して冷却して
いた。しかしながら、最近、押出速度が上昇するにつれ
て、それに伴いさらに長寸法の冷却水槽が要求されるに
至り、よって電線被覆装置の設置占有面積が増大してコ
スト増加の原因となっていた。さらに、水平方向に冷却
距離が伸びる結果として、電線を橈ませることなく張り
続けるためにより強力な電線牽引を行わねばならず、強
力な駆動源を備えたキャプスタンが、しかも複数基必要
となり、設備コストとともに運転コストも増加するとい
う欠点があった。加えて前記の強力な電線牽引の結果、
十分に冷却定着していない被覆部に強力な力がかかるこ
とによる、被覆部の変形という好ましくない事態をまね
くおそれもあった。処で、自動車用ワイヤーハーネス等
では、多品種少量生産の要求される場合がとみに増大し
ているが、従来の構成は操業条件の頻繁な変更に必ずし
も適するものとはいえなかった。
As described above, in the conventional electric wire coating apparatus, the high temperature covered electric wire after extrusion molding is cooled by being immersed in a cooling water tank extending horizontally, that is, in the horizontal direction. However, recently, as the extrusion speed has increased, a cooling water tank having an even longer dimension has been required accordingly, so that the installation occupied area of the wire coating device increases, which causes a cost increase. Furthermore, as a result of the increased cooling distance in the horizontal direction, more powerful electric wire pulling must be performed in order to keep the electric wire stretched without slackening, and more than one capstan with a strong drive source is required, and the equipment is required. There is a drawback that the operating cost increases with the cost. In addition, as a result of the strong electric wire towing,
There is also a possibility that an unfavorable situation such as deformation of the coating portion may be caused by applying a strong force to the coating portion that has not been sufficiently cooled and fixed. However, in the case of wire harnesses for automobiles and the like, there is an increasing demand for high-mix low-volume production, but the conventional configuration has not always been suitable for frequent changes in operating conditions.

【0005】すなわち、従来の横型冷却水槽による構成
においては、単品種の高速大量生産には向いているが、
設備コストや運転コストをはじめ設置面積の増大を抑え
ることが難しい。また電線の変形を回避することが困難
である。さらに、多種少量生産に対応して操業条件を変
更するのに困難が伴う。そこで冷却水槽として従来のよ
うな水平方向に伸びる横型ではなく、上下すなわち垂直
方向に伸展する縦型冷却水槽が検討された。しかしなが
ら、このような縦型冷却水槽においては、冷却すべき被
覆電線を冷却水槽の下端の開口から導入して槽内を通過
させる必要がある。このとき、冷却途中の被覆電線に変
形を与えるのを避けるため、被覆電線が開口壁に接触し
ない構成としなければならない。このため被覆電線と開
口壁間に空隙を設けると、冷却水がこの空隙から下方に
漏洩流出するという難点があり、これが縦型冷却水槽実
現の障害となっていた。
That is, although the conventional configuration of the horizontal cooling water tank is suitable for high-speed mass production of a single product,
It is difficult to suppress an increase in installation area, including equipment costs and operating costs. In addition, it is difficult to avoid deformation of the electric wire. In addition, it is difficult to change the operating conditions in response to a variety of small-volume production. Therefore, as the cooling water tank, a vertical cooling water tank that extends vertically, that is, in the vertical direction, has been studied, instead of the horizontal type that horizontally extends as in the past. However, in such a vertical cooling water tank, it is necessary to introduce the covered electric wire to be cooled from the opening at the lower end of the cooling water tank and pass it through the tank. At this time, in order to prevent the covered electric wire from being deformed during cooling, the covered electric wire has to be configured not to contact the opening wall. Therefore, if a gap is provided between the covered electric wire and the opening wall, there is a drawback that the cooling water leaks and flows out downward from this gap, which has been an obstacle to the realization of the vertical cooling water tank.

【0006】本発明は上記状況に鑑みてなされたもの
で、冷却水の下方への漏洩流出の阻止が可能な縦型冷却
水槽を用いた電線被覆装置を提供し、もって、コスト低
減と設置占有面積の減少ならびに多品種少量生産への効
果的対応を図ることを目的とする。
The present invention has been made in view of the above circumstances, and provides an electric wire coating device using a vertical cooling water tank capable of preventing leakage and outflow of cooling water to the lower side, thereby reducing cost and occupying installation. The objective is to reduce the area and effectively cope with the small-lot production of various products.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
本発明に係る縦型冷却水槽を用いた電線被覆方法は、熱
溶融被覆加工された被覆電線を冷却水槽に浸して冷却す
る電線被覆方法において、立設され、冷却水を水柱とし
て貯留した筒状の冷却水槽の下端に配設された、圧縮空
気で常時満たされたシール筒下端の貫通孔から上端の開
口まで、熱溶融被覆加工された被覆電線を貫通させ、さ
らに前記被覆電線を冷却水槽下端の開口から前記水柱上
端まで貫通させて冷却し、前記シール筒内の前記圧縮空
気が前記冷却水槽下端の前記貫通孔から上方に噴出させ
ることを特徴とする。
In order to achieve the above object, an electric wire coating method using a vertical cooling water tank according to the present invention is an electric wire coating method in which a hot-melt coated coated electric wire is dipped in a cooling water tank for cooling. At the lower end of a cylindrical cooling water tank that stands upright and stores cooling water as a water column, a seal tube that is constantly filled with compressed air is heat-melt coated from the lower end through hole to the upper end opening. The covered electric wire, and further penetrates the covered electric wire from the opening at the lower end of the cooling water tank to the upper end of the water column for cooling, and the compressed air in the seal cylinder is jetted upward from the through hole at the lower end of the cooling water tank. It is characterized by

【0008】本発明に係る縦型冷却水槽を用いた電線被
覆装置は、導体に被覆を施して被覆電線となす被覆加工
手段と、該被覆電線を通過させる水柱を内部に備えた縦
型冷却手段と、該縦型冷却手段下端に配設されたシール
手段と、前記導体ならびに被覆電線を前記各手段の構成
部材に無接触に牽引移動する電線牽引移動手段と、前記
シール手段および乾燥手段に圧縮空気を供給する圧縮空
気供給手段と、前記縦型冷却手段に冷却水を循環供給す
る冷却水循環手段とで構成したことを特徴とする。
An electric wire coating apparatus using a vertical cooling water tank according to the present invention is a vertical cooling means having a coating processing means for coating a conductor to form a coated electric wire, and a water column for passing the coated electric wire inside. A sealing means disposed at the lower end of the vertical cooling means, an electric wire pulling and moving means for pulling and moving the conductor and the covered electric wire to the constituent members of the respective means without contact, and compression by the sealing means and the drying means. It is characterized by comprising compressed air supply means for supplying air and cooling water circulation means for circulating and supplying cooling water to the vertical cooling means.

