JPH0850397A - Electrostatic charge device - Google Patents

Electrostatic charge device

Info

Publication number
JPH0850397A
JPH0850397A JP20601094A JP20601094A JPH0850397A JP H0850397 A JPH0850397 A JP H0850397A JP 20601094 A JP20601094 A JP 20601094A JP 20601094 A JP20601094 A JP 20601094A JP H0850397 A JPH0850397 A JP H0850397A
Authority
JP
Japan
Prior art keywords
polymer
electric resistance
humidity
charging device
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20601094A
Other languages
Japanese (ja)
Inventor
Tadashi Nakajima
正 中島
Yoshitomo Masuda
善友 増田
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP20601094A priority Critical patent/JPH0850397A/en
Publication of JPH0850397A publication Critical patent/JPH0850397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To increase the changing rate of electric resistance between conditions of low temp. and low humidity and high temp. and high humidity by adding an electron accepting material which can produce charge-transfer complexes to a polymer material such as polymer elastomers and polymer foams of polyurethane or the like. CONSTITUTION:As the electron accepting material to produce charge-transfer complexes, tetracyanoethylene or the like is used, and further, its derivatives are preferably used to improve compatibility with a polymer material as the matrix. One of these in a single state or combination of two or more kinds can be used. The amt. of the electron accepting material to form charge-transfer complexes to be added is 0.001 to 20 pts.wt., preferably 0.01 to 1 pts.wt. based on 100 pts.wt. of the polymer material. The semiconductive polymer member is stable for changes in the electric resistance with respect to applied voltage. As for the dependency of the electric resistance on the measured voltage, the electric resistance at 10V measured voltage is twice or less as high as the electric resistance at 5000V measured voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像形成装置の帯電装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for an image forming apparatus.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電子写
真技術の進歩に伴い、電子写真プロセスで利用する半導
電性部材に対する要求が高まっており、とりわけ帯電プ
ロセスに利用される弾性ローラが注目されている。この
ような用途に用いられる半導電性部材は、所定の電気抵
抗値であるのみならず、電気抵抗の位置ばらつきが少な
く、電気抵抗の印加電圧依存性が少なく、低温低湿時と
高温高湿時の電気抵抗の変動幅が少なく、かつ連続して
通電した際の電気抵抗の変動幅が少ないことが必要であ
る。
2. Description of the Related Art With the progress of electrophotographic technology, there is an increasing demand for a semiconductive member used in an electrophotographic process, and in particular, an elastic roller used in a charging process has attracted attention. ing. The semi-conductive member used for such an application has not only a predetermined electric resistance value but also a small variation in the electric resistance position, little dependence on the applied voltage of the electric resistance, and low temperature low humidity and high temperature high humidity. It is necessary that the fluctuation range of the electric resistance is small and the fluctuation range of the electric resistance when continuously energized is small.

【0003】従来、このような用途に用いられる半導電
性部材としては、高分子エラストマーや高分子フォーム
等の高分子物質に金属や金属酸化物の粉末、ウイスカー
を混入したり、カーボンブラック等のフィラーを混入す
ることにより、所定の抵抗値に調整した高分子部材が用
いられているが、この種の高分子部材は、電気抵抗の位
置ばらつきが大きく、電気抵抗の測定電圧依存性が大き
いという問題点があった。
Conventionally, as a semiconductive member used for such an application, a powder of metal or metal oxide or whiskers is mixed in a polymer substance such as a polymer elastomer or polymer foam, or carbon black or the like. A polymer member adjusted to a predetermined resistance value by mixing a filler is used, but this type of polymer member has a large variation in the position of the electric resistance and a large dependence of the electric resistance on the measured voltage. There was a problem.

【0004】また、過塩素酸リチウム、過塩素酸ナトリ
ウム、過塩素酸カルシウムの如き無機イオン物質及び/
又はラウリルトリメチルアンモニウムクロライド、ステ
アリルトリメチルアンモニウムクロライド、オクタデシ
ル・トリメチル・アンモニウム・クロライド、ドデシル
・トリメチル・アンモニウム・クロライド、ヘキサデシ
ル・トリメチル・アンモニウム・クロライド、変性脂肪
族・ジメチル・エチルアンモニウム・エトサルフェート
の如き陽イオン性界面活性剤、ラウリルベタイン、ステ
アリルベタイン、ジメチル・アルキルラウリルベタイン
の如き両性イオン界面活性剤、過塩素酸テトラエチルア
ンモニウム、過塩素酸テトラブチルアンモニウム、ほう
ふっ化テトラブチルアンモニウムなどの4級アンモニウ
ム塩の如き有機イオン物質よりなる導電剤及び/又は親
水性のポリエーテルやポリエステルの如き帯電防止剤を
高分子エラストマーや高分子フォーム等の高分子物質に
混入して、所定の抵抗値に調整した高分子部材も知られ
ているが、この種の高分子部材は低温低湿時と高温高湿
時の電気抵抗の変動幅が大きいという問題点があった。
Further, inorganic ionic substances such as lithium perchlorate, sodium perchlorate and calcium perchlorate, and / or
Or cations such as lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, octadecyl trimethyl ammonium chloride, dodecyl trimethyl ammonium chloride, hexadecyl trimethyl ammonium chloride, modified aliphatic dimethyl dimethyl ethyl ammonium ethosulfate Surfactants, zwitterionic surfactants such as lauryl betaine, stearyl betaine and dimethyl alkyllauryl betaine, quaternary ammonium salts such as tetraethylammonium perchlorate, tetrabutylammonium perchlorate and tetrabutylammonium bromide. Conductive agents consisting of organic ionic substances such as and / or antistatic agents such as hydrophilic polyethers and polyesters are used as polymeric elastomers. Polymeric materials such as polymer foams and polymer foams that have been adjusted to a prescribed resistance value are also known, but this type of polymeric material has a low electrical resistance at low temperature and low humidity and high temperature and high humidity. There was a problem that the fluctuation range was large.