【0009】また本発明に係る縦型冷却水槽を用いた電
線被覆装置は、熱溶融被覆加工された被覆電線を冷却水
槽に浸して冷却する電線被覆装置において、立ち上げら
れた筒状の冷却水槽と、前記冷却水槽の下方に位置し、
貫通孔を備える第2ノズルをその下端部に備え、かつ圧
縮空気インレットを備えた筒状のシール筒と、前記被覆
電線よりも径の大なる水槽側開口をその上端に有し、か
つ前記被覆電線よりも径の大なるシール筒側開口をその
下端に有する連通部を備え、前記冷却水槽とシール筒間
に亘り配設される第1ノズルとを備えた縦型冷却水槽を
用いることを特徴とする。
Further, the electric wire coating apparatus using the vertical cooling water tank according to the present invention is an electric wire coating apparatus for immersing and cooling a coated electric wire which has been subjected to a heat-melt coating process in a cooling water tank. And located below the cooling water tank,
A cylindrical seal cylinder having a second nozzle having a through hole at its lower end and having a compressed air inlet, and a water tank-side opening having a diameter larger than that of the covered electric wire at its upper end, and the covering A vertical cooling water tank provided with a communication portion having a seal cylinder side opening having a diameter larger than that of an electric wire at a lower end thereof and including the cooling water tank and a first nozzle arranged between the seal cylinders is used. And

【0010】あるいは前記冷却水槽の側部に、冷却水が
排水される冷却水アウトレットを複数個、順次縦方向の
異なる位置に備えて構成したことを特徴とする。さらに
前記連通部は、前記シール筒側開口から上方の水槽側開
口に向かい徐々に径を狭める傾斜面で構成されたことを
特徴とする。また前記第2ノズルの貫通孔の径を、下方
から上方に向かい徐々に縮小する構成としたことを特徴
とする。また導体の被覆加工部内の位置決めならびに縦
型冷却水槽内の被覆電線の位置決めのための、下方側3
次元位置規定手段と、上方側3次元位置規定手段を備え
たことを特徴とする。あるいは前記冷却水槽上方に乾燥
筒を配設し、該乾燥筒内部に前記冷却水槽内の水柱を経
た被覆電線を挿通させ、かつ前記乾燥筒内に圧縮空気を
送入する構成としたことを特徴とする。
Alternatively, a plurality of cooling water outlets through which the cooling water is discharged are sequentially provided at different positions in the vertical direction on the side portion of the cooling water tank. Further, the communication portion is characterized in that it is configured by an inclined surface that gradually narrows in diameter from the seal cylinder side opening toward the upper water tank side opening. Further, the diameter of the through hole of the second nozzle is gradually reduced from the lower side to the upper side. In addition, the lower side 3 for positioning the conductor in the coated portion and positioning the coated electric wire in the vertical cooling water tank
It is characterized in that it is provided with a dimensional position defining means and an upper three-dimensional position defining means. Alternatively, a drying cylinder is arranged above the cooling water tank, a covered electric wire passing through a water column in the cooling water tank is inserted into the drying cylinder, and compressed air is fed into the drying cylinder. And

【0011】[0011]

【作用】本発明に係る縦型冷却水槽を用いた電線被覆装
置では、熱溶融被覆加工直後の高温の被覆電線が、まず
冷却水槽の下方に位置するシール筒の下端部に設けられ
た第2ノズルの貫通孔から、その壁部に接触しないよう
離して導入される。導入された被覆電線は、ついで冷却
水槽とシール筒間の第1ノズルのシール筒側開口から、
その壁部に接触しないよう離して連通部に導入され、上
端の水槽側開口から、その壁部に接触しないよう離して
冷却水槽側に導出される。このようにして冷却水槽内に
導入された高温の被覆電線は、水冷されて低温になり、
被覆が定着した状態で冷却水槽外に導出される。
In the electric wire coating apparatus using the vertical cooling water tank according to the present invention, the high-temperature coated electric wire immediately after the hot melt coating is first provided on the lower end portion of the seal cylinder located below the cooling water tank. From the through hole of the nozzle, it is introduced so as not to contact the wall of the nozzle. The introduced coated electric wire is then passed through the opening on the seal tube side of the first nozzle between the cooling water tank and the seal tube,
The water is introduced into the communication part so as not to come into contact with the wall, and is led out to the cooling water tank from the water tank side opening at the upper end so as not to come into contact with the wall. In this way, the high-temperature coated electric wire introduced into the cooling water tank is water-cooled to a low temperature,
It is led out of the cooling water tank with the coating fixed.

【0012】この際に、シール筒に設けられた圧縮空気
インレットから送入された圧縮空気が、シール筒下端部
に設けられた第2ノズルの貫通孔と被覆電線との空隙か
ら放出される。さらに、シール筒内の圧縮空気はその圧
力で、第1ノズルのシール筒側開口と被覆電線との空隙
から第1ノズルの連通部に入り、水槽側開口と被覆電線
との空隙から冷却水槽内に放出しようとする。ここで水
槽側開口に発生する強い上向きの空気流が、同じ水槽側
開口から下方の連通部に流出しようとする水流と衝突す
る結果、この強い空気流が水流の下方への流出を阻止す
る。また前記連通部が、シール筒側開口から上方の水槽
側開口に向かい徐々に径を狭める傾斜面で構成されてい
ると、空気流の速度ならびに圧力はさらに強力になり、
水流の下方への流出を効果的に阻止する。この作用によ
って、冷却水が縦型冷却水槽の下端から流出あるいは漏
洩することがなくなり、縦型冷却水槽の安定した導入が
可能になる。
At this time, the compressed air introduced from the compressed air inlet provided in the seal cylinder is discharged from the gap between the through hole of the second nozzle provided at the lower end of the seal cylinder and the covered electric wire. Further, the compressed air in the seal cylinder enters the communication part of the first nozzle through the gap between the seal cylinder side opening of the first nozzle and the covered electric wire, and enters the cooling water tank through the gap between the water tank side opening and the covered electric wire. Try to release to. Here, the strong upward air flow generated in the water tank side opening collides with the water flow that is about to flow out from the same water tank side opening to the lower communication portion, and as a result, the strong air flow blocks the outflow of the water flow downward. Further, when the communication portion is composed of an inclined surface whose diameter gradually narrows from the seal cylinder side opening toward the upper water tank side opening, the velocity and pressure of the air flow become stronger,
Effectively blocks downward flow of water. By this action, the cooling water does not flow out or leak from the lower end of the vertical cooling water tank, and the vertical cooling water tank can be stably introduced.

【0013】[0013]

【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。先ず、この発明に係る縦型冷却水槽を用い
た電線被覆装置の全体構成を説明すると共にその方法を
説明し、ついでその縦型冷却水槽の構成と作用を詳細に
説明する。図1は本発明に係る縦型冷却水槽を用いた電
線被覆装置の実施例の全体構成を示す斜視図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, the overall structure of an electric wire coating apparatus using a vertical cooling water tank according to the present invention will be described, and its method will be described, and then the structure and operation of the vertical cooling water tank will be described in detail. FIG. 1 is a perspective view showing the overall configuration of an embodiment of an electric wire coating device using a vertical cooling water tank according to the present invention.