【0005】従って、本発明は、かかる従来の半導電性
高分子部材の欠点を解決し、上述した諸特性を兼備した
帯電部材及び該部材に適した電源を具備する帯電装置を
提供することを目的とする。
Therefore, the present invention solves the drawbacks of the conventional semiconductive polymer member, and provides a charging member having the above-mentioned various characteristics and a charging device equipped with a power source suitable for the member. To aim.

【0006】[0006]

【課題を解決するための手段及び作用】本発明者らは、
上記目的を達成するため鋭意検討を重ねた結果、ポリウ
レタンを代表する高分子エラストマーや高分子フォーム
等の高分子物質に対し、電荷移動錯体を形成し得る電子
受容物質を添加することにより、電気抵抗が温度15〜
32.5℃、相対湿度10〜85%において測定電圧1
0〜5000Vの範囲で体積抵抗1×105Ω・cm以
上1×1010Ω・cm以下であり、かつ電気抵抗の位置
ばらつきが少なく、しかも低温低湿時と高温高湿時の電
気抵抗の変動幅が少ない半導電性高分子部材が初めて得
られることを知見し、この半導電性高分子部材が帯電ロ
ール等の帯電部材として有効であること、またこの部材
を駆動する電源として、環境条件や負荷抵抗を検出して
電源条件を制御し得るもの、及び定電流電源装置が有効
であることを知見し、本発明をなすに至った。
Means and Action for Solving the Problems The present inventors have
As a result of intensive studies to achieve the above object, as a result of adding an electron-accepting substance capable of forming a charge transfer complex to a polymer substance such as a polymer elastomer representative of polyurethane or a polymer foam, electric resistance Has a temperature of 15 ~
Measured voltage 1 at 32.5 ° C and 10-85% relative humidity
Volume resistance in the range of 0 to 5000 V is 1 × 10 5 Ω · cm or more and 1 × 10 10 Ω · cm or less, and there is little variation in the position of the electrical resistance, and the variation of the electrical resistance during low temperature and low humidity and high temperature and high humidity. It was discovered that a semi-conductive polymer member with a small width can be obtained for the first time, and that this semi-conductive polymer member is effective as a charging member such as a charging roll, and as a power source for driving this member, environmental conditions and The present invention has been accomplished by finding that a constant current power supply and a device capable of controlling a power supply condition by detecting a load resistance are effective.

【0007】従って、本発明は、(1)高分子物質を基
材としこれに電荷移動錯体を形成し得る電子受容物質を
添加してなるバイアス電圧を印加し得る半導電性高分子
部材を構成要素として含む帯電部材と、環境条件及び/
又は負荷抵抗を検出して電源条件を制御する帯電装置用
電源とを具備することを特徴とする帯電装置、(2)高
分子物質を基材としこれに電荷移動錯体を形成し得る電
子受容物質を添加してなるバイアス電圧を印加し得る半
導電性高分子部材を構成要素として含む帯電部材と、定
電流帯電装置用電源とを具備することを特徴とする帯電
装置を提供する。
Therefore, the present invention comprises (1) a semiconductive polymer member which can be applied with a bias voltage, which is obtained by adding an electron accepting substance capable of forming a charge transfer complex to a polymer substance as a base material. Charging member included as an element, and environmental conditions and / or
Or a charging device characterized by comprising a power supply for a charging device for detecting a load resistance and controlling power supply conditions, (2) an electron accepting substance capable of forming a charge transfer complex on a polymer material as a base material There is provided a charging device comprising: a charging member including, as a constituent element, a semiconductive polymer member capable of applying a bias voltage obtained by adding the above-mentioned compound, and a power source for a constant current charging device.

【0008】以下、本発明につき更に詳しく説明する。
本発明に係る半導電性高分子部材は、高分子物質に導電
性付与剤を添加混合してなるものであり、その電気抵抗
が温度15〜32.5℃、相対湿度10〜85%におい
て、測定電圧10〜5000Vの範囲で体積抵抗1×1
5〜1×1010Ω・cm、好ましくは2×107〜5×
109Ω・cmであり、上記電気抵抗の位置ばらつきが
±20%以下、好ましくは±10%以下であり、かつ低
温低湿時(15℃、10%)の電気抵抗が高温高湿時
(32.5℃、85%)の電気抵抗の50倍以内、好ま
しくは40倍以内であるものである。
The present invention will be described in more detail below.
The semiconductive polymer member according to the present invention is obtained by adding and mixing a conductivity-imparting agent to a polymer substance, and its electric resistance is at a temperature of 15 to 32.5 ° C. and a relative humidity of 10 to 85%. Volume resistance 1 × 1 in the range of measurement voltage 10-5000V
0 5 to 1 × 10 10 Ω · cm, preferably 2 × 10 7 to 5 ×
10 9 Ω · cm, the positional variation of the electric resistance is ± 20% or less, preferably ± 10% or less, and the electric resistance at low temperature and low humidity (15 ° C., 10%) is high temperature and high humidity (32 It is within 50 times, preferably within 40 times, the electrical resistance of 0.5 ° C., 85%).

【0009】ここで、高分子物質としては、ポリエチレ
ン、ポリプロピレン、ポリウレタン等の樹脂、天然ゴ
ム、ブタジエンゴム、スチレンブタジエンゴム、イソプ
レンゴム、EPDM、NBR等の合成ゴムなどが挙げら
れ、またこれらのフォームも使用することができ、特に
本発明は高分子フォームやエラストマーが好適に用いら
れ、中でもウレタンフォーム、ウレタンエラストマーが
好ましい。
Examples of the polymer substance include resins such as polyethylene, polypropylene and polyurethane, natural rubber, butadiene rubber, styrene butadiene rubber, isoprene rubber, synthetic rubber such as EPDM and NBR, and foams thereof. Polymer foams and elastomers are preferably used in the present invention, and urethane foams and urethane elastomers are particularly preferable in the present invention.

【0010】なお、高分子フォームを得る場合の発泡方
法に制限はないが、ゴム系部材では発泡剤により発泡す
る方法、ウレタン系部材では発泡剤による方法や機械的
な撹拌により気泡を混入する方法が好ましく用いられ
る。ゴム系部材の製造方法に制限はないが、ゴム材料を
導電性付与剤、硫黄や過酸化物等の架橋剤、カーボンブ
ラック等の補強剤、老化防止剤、架橋反応促進剤などと
共に混合した後、加熱硬化させる方法が好ましく用いら
れる。ウレタン系部材の製造方法にも制限はないが、ポ
リエーテルポリオール、ポリエステルポリオール、ポリ
ブタジエンポリオール、ポリイソプレンポリオール、グ
リセリンにポリエチレンオキサイドやポリプロピレンオ
キサイドを付加重合したポリオール、エチレングリコー
ル、プロパンジオール、ブタンジオール等の鎖延長剤と
トリレンジイソシアネート(TDI)、ジフェニルメタ
ンジイソシアネート(MDI)、粗製ジフェニルメタン
ジイソシアネート(クルードMDI)やウレトンイミン
変性ジフェニルメタンジイソシアネート等の液状MD
I、イソホロンジイソシアネート等の硬化剤を上記導電
性付与剤、カーボンブラック等の補強剤、架橋反応触媒
などと共に混合した後、加熱硬化させる方法が好ましく
用いられる。
The foaming method for obtaining the polymer foam is not limited, but a method of foaming a rubber member with a foaming agent, a method of a urethane member with a foaming agent or a method of mixing air bubbles by mechanical stirring. Is preferably used. The method for producing the rubber-based member is not limited, but after mixing the rubber material with a conductivity-imparting agent, a crosslinking agent such as sulfur or peroxide, a reinforcing agent such as carbon black, an antioxidant, a crosslinking reaction accelerator, etc. The method of heat curing is preferably used. The method for producing the urethane-based member is not limited, but polyether polyol, polyester polyol, polybutadiene polyol, polyisoprene polyol, polyol obtained by addition-polymerizing polyethylene oxide or polypropylene oxide to glycerin, ethylene glycol, propanediol, butanediol, etc. Chain extender and liquid MD such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), crude diphenylmethane diisocyanate (crude MDI) and uretonimine modified diphenylmethane diisocyanate
A method in which a curing agent such as I or isophorone diisocyanate is mixed with the above-mentioned conductivity-imparting agent, a reinforcing agent such as carbon black, a crosslinking reaction catalyst, and the like and then heat curing is preferably used.

【0011】本発明の半導電性高分子部材は、上記高分
子物質を基材とし、これに導電性付与剤を添加するもの
であるが、本発明においては、導電性付与剤として電荷
移動錯体を形成し得る電子受容物質が好適であり、この
電荷移動錯体を形成し得る電子受容物質を添加すること
により、本発明の目的が効果的に達成される。
The semiconductive polymer member of the present invention comprises the above-mentioned polymer substance as a base material and a conductivity-imparting agent added thereto. In the present invention, the charge transfer complex is used as the conductivity-imparting agent. An electron-accepting substance capable of forming a charge transfer complex is suitable, and the addition of the electron-accepting substance capable of forming a charge transfer complex effectively achieves the object of the present invention.