【0014】同図で、縦型冷却水槽を用いた電線被覆装
置1は、熱可塑性樹脂を加熱溶融状態にして導体表面に
塗着させる押出被覆を行なうエクストルーダ20と、被
覆処理後の電線を冷却して被覆を凝固定着させる縦型冷
却水槽2を架台44上に備える。縦型冷却水槽2は、垂
直筒状の冷却水槽2Bと、その下方に配設され圧縮空気
を噴出させるシール筒2Aとから成る。すなわち、本実
施例ではエクストルーダ20が被覆加工手段であり、ま
た本実施例では垂直筒状の冷却水槽2Bが縦型冷却手段
である。また本実施例ではシール筒2Aがシール手段で
ある。
In FIG. 1, an electric wire coating apparatus 1 using a vertical cooling water tank is provided with an extruder 20 for extrusion coating in which a thermoplastic resin is heated and melted and applied to the surface of a conductor, and an electric wire after the coating treatment is cooled. The vertical cooling water tank 2 for solidifying and fixing the coating is provided on the mount 44. The vertical cooling water tank 2 is composed of a vertical cylindrical cooling water tank 2B and a seal cylinder 2A arranged below the cooling water tank 2B for ejecting compressed air. That is, in this embodiment, the extruder 20 is a coating processing means, and in this embodiment, the vertical cylindrical cooling water tank 2B is a vertical cooling means. Further, in the present embodiment, the seal tube 2A is the sealing means.

【0015】さらに、導体5をエクストルーダ20に案
内するローラ8およびプーリ9〜11、被覆処理後の電
線7を縦型冷却水槽2および乾燥筒3を経由してモータ
15まで導くプーリ12〜14を備える。すなわち、本
実施例では、ローラ8およびプーリ9〜11、プーリ1
2〜14、およびモータ15で電線牽引移動手段を、乾
燥筒3で乾燥手段を構成している。
Further, there are rollers 8 and pulleys 9 to 11 for guiding the conductor 5 to the extruder 20, and pulleys 12 to 14 for guiding the covered electric wire 7 to the motor 15 via the vertical cooling water tank 2 and the drying cylinder 3. Prepare That is, in this embodiment, the roller 8, the pulleys 9 to 11, and the pulley 1
2 to 14 and the motor 15 constitute electric wire pulling / moving means, and the drying cylinder 3 constitutes drying means.

【0016】縦型冷却水槽2に冷却水を供給するための
冷却水タンク32にはポンプ24が付設されており、ポ
ンプ24は吐出側ホース25を介して縦型冷却水槽2と
接続され、また縦型冷却水槽2は冷却水排水ホース28
〜30および、冷却水戻りホース31を介して冷却水タ
ンク32と接続されている。さらに吐出側ホース25と
冷却水排水ホース28〜30とは電磁弁26を介して接
続されている。
A pump 24 is attached to a cooling water tank 32 for supplying cooling water to the vertical cooling water tank 2, and the pump 24 is connected to the vertical cooling water tank 2 via a discharge side hose 25. The vertical cooling water tank 2 has a cooling water drain hose 28.
˜30 and a cooling water return hose 31 are connected to the cooling water tank 32. Further, the discharge side hose 25 and the cooling water drainage hoses 28 to 30 are connected via an electromagnetic valve 26.

【0017】上記構成により、ポンプ24は冷却水タン
ク32内の冷却水を汲み上げ、吐出側ホース25を経て
縦型冷却水槽2の冷却水槽2Bに流入させて冷却水槽2
B内に水柱を形成させる。冷却水槽2Bでの冷却水の溢
流分は、冷却水槽2Bに順次縦方向に接続された冷却水
排水ホース28〜30、ならびに冷却水戻りホース31
を経て、冷却水タンク32に戻される。また、冷却水排
水ホース28〜30により戻される冷却水の一部は、電
磁弁26を介して適宜冷却水槽2Bに循環される。さら
に冷却水タンク32には冷却器33(図5参照)が併設
されており、冷却器33は、被覆電線の冷却で温度の上
昇した戻り冷却水を冷却して冷却水タンク32中の冷却
水温度を所定温度に保つ。すなわち本実施例では以上述
べた構成で、冷却水循環手段が構成される。
With the above structure, the pump 24 pumps up the cooling water in the cooling water tank 32 and causes it to flow into the cooling water tank 2B of the vertical cooling water tank 2 through the discharge-side hose 25 so as to flow into the cooling water tank 2.
Form a water column in B. The overflow of the cooling water in the cooling water tank 2B is caused by the cooling water drain hoses 28 to 30 and the cooling water return hose 31 which are sequentially connected to the cooling water tank 2B in the vertical direction.
And is returned to the cooling water tank 32. A part of the cooling water returned by the cooling water drain hoses 28 to 30 is appropriately circulated to the cooling water tank 2B via the electromagnetic valve 26. Further, the cooling water tank 32 is provided with a cooler 33 (see FIG. 5), which cools the return cooling water whose temperature has risen due to the cooling of the covered electric wire to cool the cooling water in the cooling water tank 32. Keep the temperature at the specified temperature. That is, in the present embodiment, the cooling water circulating means is configured with the above-mentioned configuration.

【0018】一方、ターボブロワ40および該ターボブ
ロワ40に連設されたアキュムレータ41は、圧縮空気
送入パイプ42を介して冷却水槽2B下端に接して設け
られたシール筒2Aと接続されている。上記構成によ
り、ターボブロワ40によりアキュムレータ41に蓄積
された圧縮空気は、圧縮空気送入パイプ42を経てシー
ル筒2Aに送入される。さらに、圧縮空気の一部は、ア
キュムレータ41と乾燥空気送入パイプ43を介して連
設された、冷却水槽2Bの上方に配設された乾燥筒3に
送入される。すなわち本実施例では以上述べた構成で、
圧縮空気供給手段が構成される。
On the other hand, the turbo blower 40 and the accumulator 41 connected to the turbo blower 40 are connected to a seal cylinder 2A provided in contact with the lower end of the cooling water tank 2B via a compressed air feed pipe 42. With the above configuration, the compressed air accumulated in the accumulator 41 by the turbo blower 40 is sent to the seal cylinder 2A via the compressed air sending pipe 42. Furthermore, a part of the compressed air is sent to the drying cylinder 3 arranged above the cooling water tank 2B, which is connected to the accumulator 41 via the dry air feeding pipe 43. That is, in the present embodiment, with the configuration described above,
A compressed air supply means is configured.

【0019】前記エクストルーダ20は、漏斗状のホッ
パー21から投入された熱可塑性樹脂のペレットや粉体
を溶融部22で溶融し、これを縦型冷却水槽2の下方に
位置する被覆加工部23に送る。被覆加工部23では、
供給リール6から繰り出された導体5表面に溶融状態の
樹脂を塗着させ、縦型冷却水槽2に送り出す。縦型冷却
水槽2は該縦型冷却水槽2を支持するフレーム4によ
り、架台44に固定される。架台44には、装置全体に
電源供給する配電盤45を含めて前記すべての構成部分
が載置取付けられており、小型で移動可能に構成されて
いる。
The extruder 20 melts the thermoplastic resin pellets and powders fed from the funnel-shaped hopper 21 in the melting section 22, and the molten resin is applied to the coating processing section 23 located below the vertical cooling water tank 2. send. In the coating processing section 23,
A resin in a molten state is applied to the surface of the conductor 5 fed from the supply reel 6 and sent to the vertical cooling water tank 2. The vertical cooling water tank 2 is fixed to a mount 44 by a frame 4 supporting the vertical cooling water tank 2. The pedestal 44 is mounted with all the above-described components including a switchboard 45 that supplies power to the entire apparatus, and is small and movable.

【0020】次に、縦型冷却水槽の構成を詳細に説明す
る。図2は、本発明に係る縦型冷却水槽を用いた電線被
覆装置の縦型冷却水槽の実施例の断面図である。図3
は、図2の第1ノズルの断面図である。両図において、
縦型冷却水槽2は、立ち上げられた筒状の冷却水槽2B
と、前記冷却水槽2Bの下方に位置して該冷却水槽2B
と一体構造に設けられるとともに、下端部に貫通孔2X
を設けた第2ノズル2Mを備え、かつ圧縮空気インレッ
ト2Cを備えた筒状のシール筒2Aとから成る。
Next, the structure of the vertical cooling water tank will be described in detail. FIG. 2 is a sectional view of an example of a vertical cooling water tank of an electric wire coating device using the vertical cooling water tank according to the present invention. FIG.
FIG. 3 is a sectional view of the first nozzle of FIG. 2. In both figures,
The vertical cooling water tank 2 is a cylindrical cooling water tank 2B that has been started up.
And located below the cooling water tank 2B.
And a through-hole 2X at the lower end while being provided as an integral structure with
And a cylindrical seal cylinder 2A having a compressed air inlet 2C.

【0021】第1ノズル2Kは、冷却水槽2Bとシール
筒2A間を仕切る棚板2Jに配設され、後述のように圧
縮空気が下方から上方に向けて作用することで水密状態
となる。第1ノズル2Kは、被覆電線7よりも径の大な
る水槽側開口2Vをその上端に有し、かつ前記被覆電線
7よりも径の大なるシール筒側開口2Nをその下端に有
する連通部2Zを備える。すなわち、水槽側開口2Vお
よびシール筒側開口2Nは被覆電線7に対して非接触に
設けられている。
The first nozzle 2K is arranged on a shelf plate 2J which partitions the cooling water tank 2B and the seal tube 2A, and becomes compressed in a watertight state by the action of compressed air from below to above. The first nozzle 2K has a water tank side opening 2V having a diameter larger than that of the coated electric wire 7 at its upper end, and a seal cylinder side opening 2N having a diameter larger than that of the coated electric wire 7 at its lower end, a communicating portion 2Z. Equipped with. That is, the water tank side opening 2V and the seal cylinder side opening 2N are provided in a non-contact manner with the covered electric wire 7.

【0022】また冷却水槽2Bは、上端が上部開口2H
となり、下端側部に冷却水Wを導入させる冷却水インレ
ット2Dを、さらに上端側部に、既述した冷却水排水ホ
ース28〜30がそれぞれ接続される複数個の冷却水ア
ウトレット2E、2F、2Gを順次縦方向の異なる位置
に備える。これら冷却水アウトレットは、2Eが最下方
に位置し、2Gが最上方に位置する。いずれかの冷却水
アウトレットが開放されると、冷却水は開放された冷却
水アウトレットのうち最も下側のものから冷却水槽2B
外に排出される。したがって冷却水槽2B内の水柱18
の水位は、開放する冷却水アウトレットによって規定さ
れる。この構成により、冷却すべき被覆電線から除去す
べき熱量に適した深さの水柱18を形成させることがで
きる。
The cooling water tank 2B has an upper opening 2H at the upper end.
Therefore, the cooling water inlet 2D for introducing the cooling water W to the lower end side portion and the plurality of cooling water outlets 2E, 2F, 2G to which the above-described cooling water drainage hoses 28 to 30 are respectively connected are further connected. Are sequentially provided at different positions in the vertical direction. In these cooling water outlets, 2E is located at the bottom and 2G is located at the top. When any of the cooling water outlets is opened, the cooling water is supplied from the lowest cooling water outlet to the cooling water tank 2B.
It is discharged outside. Therefore, the water column 18 in the cooling water tank 2B
Water level is defined by the open cooling water outlet. With this configuration, the water column 18 having a depth suitable for the amount of heat to be removed from the covered electric wire to be cooled can be formed.

【0023】つぎに、縦型冷却水槽2の機能を説明す
る。熱溶融被覆加工直後の高温の被覆電線7が、まず冷
却水槽2Bの下方に位置するシール筒2Aの下端部に設
けられた第2ノズル2Mの貫通孔2Xから、その壁部に
接触しないよう離して導入される。導入された被覆電線
7は、ついで冷却水槽2Bとシール筒2A間の第1ノズ
ル2Kのシール筒側開口2Nから、その壁部に接触しな
いよう離して連通部2Zに導入され、上端の水槽側開口
2Vから、その壁部に接触せぬよう離して冷却水槽2B
側に導出される。
Next, the function of the vertical cooling water tank 2 will be described. The high temperature coated electric wire 7 immediately after the hot melt coating process is first separated from the through hole 2X of the second nozzle 2M provided at the lower end of the seal tube 2A located below the cooling water tank 2B so as not to come into contact with the wall thereof. Will be introduced. The introduced covered electric wire 7 is then introduced into the communication part 2Z away from the seal tube side opening 2N of the first nozzle 2K between the cooling water tank 2B and the seal tube 2A so as not to come into contact with the wall part thereof, and introduced into the communication part 2Z, and the water tank side at the upper end. Cooling water tank 2B is separated from the opening 2V so as not to contact the wall.
Be led to the side.

【0024】このようにして冷却水槽2B内に導入され
た高温の被覆電線7は、水柱18で水冷されて低温にな
り、被覆が定着した状態で冷却水槽2B外に導出され
る。一方、高温の被覆電線7からの除熱分で温度上昇し
た水柱18下方の水は、比重が小になる結果、上方に対
流移動し、これに代わって上側の低温水が下方に移動す
る。この対流により効果的な冷却がなされる。
The high-temperature coated electric wire 7 thus introduced into the cooling water tank 2B is cooled by the water column 18 to a low temperature, and is led out of the cooling water tank 2B with the coating fixed. On the other hand, the water below the water column 18 whose temperature has risen due to the amount of heat removed from the high-temperature covered electric wire 7 moves convectively upward as a result of its small specific gravity, and instead the low temperature water above moves downward. This convection provides effective cooling.

【0025】さらに、シール筒2A内の圧縮空気Pはそ
の圧力で、第1ノズル2Kのシール筒側開口2Nと被覆
電線7との空隙から第1ノズル2Kの連通部2Zに突入
し、水槽側開口2Vと被覆電線7との空隙から冷却水槽
2B内に放出しようとする。ここで水槽側開口2Vに発
生する強い上向きの空気流P1が、同じ水槽側開口2V
から下方の連通部2Zに流出しようとする水流W1と衝
突する結果、この強い空気流P1が水流W1の下方への
流出を阻止するものである。この結果、第1ノズル2K
は水密状態となり、この水密状態が安定に維持される。
Further, the compressed air P in the seal cylinder 2A is pushed by the pressure from the gap between the seal cylinder side opening 2N of the first nozzle 2K and the covered electric wire 7 into the communication portion 2Z of the first nozzle 2K, and the water tank side. An attempt is made to discharge the cooling water tank 2B from the gap between the opening 2V and the covered electric wire 7. Here, the strong upward air flow P1 generated in the water tank side opening 2V is the same as the water tank side opening 2V.
As a result of colliding with the water flow W1 that is about to flow to the communication portion 2Z below, this strong air flow P1 prevents the water flow W1 from flowing out. As a result, the first nozzle 2K
Becomes watertight, and this watertight state is maintained stably.