【0012】ここで、電荷移動錯体を形成し得る電子受
容物質としては、テトラシアノエチレン、テトラシアノ
キノジメタン、ベンゾキノン、クロルアニル、アントラ
キノン、アントラセン、ジクロロジシアノベンゾキノ
ン、フェロセン、フタロシアニンなどが挙げられ、ま
た、基材である高分子物質との相溶性を向上させる等の
目的でこれら化合物の誘導体も好適に用いられ、その1
種を単独で又は2種以上を組み合せて用いることができ
る。これらの中では、テトラシアノキノジメタン、テト
ラシアノエチレンが好ましい。また、上記電荷移動錯体
を形成し得る電子受容物質をテトラチアフルバレン、リ
チウム等の電子供与物質と錯体を形成した形で使用して
もよい。
Here, examples of the electron accepting substance capable of forming a charge transfer complex include tetracyanoethylene, tetracyanoquinodimethane, benzoquinone, chloranil, anthraquinone, anthracene, dichlorodicyanobenzoquinone, ferrocene and phthalocyanine. Derivatives of these compounds are also preferably used for the purpose of improving the compatibility with the base polymer material, and the like.
The seeds may be used alone or in combination of two or more. Of these, tetracyanoquinodimethane and tetracyanoethylene are preferable. Further, the electron-accepting substance capable of forming the charge transfer complex may be used in the form of a complex with an electron-donating substance such as tetrathiafulvalene or lithium.

【0013】上記電荷移動錯体を形成し得る電子受容物
質の添加量は、上記高分子物質100重量部に対して
0.001〜20重量部、望ましくは0.01〜1重量
部とすることが、本発明の目的を達成する上から好まし
い。
The addition amount of the electron accepting substance capable of forming the charge transfer complex is 0.001 to 20 parts by weight, preferably 0.01 to 1 part by weight, based on 100 parts by weight of the polymer substance. Is preferable from the viewpoint of achieving the object of the present invention.

【0014】なお、上記電荷移動錯体を形成し得る電子
受容物質に加え、本発明の効果を損なわない範囲で、カ
ーボンブラックや金属粉、金属酸化物等の公知の導電性
フィラーを併用しても良く、過塩素酸リチウムの如き無
機イオン物質や4級アンモニウム塩の如き有機イオン物
質からなるイオン性導電剤、陽イオン性界面活性剤、負
イオン性界面活性剤、各種ベタインの如き両性イオン界
面活性剤、親水性のポリエーテルやポリエステル等の非
イオン性帯電防止剤を併用しても良い。また、ウレタン
系部材ではポリオール成分を予めイソシアネートにより
プレポリマー化しておくことも好ましい。
In addition to the electron-accepting substance capable of forming the above charge-transfer complex, a known conductive filler such as carbon black, metal powder or metal oxide may be used in combination so long as the effect of the present invention is not impaired. Well, ionic conductive agents consisting of inorganic ionic substances such as lithium perchlorate and organic ionic substances such as quaternary ammonium salts, cationic surfactants, anionic surfactants, amphoteric ionic surfactants such as various betaines. You may use together an agent and a nonionic antistatic agent, such as hydrophilic polyether and polyester. Further, in the urethane-based member, it is also preferable that the polyol component is prepolymerized with isocyanate in advance.

【0015】また、本発明の半導電性高分子部材は、そ
の電気抵抗の変動が印加電圧に対して安定であり、好ま
しくは2倍以下、より好ましくは1.2倍以下であるこ
とが挙げられる。すなわち、カーボンブラックや金属
粉、金属酸化物等のフィラーにより導電性を付与した高
分子部材は電気抵抗が印加電圧に対して変動し、例えば
印加電圧10Vの場合の電気抵抗が印加電圧5000V
における電気抵抗の5倍もの値を示すが、本発明の半導
電性高分子部材の電気抵抗の測定電圧依存性は、測定電
圧10Vにおける電気抵抗が、測定電圧5000Vにお
ける電気抵抗の2倍以下である。
Further, the semiconductive polymer member of the present invention has a stable electric resistance variation with respect to an applied voltage, preferably 2 times or less, more preferably 1.2 times or less. To be That is, the electrical resistance of the polymer member to which the conductivity is imparted by the filler such as carbon black, metal powder, and metal oxide varies with the applied voltage. For example, when the applied voltage is 10V, the applied resistance is 5000V.
The value of the electric resistance of the semiconductive polymer member of the present invention depends on the measured voltage when the electric resistance at a measured voltage of 10 V is less than twice the electric resistance at a measured voltage of 5000 V. is there.

【0016】本発明の帯電装置に用いる帯電部材は上記
半導電性高分子部材を用いて形成され、この帯電部材に
用いる形状に制限はないが、通常芯金を中央に配設した
ローラ形状にして用いられる。ローラ形状にする方法に
制限はないが、通常砥石により研磨する方法やローラ形
状に合わせたモールドを使用して自己スキン付きフォー
ムやエラストマーを得る方法が用いられる。
The charging member used in the charging device of the present invention is formed by using the above-mentioned semi-conductive polymer member, and the shape used for this charging member is not limited, but it is usually in the form of a roller with a cored bar disposed in the center. Used. There is no limitation on the method of forming the roller shape, but a method of polishing with a grindstone or a method of obtaining a foam with self-skin or an elastomer by using a mold adapted to the shape of the roller is usually used.

【0017】また、環境安定性、騒音、画像改善等の観
点から本発明の帯電部材の上に1つ以上の導電性、半導
電性、あるいは絶縁性の各種被膜層を設けることも可能
である。これらの各種被膜層としては、例えばナイロン
等が好ましく用いられ、特にナイロン12を15重量%
以上含有する共重合ナイロンで形成することにより、帯
電環境安定性を向上させることが可能である。この共重
合ナイロンの融点は、120℃以下がよく、特に70〜
120℃、とりわけ90〜110℃であることが好まし
い。この場合の被膜の体積抵抗率に制限はないが、通常
106〜1013Ω・cmとすることが好ましい。この体
積抵抗率を調整する目的で、カーボンブラック、酸化ス
ズ、酸化チタン等の金属酸化物粒子を一種以上配合する
ことができる。
Further, from the viewpoint of environmental stability, noise, image improvement, etc., it is possible to provide one or more various conductive, semi-conductive or insulating various coating layers on the charging member of the present invention. . For these various coating layers, for example, nylon or the like is preferably used, and particularly, nylon 12 is 15% by weight.
By forming the copolymerized nylon contained above, it is possible to improve the stability of the charging environment. The melting point of this copolymer nylon is preferably 120 ° C. or lower, and particularly 70 to
It is preferably 120 ° C, particularly 90 to 110 ° C. In this case, the volume resistivity of the coating film is not limited, but it is usually preferably 10 6 to 10 13 Ω · cm. For the purpose of adjusting this volume resistivity, one or more kinds of metal oxide particles such as carbon black, tin oxide and titanium oxide can be blended.

【0018】また、アクリル樹脂成分を5〜70重量%
含有するウレタン変性アクリル樹脂を含む樹脂層で被膜
層を形成することも好ましく、アクリル樹脂成分のガラ
ス転移温度が室温〜80℃の範囲のものが好ましく用い
られる。この場合の被膜の体積抵抗率に制限はないが、
通常106〜1013Ω・cmとすることが好ましい。こ
の体積抵抗率を調整する目的で、カーボンブラック、酸
化スズ、酸化チタン等の金属酸化物粒子を一種以上配合
することができ、更にウレタン変性アクリル樹脂中にシ
リコーン成分を1〜50重量%添加することも好まし
い。
The acrylic resin component is 5 to 70% by weight.
It is also preferable to form the coating layer with a resin layer containing the urethane-modified acrylic resin contained therein, and one having a glass transition temperature of the acrylic resin component in the range of room temperature to 80 ° C. is preferably used. Although the volume resistivity of the coating in this case is not limited,
Usually, it is preferable to set 10 6 to 10 13 Ω · cm. For the purpose of adjusting the volume resistivity, one or more kinds of metal oxide particles such as carbon black, tin oxide, and titanium oxide can be blended, and the silicone component is added to the urethane-modified acrylic resin in an amount of 1 to 50% by weight. Is also preferable.

【0019】また、被帯電体との表面近傍に粒径35〜
100μmの粒子を配置することにより、騒音を低減す
ることができる。この場合の粒子に制限はなく、絶縁性
又は導電性を有する粒子のいずれも好ましく用いられ、
絶縁性粒子を導電性の塗膜又は弾性体材料で被覆しても
よい。粒子の配合量に制限はないが、塗膜又は弾性体材
料を形成し得るポリマー100重量部に対して3〜50
重量部が好ましい。
Further, the particle size of 35 to 35 is provided in the vicinity of the surface to be charged.
Noise can be reduced by disposing particles of 100 μm. There is no limitation on the particles in this case, any of the particles having an insulating property or conductivity is preferably used,
The insulating particles may be coated with a conductive coating film or an elastic material. There is no limitation on the amount of the particles to be blended, but it is 3 to 50 relative to 100 parts by weight of the polymer capable of forming a coating film or elastic material.
Parts by weight are preferred.

【0020】本発明の帯電装置は、従来より用いられて
いる無機イオン導電剤により半導電性を付与した部材を
用いて作製された帯電装置と比較して高温高湿時と低温
低湿時の電気抵抗の変動が少ないものの、カーボンブラ
ックや金属酸化物により半導電性を付与した部材を用い
て作製された帯電装置ほど電気抵抗の変動が抑制されて
いないため、本発明の帯電装置には環境条件及び/又は
負荷抵抗を検出して電源条件を制御する帯電装置用電源
が用いられる。具体的には、負荷抵抗が大きい場合及び
/又は負荷抵抗が大きな値を示す低温低湿等の環境条件
では電源電圧を高く制御し、負荷抵抗が小さい場合及び
/又は負荷抵抗が小さな値を示す高温高湿等の環境条件
では電源電圧を低く制御することが好ましい。この場合
の電圧制御範囲の一例を示すと、低温低湿時及び/又は
負荷抵抗が大きい時の電源電圧を高温高湿及び/又は負
荷抵抗が小さい時の電源電圧の2〜100倍、好ましく
は5〜30倍とすることができる。
The charging device of the present invention is different from the charging device manufactured by using a member having semiconductivity imparted by a conventionally used inorganic ionic conductive agent, in comparison with the charging device at high temperature and high humidity and at low temperature and low humidity. Although the variation of the resistance is small, the variation of the electrical resistance is not suppressed as much as that of the charging device manufactured by using the member to which the semiconductivity is imparted by the carbon black or the metal oxide. And / or a charging device power supply for detecting load resistance and controlling power supply conditions is used. Specifically, when the load resistance is large and / or the load resistance is large, the power supply voltage is controlled to be high under environmental conditions such as low temperature and low humidity, and when the load resistance is small and / or the high temperature when the load resistance is small. Under environmental conditions such as high humidity, it is preferable to control the power supply voltage to be low. As an example of the voltage control range in this case, the power supply voltage at low temperature and low humidity and / or when the load resistance is large is 2 to 100 times, preferably 5 times the power supply voltage at high temperature and high humidity and / or when the load resistance is small. It can be up to 30 times.