【0026】また前記連通部2Zは、図3に示すよう
に、シール筒側開口2Nから上方の水槽側開口2Vに向
かい徐々に径を狭める傾斜面2Sで構成してもよい。こ
のように連通部2Zを構成すると、上方の水槽側開口2
Vにおける空気流P1の速度は増加し、水流W1の下方
への流出をさらに効果的に阻止することが可能になる。
またシール筒2Aの第2ノズル2Mの貫通孔2Xも、こ
れと同様な下方から上方に向かい徐々に径を縮小する構
成とすることもできる。貫通孔2Xをこのような構成と
することで、圧縮空気Pの流出口での圧力損失が増大し
て、圧縮空気Pの外部への流出が抑制される。この結
果、第1ノズル2Kへの圧縮空気P1流入が増加して、
水密効果をさらに向上させることができる。
Further, as shown in FIG. 3, the communicating portion 2Z may be composed of an inclined surface 2S whose diameter gradually decreases from the seal tube side opening 2N to the upper water tank side opening 2V. When the communication portion 2Z is configured in this way, the upper water tank side opening 2 is formed.
The velocity of the air flow P1 at V is increased, making it possible to prevent the downward flow of the water flow W1 more effectively.
The through hole 2X of the second nozzle 2M of the seal cylinder 2A can also be configured so that the diameter thereof is gradually reduced from the lower side to the upper side similarly to this. With such a configuration of the through hole 2X, the pressure loss at the outlet of the compressed air P increases, and the compressed air P is prevented from flowing out. As a result, the inflow of compressed air P1 into the first nozzle 2K increases,
The watertight effect can be further improved.

【0027】前記のような構成によって、本発明に係る
縦型冷却水槽を用いた電線被覆装置は、冷却水が縦型冷
却水槽の下端から流出あるいは漏洩することがなくな
り、縦型冷却水槽を用いて安定した操業を可能にする。
なお本発明に係る電線被覆装置を形成する前記の各手段
の前記構成は一例にすぎず、本発明は前記構成に限定さ
れるものではない。
With the above-described structure, the electric wire coating apparatus using the vertical cooling water tank according to the present invention uses the vertical cooling water tank because the cooling water does not flow out or leak from the lower end of the vertical cooling water tank. And stable operation is possible.
The configurations of the above-mentioned means for forming the electric wire coating device according to the present invention are merely examples, and the present invention is not limited to the above configurations.

【0028】因みに、具体的構成として、被覆電線7は
1.2〜2.5mmの外径のものを使用したとき、第1ノ
ズル2Kの水槽側開口2Vの内径をφ5とし、また水槽
内の被覆電線7の線速を100〜140m/分、シール
筒2A内のエアー圧を0.5〜1.0kg/cm2として好
適に操業を行うことができた。なお、上記構成中、熱可
塑性樹脂が塗着され縦型冷却水槽2内に導入される被覆
電線7は温度が200℃に設けられており、冷却水槽2
B内の冷却水温度を15℃にして、縦型冷却水槽2から
送り出される被覆電線7温度を50℃に確保して電線加
工を行うことができる。また、被覆電線7は2.6〜
3.5mmの外径のものを使用したとき、第1ノズル2K
の水槽側開口2Vの内径をφ10とし、その他条件は上
記と同様にして、好適な結果が得られた。
As a specific configuration, when the coated electric wire 7 having an outer diameter of 1.2 to 2.5 mm is used, the inner diameter of the water tank side opening 2V of the first nozzle 2K is set to φ5, and the inside of the water tank is The coated electric wire 7 was operated at a linear velocity of 100 to 140 m / min and the air pressure inside the seal tube 2A was 0.5 to 1.0 kg / cm 2 and could be suitably operated. In the above structure, the coated electric wire 7 coated with the thermoplastic resin and introduced into the vertical cooling water tank 2 is provided at a temperature of 200 ° C.
The temperature of the cooling water in B can be set to 15 ° C., and the temperature of the covered electric wire 7 sent out from the vertical cooling water tank 2 can be secured at 50 ° C. for electric wire processing. In addition, the covered electric wire 7 is 2.6-
When using an outer diameter of 3.5 mm, the first nozzle 2K
A preferable result was obtained by setting the inner diameter of the water tank side opening 2V of 10 to 10 and the other conditions being the same as above.

【0029】図4は、図1の縦型冷却水槽を用いた電線
被覆装置における電線の加工工程の説明図である。同図
において、供給リール6から繰り出された導体5はロー
ラ8およびプーリ9〜11を経由してエクストルーダ2
0の被覆加工部23に入り、ここで表面に溶融状態の熱
可塑性樹脂が塗着されて、縦型冷却水槽2に送り出され
る。
FIG. 4 is an explanatory view of the electric wire processing step in the electric wire coating apparatus using the vertical cooling water tank of FIG. In the figure, the conductor 5 unrolled from the supply reel 6 passes through the roller 8 and the pulleys 9 to 11 and the extruder 2
In the coating processing section 0, the surface is coated with a molten thermoplastic resin and is sent to the vertical cooling water tank 2.

【0030】縦型冷却水槽2は、被覆処理後の電線を水
冷して被覆を凝固定着させ、被覆処理後の電線7を乾燥
筒3に導入させる。乾燥筒3で乾燥された被覆電線は、
プーリ12〜14を経由してモータ15まで導かれ、被
覆電線収容缶16に収容される。すなわち、配電盤45
と接続された配線15Aにより駆動されるモータ15
が、電線全体の移動を行なっている。ここで導体5の下
方側3次元位置規定手段であるプーリ11と、被覆電線
7の上方側3次元位置規定手段であるプーリ12によ
り、導体5の被覆加工部23内の位置決めならびに縦型
冷却水槽2内の被覆電線7の位置決めがなされる。この
構成によって、導体5および被覆電線7の壁部への抵触
を避けることができる。
The vertical cooling water tank 2 cools the coated electric wire with water to solidify and fix the coating, and introduces the coated electric wire 7 into the drying cylinder 3. The covered electric wire dried in the drying cylinder 3 is
It is guided to the motor 15 via the pulleys 12 to 14 and housed in the covered electric wire housing can 16. That is, the switchboard 45
Motor 15 driven by wiring 15A connected to
However, the entire electric wire is being moved. Here, by the pulley 11 which is the lower side three-dimensional position defining means of the conductor 5 and the pulley 12 which is the upper side three-dimensional position defining means of the covered electric wire 7, the conductor 5 is positioned in the coated portion 23 and the vertical cooling water tank. Positioning of the covered electric wire 7 in 2 is performed. With this configuration, it is possible to avoid contact with the wall portions of the conductor 5 and the covered electric wire 7.