【0021】また、本発明の帯電装置に適した別の電源
装置として、定電流電源装置が用いられる。本発明者ら
の研究によれば、本発明の帯電装置は負荷抵抗や環境条
件にかかわらず、一定の電流を印加すると良好な画像が
得られるものである。これは、帯電量が電流により定め
られるためと考えられる。
A constant current power supply device is used as another power supply device suitable for the charging device of the present invention. According to the research conducted by the present inventors, the charging device of the present invention can obtain a good image when a constant current is applied regardless of load resistance and environmental conditions. It is considered that this is because the charge amount is determined by the current.

【0022】なお、上記帯電装置の電源は直流電源を前
提としているが、この電源に正弦波、鋸歯状波、矩形波
等の交流を重畳することも好ましく、直流電源の代替と
して高周波パルスにより擬似直流電源とすることも好ま
しい。
The power source of the charging device is presumed to be a DC power source, but it is also preferable to superimpose an alternating current such as a sine wave, a sawtooth wave, or a rectangular wave on this power source. It is also preferable to use a DC power supply.

【0023】本発明の帯電装置の電源容量の好ましい範
囲は、電圧10kV以下、好ましくは4kV以下であ
り、電流5mA以下、好ましくは1mA以下である。
A preferred range of the power supply capacity of the charging device of the present invention is a voltage of 10 kV or less, preferably 4 kV or less, and a current of 5 mA or less, preferably 1 mA or less.

【0024】[0024]

【実施例】以下、実施例、比較例を示して本発明を具体
的に説明するが、本発明は下記実施例に制限されるもの
ではない。なお、湿度は相対湿度である。
The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples. The humidity is relative humidity.

【0025】〔実施例1〕グリセリンにプロピレンオキ
サイドとエチレンオキサイドを付加して分子量5000
としたポリエーテルポリオール100重量部、1,4−
ブタンジオール6.56重量部、トリレンジイソシアネ
ート22重量部、シリコーン系界面活性剤2重量部、ジ
ブチルチンジラウレート0.01重量部、テトラシアノ
キノジメタン0.03重量部をミキサーで混合し、その
混合物で直径6mmの金属製シャフトを中心に被覆した
直径16.5mmで長さ215mmの自己スキン付きウ
レタンフォーム帯電ローラを作製した。
Example 1 A molecular weight of 5,000 was obtained by adding propylene oxide and ethylene oxide to glycerin.
100 parts by weight of polyether polyol, 1,4-
6.56 parts by weight of butanediol, 22 parts by weight of tolylene diisocyanate, 2 parts by weight of silicone-based surfactant, 0.01 part by weight of dibutyltin dilaurate, 0.03 part by weight of tetracyanoquinodimethane are mixed in a mixer, and A self-skinning urethane foam charging roller having a diameter of 16.5 mm and a length of 215 mm was prepared by coating a metal shaft having a diameter of 6 mm with the mixture.

【0026】次いで、上記帯電ローラを厚さ2mmの銅
板の上に載せ、ローラの両端を各々500gの力で圧接
しながら芯金と銅板の間の電気抵抗を90°ずつ回転し
ながら4回測定した。測定時の温度、湿度は各々15
℃、10%であった。電気抵抗は4回の平均値で印加電
圧が1000Vの時4.1×108Ω、4000Vの時
3.9×108Ωであった。電気抵抗の位置ばらつきは
平均値に対して±5%の範囲内であった。また測定時の
温度、湿度が各々32.5℃、85%では、印加電圧1
000Vで電気抵抗は4回の平均値で3.2×107Ω
であった。
Next, the charging roller was placed on a copper plate having a thickness of 2 mm, and the electrical resistance between the core metal and the copper plate was measured four times while rotating the roller while pressing both ends of the roller with a force of 500 g. did. The temperature and humidity at the time of measurement are 15 each
C was 10%. The electrical resistance was 4.1 × 10 8 Ω when the applied voltage was 1000 V, and 3.9 × 10 8 Ω when the applied voltage was 4000 V, as an average value of four times. The position variation of the electric resistance was within ± 5% of the average value. When the temperature and humidity at measurement are 32.5 ° C and 85% respectively, the applied voltage is 1
Electric resistance at 000V is an average of 4 times 3.2 × 10 7 Ω
Met.