【0031】図5は、図1の縦型冷却水槽を用いた電線
被覆装置における冷却水槽への流体流出入の説明図であ
る。同図において、ポンプ24はくみあげホース34で
冷却水タンク32内の冷却水をくみあげ、吐出側ホース
25と冷却水インレット2Dを経て縦型冷却水槽2の冷
却水槽2Bに流入させ、冷却水槽2B内に水柱を形成さ
せる。溢流分は、冷却水アウトレット2E〜2G、冷却
水排水ホース28〜30ならびに冷却水戻りホース31
を経て、冷却水タンク32に戻される。冷却水タンク3
2に設けられた冷却器33は、被覆電線の冷却で温度の
上昇した戻り冷却水を冷却して冷却水タンク32中の冷
却水温度を所定温度に保つ。
FIG. 5 is an explanatory view of fluid inflow and outflow to and from the cooling water tank in the electric wire coating apparatus using the vertical cooling water tank of FIG. In the figure, the pump 24 pumps up the cooling water in the cooling water tank 32 by the pump hose 34, and makes it flow into the cooling water tank 2B of the vertical cooling water tank 2 through the discharge side hose 25 and the cooling water inlet 2D, and then in the cooling water tank 2B. Form a water column. The overflow is due to the cooling water outlets 2E to 2G, the cooling water drainage hoses 28 to 30, and the cooling water return hose 31.
And is returned to the cooling water tank 32. Cooling water tank 3
The cooler 33 provided in No. 2 cools the return cooling water whose temperature has risen due to the cooling of the covered electric wire to keep the cooling water temperature in the cooling water tank 32 at a predetermined temperature.

【0032】圧縮空気はターボブロワ40によりアキュ
ムレータ41に蓄積され、圧縮空気送入パイプ42なら
びに圧縮空気インレット2Cを経て、冷却水槽2B下端
に接して設けられたシール筒2Aに送入される。さら
に、圧縮空気の一部は乾燥空気送入パイプ43を経て、
冷却水槽2Bの上方に配設された乾燥筒3に送入され
る。乾燥筒3内で、乾燥空気がいまだ濡れた状態の被覆
電線表面の水滴を吹き飛ばし、水分を除去して乾燥させ
る。上記構成により、安定した縦型冷却水槽の操業に基
づく電線被覆加工が可能になる。なお、上記実施例にお
いて、少なくとも第1ノズルは被覆する導体の太さに応
じて自由に交換可能な構造に設けられていると、汎用性
が得られて望ましい。
The compressed air is accumulated in the accumulator 41 by the turbo blower 40, passes through the compressed air feed pipe 42 and the compressed air inlet 2C, and is fed into the seal cylinder 2A provided in contact with the lower end of the cooling water tank 2B. Further, a part of the compressed air passes through the dry air inlet pipe 43,
It is fed into the drying cylinder 3 arranged above the cooling water tank 2B. In the drying cylinder 3, water droplets on the surface of the covered electric wire in a state where the dry air is still wet are blown off to remove water and dry. With the above configuration, it is possible to perform electric wire coating processing based on stable operation of the vertical cooling water tank. In the above embodiment, it is desirable that at least the first nozzle is provided with a structure that can be freely exchanged according to the thickness of the conductor to be coated, since versatility is obtained.

【0033】[0033]

【発明の効果】以上説明した様に、本発明に係る縦型冷
却水槽を用いた電線被覆方法および装置は、熱溶融被覆
加工直後の高温の被覆電線を、冷却水槽下方のシール筒
下端部に設けた第2ノズルの貫通孔から、壁部に接触し
ないよう導入し、ついで冷却水槽とシール筒間の第1ノ
ズルのシール筒側開口から、壁部に接触しないよう連通
部に導入し、上端の水槽側開口から、壁部に接触しない
よう冷却水槽側に導出する。
As described above, the wire coating method and apparatus using the vertical cooling water tank according to the present invention has the high-temperature coated wire immediately after the hot melt coating process at the lower end of the seal tube below the cooling water tank. It is introduced from the through hole of the second nozzle provided so that it does not come into contact with the wall portion, and then from the opening of the first nozzle between the cooling water tank and the seal tube on the seal tube side into the communication section so that it does not contact the wall section, From the opening on the side of the water tank, lead out to the side of the cooling water tank so as not to contact the wall.

【0034】この際に、シール筒内の圧縮空気はその圧
力で、第1ノズルのシール筒側開口と被覆電線との空隙
から第1ノズルの連通部に入り、水槽側開口と被覆電線
との空隙から冷却水槽内に放出しようとする。ここで水
槽側開口に発生する強い上向きの空気流が、同じ水槽側
開口から下方の連通部に流出しようとする水流と衝突す
る結果、この強い空気流が水流の下方への流出を阻止す
るものである。
At this time, the pressure of the compressed air in the seal tube enters the communication part of the first nozzle from the gap between the opening on the seal tube side of the first nozzle and the covered electric wire, and the compressed air in the water tank side opens on the covered electric wire. Attempt to discharge from the void into the cooling water tank. Here, the strong upward airflow generated in the water tank side opening collides with the water flow that tries to flow out from the same water tank side opening to the lower communication part, and as a result, this strong airflow blocks the downward flow of the water flow. Is.

【0035】また前記連通部が、シール筒側開口から上
方の水槽側開口に向かい徐々に径を狭める傾斜面で構成
されていると、空気流の速度ならびに圧力はさらに強力
になり、水流の下方への流出を効果的に阻止する。本発
明によって、冷却水の下方への漏洩流出を阻止でき、縦
型冷却水槽の安定した操業が可能になると同時に、設備
コストおよび運転コストの低減と、操業条件の容易な変
更による多品種少量生産への効果的対応が実現でき、さ
らに設置面積が節約可能でしかも移動容易の電線被覆装
置を提供することができる。しかも電線を縦方向に垂直
に牽引し移動させるから、前記運転コストの低減に加え
るに、電線に変形を与えることがなく、製品の品質に優
れるばかりか、品質管理コストも大幅に削減できるとい
う効果もあり、よってその産業上効果きわめて大なるも
のである。
If the communicating portion is formed by an inclined surface that gradually narrows in diameter from the seal cylinder side opening toward the upper water tank side opening, the velocity and pressure of the air flow become stronger, and the downward direction of the water flow. Effectively prevent the outflow to. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to prevent downward leakage and outflow of cooling water, which enables stable operation of a vertical cooling water tank, and at the same time, reduces equipment cost and operation cost, and easily changes operating conditions to produce a wide variety of small quantities It is possible to provide an electric wire coating device that can effectively cope with the above, can save the installation area, and can be easily moved. Moreover, since the electric wire is towed and moved vertically in the vertical direction, in addition to the reduction of the operating cost, the electric wire is not deformed, the product quality is excellent, and the quality control cost can be significantly reduced. Therefore, the industrial effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る縦型冷却水槽を用いた電線被覆装
置の実施例の斜視図である。
FIG. 1 is a perspective view of an embodiment of an electric wire coating device using a vertical cooling water tank according to the present invention.

【図2】本発明に係る縦型冷却水槽を用いた電線被覆装
置の縦型冷却水槽の実施例の断面図である。
FIG. 2 is a cross-sectional view of an example of a vertical cooling water tank of an electric wire coating device using the vertical cooling water tank according to the present invention.

【図3】図2の第1ノズルの断面図である。3 is a cross-sectional view of the first nozzle of FIG.

【図4】図1の縦型冷却水槽を用いた電線被覆装置にお
ける電線の加工工程の説明図である。
FIG. 4 is an explanatory view of an electric wire processing step in an electric wire coating device using the vertical cooling water tank of FIG. 1.