【0027】更に、上記帯電ローラを図1に示す画像形
成装置に組み込んだ。ここで、図1において、1は感光
体、2は帯電ローラ、3は現像ローラ、4は転写ロー
ラ、5は転写材(普通紙)であり、上記感光体1がレー
ザービーム露光6される。この場合、転写ローラ2に接
続される電源は、温度、湿度が各々15℃、10%の環
境で−1700V、32.5℃、85%の環境で−14
0Vとなるように設定した。温度、湿度が各々15℃、
10%の環境でグレースケール、黒ベタ、白ベタ画像を
印刷させたところ、良好な画像が得られた。更に温度、
湿度が各々32.5℃、85%の環境でグレースケー
ル、黒ベタ、白ベタ画像を印刷させたところ、良好な画
像が得られた。
Further, the charging roller was incorporated in the image forming apparatus shown in FIG. Here, in FIG. 1, 1 is a photoconductor, 2 is a charging roller, 3 is a developing roller, 4 is a transfer roller, 5 is a transfer material (plain paper), and the photoconductor 1 is subjected to laser beam exposure 6. In this case, the power source connected to the transfer roller 2 is -1700 V in an environment where the temperature and humidity are 15 ° C and 10%, and -14 in the environment where 32.5 ° C and 85% are used.
It was set to be 0V. Temperature and humidity are 15 ℃,
When a grayscale image, a black solid image, and a white solid image were printed in an environment of 10%, a good image was obtained. Further temperature,
When a grayscale image, a black solid image, and a solid white image were printed in an environment where the humidity was 32.5 ° C. and the humidity was 85%, good images were obtained.

【0028】〔比較例1〕配合する導電剤をテトラシア
ノキノジメタン0.03重量部に代えて過塩素酸ナトリ
ウム(NaClO4、分子量122.5)の33%ジエ
チレングリコールモノメチルエステル溶液0.04重量
部とした以外は実施例1と同様に実験を行った。測定時
の温度、湿度が各々15℃、10%で、電気抵抗は4回
の平均値で印加電圧が1000Vの時9.5×10
8Ω、4000Vの時9.5×108Ωであった。電気抵
抗の位置ばらつきは平均値に対して±5%の範囲内であ
った。また、測定時の温度、湿度が各々32.5℃、8
5%では、印加電圧1000Vで電気抵抗は4回の平均
値で2.5×106Ωであった。実施例と比較して、本
比較例のウレタンフォームは、低温低湿時と高温高湿時
の電気抵抗の変動が大きい。
Comparative Example 1 0.03 parts by weight of a 33% solution of sodium perchlorate (NaClO 4 , molecular weight 122.5) in diethylene glycol monomethyl ester was used instead of 0.03 parts by weight of tetracyanoquinodimethane as a conductive agent. An experiment was conducted in the same manner as in Example 1 except that the parts were used. When the temperature and humidity at the time of measurement are 15 ° C. and 10%, respectively, and the electric resistance is an average value of four times and the applied voltage is 1000 V, 9.5 × 10
It was 9.5 × 10 8 Ω at 8 Ω and 4000V. The position variation of the electric resistance was within ± 5% of the average value. Also, the temperature and humidity at the time of measurement are 32.5 ° C and 8 respectively.
At 5%, the applied voltage was 1000 V and the electrical resistance was 2.5 × 10 6 Ω as an average of four times. Compared to the examples, the urethane foam of this comparative example has a large variation in electric resistance at low temperature and low humidity and at high temperature and high humidity.

【0029】実施例1と同様にしてグレースケール、黒
ベタ、白ベタ画像を印刷させたところ、温度、湿度が各
々32.5℃、85%の環境でも、温度、湿度が各々1
5℃、10%の環境でも良好な画像は得られなかった。
Grayscale, black solid, and white solid images were printed in the same manner as in Example 1. Even in the environments of temperature and humidity of 32.5 ° C. and 85%, respectively, the temperature and humidity were 1 respectively.
Good images were not obtained even in an environment of 5 ° C and 10%.

【0030】〔実施例2〕実施例1の電源に代えて−
4.5μAの定電流電源(電圧容量2kV)とした以外
は実施例1と同様に実験を行った。温度、湿度が各々3
2.5℃、85%の環境でも、温度、湿度が各々15
℃、10%の環境でも良好な画像が得られた。
[Second Embodiment] In place of the power source of the first embodiment,
An experiment was conducted in the same manner as in Example 1 except that a constant current power source of 4.5 μA (voltage capacity 2 kV) was used. Temperature and humidity are 3 each
Even in an environment of 2.5 ° C and 85%, temperature and humidity are 15 each
Good images were obtained even in the environment of 10 ° C.

【0031】〔比較例2〕配合する導電剤をテトラシア
ノキノジメタン0.03重量部に代えてアセチレンブラ
ック1.5重量部とした以外は実施例1と同様に実験を
行った。測定時の温度、湿度は各々15℃、10%で、
電気抵抗は4回の平均値で印加電圧が1000Vの時
1.3×108Ω、4000Vの時3.5×107Ωであ
った。電気抵抗の位置ばらつきは平均値に対して±50
%以上であった。また、測定時の温度、湿度が各々3
2.5℃、85%では、印加電圧1000Vで電気抵抗
は4回の平均値で4.5×108Ωであった。
Comparative Example 2 An experiment was conducted in the same manner as in Example 1 except that the conductive agent blended was changed to 0.03 part by weight of tetracyanoquinodimethane and 1.5 parts by weight of acetylene black was used. The temperature and humidity at the time of measurement are 15 ℃ and 10%,
The electrical resistance was 1.3 × 10 8 Ω when the applied voltage was 1000 V and 3.5 × 10 7 Ω when the applied voltage was 4000 V, as an average value of four times. The position variation of the electric resistance is ± 50 with respect to the average value.
% Or more. Also, the temperature and humidity during measurement are 3 each
At 2.5 ° C. and 85%, the electric resistance was 4.5 × 10 8 Ω at an applied voltage of 1000 V in an average of four times.

【0032】温度、湿度が各々15℃、10%の環境で
グレースケール、黒ベタ、白ベタ画像を印刷させたとこ
ろ、グレースケールでは良好な画像が得られなかった。
これは抵抗の位置ばらつきが大きいためであると考えら
れる。
When a grayscale image, a black solid image and a white solid image were printed in an environment where the temperature and humidity were 15 ° C. and 10%, respectively, good images could not be obtained with the gray scale.
It is considered that this is because the variation in the resistance position is large.

【0033】〔比較例3〕比較例1の電源に代えて−
4.5μAの定電流電源(電圧容量2kV)とした以外
は比較例1と同様に実験を行った。温度、湿度が各々1
5℃、10%の環境で良好な画像が得られなかった。こ
れは−4.5μAの電流を発生させるために電源電圧が
不足したためと考えられる。
[Comparative Example 3] Instead of the power source of Comparative Example 1-
An experiment was conducted in the same manner as in Comparative Example 1 except that a constant current power source of 4.5 μA (voltage capacity 2 kV) was used. 1 for temperature and 1 for humidity
Good images were not obtained in an environment of 5 ° C. and 10%. It is considered that this is because the power supply voltage was insufficient to generate a current of −4.5 μA.

【0034】[0034]

【発明の効果】本発明の帯電装置を画像形成装置に利用
すれば、好適な画像が得られる。
By using the charging device of the present invention in an image forming apparatus, a suitable image can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例、比較例の帯電ローラを組み込んだ画像
形成装置の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of an image forming apparatus incorporating a charging roller of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 感光体 2 帯電ローラ 3 現像ローラ 4 転写ローラ 5 転写材 6 レーザービーム 1 photoconductor 2 charging roller 3 developing roller 4 transfer roller 5 transfer material 6 laser beam

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子物質を基材としこれに電荷移動錯
体を形成し得る電子受容物質を添加してなるバイアス電
圧を印加し得る半導電性高分子部材を構成要素として含
む帯電部材と、環境条件及び/又は負荷抵抗を検出して
電源条件を制御する帯電装置用電源とを具備することを
特徴とする帯電装置。
1. A charging member comprising, as a constituent, a semiconductive polymer member capable of applying a bias voltage formed by using a polymer substance as a base material and adding an electron accepting substance capable of forming a charge transfer complex thereto. A charging device, comprising: a power supply for a charging device that detects environmental conditions and / or load resistance to control power supply conditions.
【請求項2】 高分子物質を基材としこれに電荷移動錯
体を形成し得る電子受容物質を添加してなるバイアス電
圧を印加し得る半導電性高分子部材を構成要素として含
む帯電部材と、定電流帯電装置用電源とを具備すること
を特徴とする帯電装置。
2. A charging member comprising, as a constituent, a semiconductive polymer member capable of applying a bias voltage, which is formed by adding an electron accepting substance capable of forming a charge transfer complex to a polymer as a base material. A charging device comprising: a power supply for a constant current charging device.
JP20601094A 1994-08-08 1994-08-08 Electrostatic charge device Pending JPH0850397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20601094A JPH0850397A (en) 1994-08-08 1994-08-08 Electrostatic charge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20601094A JPH0850397A (en) 1994-08-08 1994-08-08 Electrostatic charge device

Publications (1)

Publication Number Publication Date
JPH0850397A true JPH0850397A (en) 1996-02-20

Family

ID=16516418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20601094A Pending JPH0850397A (en) 1994-08-08 1994-08-08 Electrostatic charge device

Country Status (1)

Country Link
JP (1) JPH0850397A (en)

Similar Documents

Publication Publication Date Title
JPH08212828A (en) Bias transfer member with long-term electric life
JP6154139B2 (en) Conductive polymer material, method for producing conductive polymer material, and image forming apparatus member
JP3594053B2 (en) Conductive member and electrophotographic apparatus
US6042946A (en) Polyurethane roller with high surface resistance
EP0684613A2 (en) Semiconductive polymer member, method for making the same, and device comprising the member
JP7083440B2 (en) Conductive roller
JPH11209633A (en) Conductive material, conductive member formed from same, and photographic apparatus
JPH0850397A (en) Electrostatic charge device
JP3763932B2 (en) Conductive member and electrophotographic apparatus
JP3331936B2 (en) Semiconductive polymer elastic member
JPH0850390A (en) Charging device
JP3543375B2 (en) Semiconductive polymer member, transfer device and developing device
JPH0850420A (en) Transferring device and developing device
JPH0850421A (en) Transferring device and developing device
JPH0987354A (en) Conductive member and electrophotographic apparatus using the same
JP3474289B2 (en) Transfer member
JP3018906B2 (en) Semiconductive polymer elastic member
JPH0869148A (en) Electrostatic charging member and electrostatic charging device
JP2000154228A (en) Elastic material of electrically semiconductive polymer
JPH0854770A (en) Member for electrifying device and electrifying device
JP3608616B2 (en) Method for manufacturing conductive member
JPH0844148A (en) Electrostatic charging device
JP3870466B2 (en) Semiconductive roll
JPH0848870A (en) Production of semiconductive polymeric member
JPH0895372A (en) Semiconducting polymer member, transfer device and developing device