【図5】図1の縦型冷却水槽を用いた電線被覆装置にお
ける冷却水槽への流体流出入の説明図である。
5 is an explanatory view of fluid inflow and outflow to and from a cooling water tank in an electric wire coating device using the vertical cooling water tank of FIG.

【図6】従来の横型冷却水槽を用いた電線被覆装置の全
体側面図である。
FIG. 6 is an overall side view of an electric wire coating device using a conventional horizontal cooling water tank.

【符号の説明】[Explanation of symbols]

1 電線被覆装置 2 縦型冷却水槽 2A シール筒 2B 冷却水槽 2C 圧縮空気インレット 2D 冷却水インレット 2E〜2G 冷却水アウトレット 2H 上部開口 2J 棚板 2K 第1ノズル 2M 第2ノズル 2N シール筒側開口 2V 水槽側開口 2X 貫通孔 2Z 連通部 7 被覆電線 18 水柱 W 冷却水 P 圧縮空気 1 Electric Wire Covering Device 2 Vertical Cooling Water Tank 2A Sealing Tube 2B Cooling Water Tank 2C Compressed Air Inlet 2D Cooling Water Inlet 2E to 2G Cooling Water Outlet 2H Upper Opening 2J Shelf Board 2K First Nozzle 2M Second Nozzle 2N Sealing Tube Side Opening 2V Water Tank Side opening 2X Through hole 2Z Communication part 7 Coated electric wire 18 Water column W Cooling water P Compressed air

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱溶融被覆加工された被覆電線を冷却水
槽に浸して冷却する電線被覆方法において、 立設され、冷却水を水柱として貯留した筒状の冷却水槽
の下端に配設された、圧縮空気で常時満たされたシール
筒下端の貫通孔から上端の開口まで、熱溶融被覆加工さ
れた被覆電線を貫通させ、さらに前記被覆電線を冷却水
槽下端の開口から前記水柱上端まで貫通させて冷却し、
前記シール筒内の前記圧縮空気が前記冷却水槽下端の前
記貫通孔から上方に噴出させることを特徴とする縦型冷
却水槽を用いた電線被覆方法。
1. A wire coating method for immersing a heat-melt-coated coated wire in a cooling water tank for cooling, wherein the standing wire is arranged at the lower end of a cylindrical cooling water tank in which cooling water is stored as a water column. Sealed tube that is constantly filled with compressed air penetrates the covered electric wire that has been subjected to heat fusion coating from the through hole at the lower end to the opening at the upper end, and further penetrates the covered electric wire from the opening at the lower end of the cooling water tank to the upper end of the water column for cooling. Then
The electric wire coating method using a vertical cooling water tank, wherein the compressed air in the seal cylinder is jetted upward from the through hole at the lower end of the cooling water tank.
【請求項2】 導体に被覆を施して被覆電線となす被覆
加工手段と、該被覆電線を通過させる水柱を内部に備え
た縦型冷却手段と、該縦型冷却手段下端に配設されたシ
ール手段と、前記導体ならびに被覆電線を前記各手段の
構成部材に無接触に牽引移動する電線牽引移動手段と、
前記シール手段および乾燥手段に圧縮空気を供給する圧
縮空気供給手段と、前記縦型冷却手段に冷却水を循環供
給する冷却水循環手段とで構成したことを特徴とする縦
型冷却水槽を用いた電線被覆装置。
2. A covering processing means for covering a conductor to form a covered electric wire, a vertical cooling means having therein a water column for passing the covered electric wire, and a seal arranged at a lower end of the vertical cooling means. Means, and an electric wire pulling and moving means for pulling and moving the conductor and the covered electric wire to the constituent members of the respective means without contact,
An electric wire using a vertical cooling water tank, which comprises compressed air supply means for supplying compressed air to the sealing means and drying means, and cooling water circulation means for circulating cooling water to the vertical cooling means. Coating equipment.
【請求項3】 熱溶融被覆加工された被覆電線を冷却水
槽に浸して冷却する電線被覆装置において、立ち上げら
れた筒状の冷却水槽と、前記冷却水槽の下方に位置し、
貫通孔を備える第2ノズルをその下端部に備え、かつ圧
縮空気インレットを備えた筒状のシール筒と、前記被覆
電線よりも径の大なる水槽側開口をその上端に有し、か
つ前記被覆電線よりも径の大なるシール筒側開口をその
下端に有する連通部を備え、前記冷却水槽とシール筒間
に亘り配設される第1ノズルと、を備えた縦型冷却水槽
を用いることを特徴とする縦型冷却水槽を用いた電線被
覆装置。
3. A wire coating device for immersing and cooling a coated electric wire coated by hot melt coating in a cooling water tank, and a tubular cooling water tank which has been started up, and which is located below the cooling water tank.
A cylindrical seal cylinder having a second nozzle having a through hole at its lower end and having a compressed air inlet, and a water tank-side opening having a diameter larger than that of the covered electric wire at its upper end, and the covering It is preferable to use a vertical cooling water tank provided with a communication portion having a seal cylinder side opening having a diameter larger than that of an electric wire at a lower end thereof, and including the cooling water tank and a first nozzle arranged between the seal cylinders. An electric wire coating device using a characteristic vertical cooling water tank.
【請求項4】 前記冷却水槽の側部に、冷却水が排水さ
れる冷却水アウトレットを複数個、順次縦方向の異なる
位置に備えて構成したことを特徴とする請求項2記載の
縦型冷却水槽を用いた電線被覆装置。
4. The vertical cooling system according to claim 2, wherein a plurality of cooling water outlets for discharging the cooling water are provided at different positions in a vertical direction on a side portion of the cooling water tank. Electric wire coating device using a water tank.
【請求項5】 前記連通部は、前記シール筒側開口から
上方の水槽側開口に向かい徐々に径を狭める傾斜面で構
成されたことを特徴とする請求項2、3記載の縦型冷却
水槽を用いた電線被覆装置。
5. The vertical cooling water tank according to claim 2, wherein the communication portion is formed of an inclined surface whose diameter gradually decreases from the seal cylinder side opening toward the upper water tank side opening. Wire coating device using.
【請求項6】 前記第2ノズルの貫通孔の径を、下方か
ら上方に向かい徐々に縮小する構成としたことを特徴と
する請求項2乃至4記載の縦型冷却水槽を用いた電線被
覆装置。
6. The wire coating device using a vertical cooling water tank according to claim 2, wherein the diameter of the through hole of the second nozzle is gradually reduced from the lower side to the upper side. .
【請求項7】 導体の被覆加工部内の位置決めならびに
縦型冷却水槽内の被覆電線の位置決めのための、下方側
3次元位置規定手段と、上方側3次元位置規定手段を備
えたことを特徴とする請求項2乃至5記載の縦型冷却水
槽を用いた電線被覆装置。
7. A lower-side three-dimensional position defining means and an upper-side three-dimensional position defining means for positioning a conductor in a coated portion and positioning a coated electric wire in a vertical cooling water tank. An electric wire coating device using the vertical cooling water tank according to claim 2.
【請求項8】 前記冷却水槽上方に乾燥筒を配設し、該
乾燥筒内部に前記冷却水槽内の水柱を経た被覆電線を挿
通させ、かつ前記乾燥筒内に圧縮空気を送入する構成と
したことを特徴とする請求項2乃至6記載の縦型冷却水
槽を用いた電線被覆装置。
8. A structure in which a drying cylinder is disposed above the cooling water tank, a covered electric wire passing through a water column in the cooling water tank is inserted into the drying cylinder, and compressed air is fed into the drying cylinder. The electric wire coating device using the vertical cooling water tank according to any one of claims 2 to 6.
JP6183613A 1994-08-04 1994-08-04 Wire covering method and apparatus using vertical cooling water tank Expired - Fee Related JP3032936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6183613A JP3032936B2 (en) 1994-08-04 1994-08-04 Wire covering method and apparatus using vertical cooling water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6183613A JP3032936B2 (en) 1994-08-04 1994-08-04 Wire covering method and apparatus using vertical cooling water tank

Publications (2)

Publication Number Publication Date
JPH0850828A true JPH0850828A (en) 1996-02-20
JP3032936B2 JP3032936B2 (en) 2000-04-17

Family

ID=16138859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6183613A Expired - Fee Related JP3032936B2 (en) 1994-08-04 1994-08-04 Wire covering method and apparatus using vertical cooling water tank

Country Status (1)

Country Link
JP (1) JP3032936B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246254A (en) * 2001-02-14 2002-08-30 Toyo Denso Co Ltd Winding device
EP1649471A1 (en) 2003-07-25 2006-04-26 Pirelli & C. S.p.A. Continuous process for manufacturing electrical cables
CN106493039A (en) * 2016-12-22 2017-03-15 苏州振瑞昌材料科技有限公司 A kind of glue spreading apparatus
CN106531352A (en) * 2016-12-02 2017-03-22 江阴神创电子材料有限公司 RF (Radio Frequency) coaxial cable extrusion production line and production method thereof
CN106782904A (en) * 2016-12-02 2017-05-31 神宇通信科技股份公司 Ultrathin coaxial cable extrusion line and its production method
CN106782907A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 MCC Ultrathin coaxial cables extrusion line and its production method
CN106782903A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 MCC Ultrathin coaxial cables production line and its production method
CN106782905A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 High-quality coaxial cable production line and its production method
CN106782906A (en) * 2016-12-02 2017-05-31 神宇通信科技股份公司 Ultrathin coaxial cable production line and its production method
CN106782922A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 High-quality coaxial cable extrusion line and its production method
CN112366037A (en) * 2020-10-23 2021-02-12 晶锋集团股份有限公司 Quick cooling arrangement of surface insulation protective layer for cable manufacture
CN113459445A (en) * 2021-05-25 2021-10-01 李雨晴 Cold setting device for communication cable insulating shell
CN114013001A (en) * 2021-10-19 2022-02-08 广东春鼎环保科技有限公司 External wire extrusion device for electronic engineering
CN114864190A (en) * 2022-05-13 2022-08-05 李怡康 Enameled wire production coating equipment

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246254A (en) * 2001-02-14 2002-08-30 Toyo Denso Co Ltd Winding device
EP1652196B1 (en) * 2003-07-25 2017-05-10 Prysmian S.p.A. Continuous process for manufacturing electrical cables
EP1649471A1 (en) 2003-07-25 2006-04-26 Pirelli & C. S.p.A. Continuous process for manufacturing electrical cables
EP1652196A1 (en) 2003-07-25 2006-05-03 Pirelli & C. S.p.A. Continuous process for manufacturing electrical cables
EP1649471B1 (en) * 2003-07-25 2016-09-07 Prysmian S.p.A. Continuous process for manufacturing electrical cables
CN106782905A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 High-quality coaxial cable production line and its production method
CN106782922A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 High-quality coaxial cable extrusion line and its production method
CN106782904A (en) * 2016-12-02 2017-05-31 神宇通信科技股份公司 Ultrathin coaxial cable extrusion line and its production method
CN106782907A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 MCC Ultrathin coaxial cables extrusion line and its production method
CN106782903A (en) * 2016-12-02 2017-05-31 江阴神创电子材料有限公司 MCC Ultrathin coaxial cables production line and its production method
CN106531352B (en) * 2016-12-02 2017-11-03 江阴神创电子材料有限公司 RF radio frequency coaxial-cables extrusion line and its production method
CN106782906A (en) * 2016-12-02 2017-05-31 神宇通信科技股份公司 Ultrathin coaxial cable production line and its production method
CN106531352A (en) * 2016-12-02 2017-03-22 江阴神创电子材料有限公司 RF (Radio Frequency) coaxial cable extrusion production line and production method thereof
CN106493039A (en) * 2016-12-22 2017-03-15 苏州振瑞昌材料科技有限公司 A kind of glue spreading apparatus
CN112366037A (en) * 2020-10-23 2021-02-12 晶锋集团股份有限公司 Quick cooling arrangement of surface insulation protective layer for cable manufacture
CN112366037B (en) * 2020-10-23 2022-03-15 晶锋集团股份有限公司 Quick cooling arrangement of surface insulation protective layer for cable manufacture
CN113459445A (en) * 2021-05-25 2021-10-01 李雨晴 Cold setting device for communication cable insulating shell
CN114013001A (en) * 2021-10-19 2022-02-08 广东春鼎环保科技有限公司 External wire extrusion device for electronic engineering
CN114013001B (en) * 2021-10-19 2023-11-03 福建上杭润发电缆有限公司 External wire extrusion device for electronic engineering
CN114864190A (en) * 2022-05-13 2022-08-05 李怡康 Enameled wire production coating equipment
CN114864190B (en) * 2022-05-13 2024-03-29 江西中易微连新材料科技有限公司 Enamelled wire production coating equipment

Also Published As

Publication number Publication date
JP3032936B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP3032936B2 (en) Wire covering method and apparatus using vertical cooling water tank
KR100724656B1 (en) Wire Insulating Line
US3295163A (en) Strand cooling apparatus
CN103789816A (en) Surface treating apparatus, tank body and squirting device
CN206902303U (en) One kind automation terylene shaped device
CN112002487A (en) Coating control method for cable production
JP3060361B2 (en) Wire covering device with combined vertical cooling device
JP4438596B2 (en) Linear object cooling device
US3570583A (en) Method for cooling the mold blocks of a casting machine with caterpillar mold
CN110789102A (en) Plastic wire production line and wire processing device
KR101749935B1 (en) Injection molding apparatus
KR100493085B1 (en) Cooling device for high-speed drawing
CN110349709B (en) Cable cooling device
CN111086154A (en) PVC tubular product forming equipment
JPH08153428A (en) Wire covering device
CN112872312A (en) Die-casting process and equipment for automatically producing aluminum kettle
KR200207534Y1 (en) A yarn ejector
CN110181709A (en) A kind of plastic grain acceleration cooling system
CN117305958B (en) Device for processing diamond wire bus and processing method thereof
CN112086247B (en) Cable production line and production method thereof
CN219497421U (en) Winding displacement extrusion coating equipment
CN214188481U (en) 3D print head
CN214726509U (en) 3D printer ejection of compact shower nozzle
CN214163963U (en) Double-screw extruder is used in production of PVC spool
KR200188908Y1 (en) Cooling device of extrusion press

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees