JPH0850004A - Method for measuring position of magnet - Google Patents

Method for measuring position of magnet

Info

Publication number
JPH0850004A
JPH0850004A JP20450994A JP20450994A JPH0850004A JP H0850004 A JPH0850004 A JP H0850004A JP 20450994 A JP20450994 A JP 20450994A JP 20450994 A JP20450994 A JP 20450994A JP H0850004 A JPH0850004 A JP H0850004A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
field detection
axis
detection sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20450994A
Other languages
Japanese (ja)
Other versions
JP3477837B2 (en
Inventor
Hiroshige Deguchi
洋成 出口
Ryosuke Hata
良輔 畑
Hiroshi Hirota
博史 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20450994A priority Critical patent/JP3477837B2/en
Publication of JPH0850004A publication Critical patent/JPH0850004A/en
Application granted granted Critical
Publication of JP3477837B2 publication Critical patent/JP3477837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect a position of a magnet set to an internal object coated with a non-magnetic body by arranging a plurality of magnetic field detection sensors on a line in a direction orthogonal to a direction connecting N and S poles of the permanent, magnet set to the object, setting a direction in which a magnetic field is to be detected by the sensors to agree with the linear arranging direction of the sensors, and detecting tone magnetic field. CONSTITUTION:A plurality of magnetic field detection sensors 1, e.g. Hall elements are arranged on a line in a direction orthogonal to a direction connecting N and S poles of a permanent magnet, 2. The NS polar direction of the magnet, 2 is set as a Y axis, and the arranging direction of the elements 1 is set as an X axis. The elements 1 are directed in a direction to detect an X-axis component Bx of a magnetic field. A driving current for the elements 1 is supplied to a Z axis at right angles to the X axis. A voltage induced in a Y-axis direction perpendicular to the Z axis is proportional to the X-axis component of the magnetic field. In other words, the magnetic field to be detected by the elements 1 is positioned in the X-axis direction. An output voltage of the elements 1 is amplified, A/D converted and corrected, whereby a value of the magnetic field is obtained. The value is interpolated on the line and a distribution of the Bx on the line is obtained. A moving amount of an object is detected from a relation between an X coordinate value of a point where the Bx becomes zero and an X coordinate value of the magnet 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば非磁性の金属シ
ースを有する電力ケーブルのケーブルコアの移動量の測
定や、ケーブルのスケークの変化の測定等、非磁性体で
覆われた内部の物体の移動量の測定をその物体に取付け
た永久磁石の位置を測定することにより測定する磁石位
置測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal object covered with a non-magnetic material, for example, for measuring the amount of movement of the cable core of a power cable having a non-magnetic metal sheath and for measuring changes in the skein of the cable. The present invention relates to a magnet position measuring method for measuring the amount of movement of a magnet by measuring the position of a permanent magnet attached to the object.

【0002】[0002]

【従来の技術】従来、例えばアルミシースや鉛シース等
の非磁性の金属シースを有する電力ケーブルのケーブル
コアの移動量の測定技術としては、例えば特公昭 53-49
11号公報に示されるように、ケーブルコアに信号源とし
て永久磁石を取付け、非磁性の金属シースの外側から検
出用の磁石を用いて目視的に移動量を測定するものがあ
った。又従来このような目的のためにX線撮影による移
動量の測定が行われていた。
2. Description of the Related Art Conventionally, as a technique for measuring the movement amount of a cable core of a power cable having a non-magnetic metal sheath such as an aluminum sheath or a lead sheath, for example, Japanese Patent Publication No.
As disclosed in Japanese Patent No. 11, a permanent magnet is attached to a cable core as a signal source, and a moving amount is visually measured from the outside of a non-magnetic metal sheath by using a magnet for detection. Further, conventionally, the amount of movement has been measured by X-ray imaging for such a purpose.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のこの種
の方法は、検出用磁石の動きを人の目で判断していたの
で、ケーブル線路運転中の連続的な、かつ自動的な測定
には不向きであった。又X線撮影は有資格者による危険
区域設定下での特殊作業となるため、連続測定には不向
であり、撮影された写真よりケーブルコアの移動状況を
知るには、経験者による写真の判定が必要であった。
However, in the conventional method of this type, since the movement of the detection magnet is judged by the human eye, continuous and automatic measurement during the operation of the cable line is performed. Was unsuitable. In addition, X-ray photography is not suitable for continuous measurement because it is a special work by a qualified person in a dangerous area setting. To know the movement status of the cable core from the photographed photographs, Judgment was needed.

【0004】[0004]

【課題を解決するための手段】本発明は上述の問題点を
解消し、非磁性体で覆われた内部の物体に取付けた永久
磁石の位置を高精度に測定する磁石位置測定方法を提供
するもので、その特徴は、移動の測定対象に取付けた永
久磁石のNS極の方向と直交する方向に複数個の磁界検
出センサを直線上に配置し、かつそれらの磁界検出セン
サの磁界を検出する方向は磁界検出センサを配置した直
線方向にそろえ、各磁界検出センサの検出した磁界値を
直線か曲線で補問して得た磁界分布で、磁界値が零にな
る点を求めることによって、永久磁石の位置が磁界検出
センサの配置された直線上の磁界値が零になる点を含
み、磁界検出センサの配置された直線と直交する平面上
にあることを測定する磁石位置測定方法にある。
The present invention solves the above problems and provides a magnet position measuring method for highly accurately measuring the position of a permanent magnet attached to an internal object covered with a non-magnetic material. Its characteristic is that a plurality of magnetic field detection sensors are arranged on a straight line in a direction orthogonal to the direction of the NS pole of a permanent magnet attached to a movement measurement target, and the magnetic fields of those magnetic field detection sensors are detected. The direction is aligned with the linear direction where the magnetic field detection sensor is arranged, and the magnetic field distribution obtained by interrogating the magnetic field value detected by each magnetic field detection sensor with a straight line or a curve is used to find the point where the magnetic field value becomes zero. A magnet position measuring method for measuring that the position of a magnet is on a plane that includes a point where a magnetic field value on a straight line on which a magnetic field detection sensor is arranged is zero and is orthogonal to a straight line on which a magnetic field detection sensor is arranged.

【0005】[0005]

【作用】図1(イ)にあるように、永久磁石2のNS極
の方向と直交する方向に複数個の磁界検出センサ1、例
えばホール素子を直線上に配置する。即ち、永久磁石2
のNS極の方向をy軸、ホール素子1の配置方向をx軸
とする。そしてホール素子1の方向は図1(ロ)にある
ように、磁界のx軸成分のBxを検知する方向に配置す
る。即ちx軸に垂直な方向(ここではz軸方向)にホー
ル素子1の駆動電流を流し、それに垂直な方向(ここで
はy軸方向)に誘起される電圧が磁界のx軸成分に比例
する。このようにしてホール素子1の磁界を検知する方
向はx軸方向におく。
As shown in FIG. 1A, a plurality of magnetic field detection sensors 1, for example, Hall elements are arranged in a straight line in a direction orthogonal to the direction of the NS pole of the permanent magnet 2. That is, the permanent magnet 2
The y-axis is the direction of the NS pole and the x-axis is the arrangement direction of the Hall element 1. As shown in FIG. 1B, the Hall element 1 is arranged so as to detect the Bx of the x-axis component of the magnetic field. That is, the drive current of the Hall element 1 is passed in the direction perpendicular to the x-axis (here, the z-axis direction), and the voltage induced in the direction perpendicular thereto (here, the y-axis direction) is proportional to the x-axis component of the magnetic field. In this way, the direction in which the magnetic field of the Hall element 1 is detected is set in the x-axis direction.

【0006】図2にあるように、ホール素子1の電圧と
印加磁界とは直線の関係にあるが、オフセット(印加磁
界が零のときに出てくる電圧)や感度(印加磁界を変化
させた時に電圧が変化する割合)は、ホール素子1の一
つ一つで異なった値をもっている。これらの特性値は事
前に実測しておく。
As shown in FIG. 2, the voltage of the Hall element 1 and the applied magnetic field have a linear relationship, but the offset (the voltage that appears when the applied magnetic field is zero) and the sensitivity (the applied magnetic field are changed). The rate at which the voltage changes) has different values for each Hall element 1. These characteristic values are measured in advance.

【0007】図3に示すような回路で、図1の各ホール
素子1の出力電圧をアンプ4で増幅してA/D変換6し
てマイコン7に取り込み、各ホール素子1の特性値(オ
フセット及び感度)の補正を行って磁界値を求め、直線
で補問すると、ホール素子1の配置された直線上でのB
xの分布が得られる。図1にある永久磁石2を移動させ
たときのBxの分布を図4及び図5に示す。さらにBx
が零になる点のx座標値と磁石位置のx座標値との関係
を図6に示す。以上によって永久磁石2のx座標値が測
定できる。
In the circuit as shown in FIG. 3, the output voltage of each Hall element 1 of FIG. 1 is amplified by the amplifier 4, A / D converted 6 and taken into the microcomputer 7, and the characteristic value (offset of each Hall element 1 And sensitivity) to find the magnetic field value and interpolate with a straight line, B on the straight line where the Hall element 1 is arranged
The distribution of x is obtained. The Bx distribution when the permanent magnet 2 shown in FIG. 1 is moved is shown in FIGS. 4 and 5. Furthermore Bx
FIG. 6 shows the relationship between the x coordinate value of the point where is zero and the x coordinate value of the magnet position. By the above, the x-coordinate value of the permanent magnet 2 can be measured.

【0008】なお、図7に示すように、ホール素子1の
列を2列以上平行に配列することによって、永久磁石2
の位置がy方向もしくはz方向に大きく動いても、広い
範囲で永久磁石2のx座標値を測定できるようにするこ
とができる。又このようなホール素子1の配列を図8に
示すようにy軸方向にも配列することによって、永久磁
石2のx座標値とy座標値を測定できるようにすること
も可能である。
As shown in FIG. 7, the permanent magnets 2 are arranged by arranging two or more rows of the Hall elements 1 in parallel.
It is possible to measure the x-coordinate value of the permanent magnet 2 in a wide range even if the position of moves significantly in the y direction or the z direction. It is also possible to measure the x-coordinate value and the y-coordinate value of the permanent magnet 2 by arranging such an array of the Hall elements 1 also in the y-axis direction as shown in FIG.

【0009】[0009]

【実施例】図9は本発明の磁石位置測定方法を電力ケー
ブルのケーブルコアの移動量測定に適用した場合のケー
ブル接続部の要部の縦断面図である。図面において、13
は電力ケーブルのケーブルコアで、多数本の銅線を撚合
せたケーブル導体11に油浸絶縁紙、プラスチック絶縁体
等のケーブル絶縁層12を設けて構成されており、その外
側には、アルミニウム、ステンレス、鉛等の非磁性の金
属シース14が施されている。このような電力ケーブルの
導体11の接続部15には接続部補強絶縁層16が施され、そ
の外側には銅管等の非磁性の外箱17が施されており、そ
の両端は金属シース14に鉛工18等により接続されてい
る。
EXAMPLE FIG. 9 is a vertical cross-sectional view of a main portion of a cable connecting portion when the magnet position measuring method of the present invention is applied to a moving amount measurement of a cable core of a power cable. In the drawing, 13
Is a cable core of a power cable, which is configured by providing a cable insulating layer 12 such as oil-impregnated insulating paper or a plastic insulator on a cable conductor 11 in which a large number of copper wires are twisted, and aluminum is provided on the outside thereof. A non-magnetic metal sheath 14 such as stainless steel or lead is provided. The connecting portion 15 of the conductor 11 of such a power cable is provided with a connecting portion reinforcing insulating layer 16, the outside of which is provided with a non-magnetic outer box 17 such as a copper pipe, and both ends thereof are provided with a metal sheath 14 It is connected to the lead by 18 etc.

【0010】上述のような電力ケーブルの接続部は、外
箱17又は金属シース14が大地に対して固定されるか、オ
フセット等を利用してケーブルの長手方向と直角の方向
にしか動かない。一方、ケーブルコア13は、ケーブル導
体11に通電されて温度が上昇したり、通電停止で温度が
下がったりすると、ケーブルコア13の熱伸縮作業が生じ
るために、ケーブルの長手方向に金属シース14に対して
相対的に移動することがある。特に電力ケーブルが傾斜
地に布設されていたり、道路直下に布設されていて通行
車輌の影響を受けたり、あるいは橋梁に添架されていて
特殊な振動を受けたりすると、ケーブルコア13の相対移
動が一方向に蓄積されることがある。この蓄積されたケ
ーブルコア13の移動量が大きくなると、ケーブルコア13
や接続部の補強絶縁層16が損傷を受けて、送電機能を失
うおそれがある。
The connection portion of the power cable as described above can be moved only in the direction perpendicular to the longitudinal direction of the cable by fixing the outer box 17 or the metal sheath 14 to the ground, or by utilizing an offset or the like. On the other hand, when the cable core 13 is energized by the cable conductor 11 and the temperature rises, or when the temperature drops when the energization is stopped, thermal expansion and contraction work of the cable core 13 occurs. It may move relative to each other. In particular, if the power cable is laid on a sloping ground, if it is laid directly under the road and is affected by passing vehicles, or if it is installed on a bridge and subjected to special vibration, the relative movement of the cable core 13 May be accumulated in. When the accumulated movement amount of the cable core 13 increases, the cable core 13
There is a risk that the reinforcing insulating layer 16 of the connection part may be damaged and the power transmission function may be lost.

【0011】従って、早期にこのような一方向性のケー
ブルコア13の移動の傾向を把握して、ケーブルコア13が
送電機能上の損傷を受ける前になんらかの対策をとるこ
とが重要である。このため、図9に示すようにケーブル
コアの接続部補強絶縁層16上に、ケーブルコア13と同一
の動きを行う永久磁石19を取付け、一方ケーブルの金属
シース14と同一の動きを行う接続部の非磁性の外箱17
に、複数個の磁界検出センサ20を直線上に配設したセン
サ収納ケース21を取付け、上述した本発明の磁石位置測
定方法を利用してケーブルコア13の移動量を測定する。
Therefore, it is important to grasp such a unidirectional movement tendency of the cable core 13 at an early stage and take some measures before the cable core 13 is damaged in the power transmission function. Therefore, as shown in FIG. 9, a permanent magnet 19 that performs the same movement as the cable core 13 is mounted on the connecting portion reinforcing insulating layer 16 of the cable core, and a connecting portion that performs the same movement as the metal sheath 14 of the cable on the other hand. Non-magnetic outer box 17
A sensor housing case 21 in which a plurality of magnetic field detection sensors 20 are arranged in a straight line is attached to the above, and the movement amount of the cable core 13 is measured by using the magnet position measuring method of the present invention described above.

【0012】[0012]

【発明の効果】以上説明したように、本発明の磁石位置
測定方法によれば、次に列記するような効果を奏する。 (1)非磁性体で覆われた内部の物体の移動量を、非接
触かつ非破壊で測定することができる。 (2)図1に示す構成において、永久磁石の位置がy方
向、z方向にずれていたりしても正しく磁石のx座標値
を測定できる。これは磁石の位置のy及びz方向のずれ
にはBxの零点が影響されないためである。 (3)ホール素子のオフセットや感度の実測時の誤差が
永久磁石位置測定値に及ぼす影響を軽減できる。これは
図4,図5のBxの零点付近はBxの変化率(傾き)が
磁界分布中最大なので、ホール素子の特性の実測時の誤
差(磁界値を上下させる)が、Bx零点の変化(図4,
図5における左右へのずれ)が小さくてすむからであ
る。 (4)本発明の方法を電力ケーブルのケーブルコアの移
動量の測定に適用するとき、早期にケーブルコアの移動
の傾向を把握することができ、ケーブルコアが送電機能
上の損傷を受けることを未然に防止し、電力ケーブルの
保守上きわめて大きな効果を奏する。
As described above, the magnet position measuring method of the present invention has the following effects. (1) The amount of movement of an internal object covered with a non-magnetic material can be measured in a non-contact and non-destructive manner. (2) In the configuration shown in FIG. 1, the x coordinate value of the magnet can be correctly measured even if the position of the permanent magnet is displaced in the y direction and the z direction. This is because the zero point of Bx is not affected by the displacement of the magnet position in the y and z directions. (3) It is possible to reduce the influence of the error in the actual measurement of the offset or sensitivity of the Hall element on the measured value of the permanent magnet position. This is because the rate of change (slope) of Bx is the largest in the magnetic field distribution near the zero point of Bx in FIGS. 4 and 5, so that the error in measuring the characteristics of the Hall element (changing the magnetic field value up and down) changes the Bx zero point ( Figure 4,
This is because the shift to the left and right in FIG. 5) is small. (4) When the method of the present invention is applied to the measurement of the movement amount of the cable core of the power cable, the movement tendency of the cable core can be grasped at an early stage, and the cable core may be damaged in the power transmission function. Prevents it in advance and has an extremely great effect on the maintenance of the power cable.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(イ)は本発明における永久磁石と磁界検
出センサの配置の説明図、図1(ロ)は磁界検出センサ
の配置方向の説明図である。
FIG. 1A is an explanatory view of the arrangement of a permanent magnet and a magnetic field detection sensor according to the present invention, and FIG. 1B is an explanatory view of an arrangement direction of a magnetic field detection sensor.

【図2】磁界検出センサ(ホール素子)の特性図であ
る。
FIG. 2 is a characteristic diagram of a magnetic field detection sensor (Hall element).

【図3】本発明の磁石位置測定回路の構成図である。FIG. 3 is a configuration diagram of a magnet position measuring circuit of the present invention.

【図4】本発明における磁界実測データ(その1)の説
明図である。
FIG. 4 is an explanatory diagram of magnetic field measurement data (No. 1) according to the present invention.

【図5】本発明における磁界実測データ(その2)の説
明図である。
FIG. 5 is an explanatory diagram of measured magnetic field data (No. 2) according to the present invention.

【図6】本発明における測定精度に関する実験例の説明
図である。
FIG. 6 is an explanatory diagram of an experimental example relating to measurement accuracy in the present invention.

【図7】磁界検出センサ列を複数平行に配列した構成図
である。
FIG. 7 is a configuration diagram in which a plurality of magnetic field detection sensor arrays are arranged in parallel.

【図8】磁界検出センサ列をx軸及びy軸方向に配列し
た構成図である。
FIG. 8 is a configuration diagram in which magnetic field detection sensor arrays are arranged in x-axis and y-axis directions.

【図9】本発明の磁石位置測定方法を電力ケーブルのケ
ーブルコアの移動量測定に適用した場合のケーブル接続
部の要部の縦断面図である。
FIG. 9 is a vertical cross-sectional view of a main part of a cable connecting portion when the magnet position measuring method of the present invention is applied to a moving amount measurement of a cable core of a power cable.

【符号の説明】[Explanation of symbols]

1 磁界検出センサ 2 永久磁石 3 電流源 4 アンプ 5 マルチプレクサ 6 A/D変換器 7 マイコン 11 ケーブル導体 12 ケーブル絶縁層 13 ケーブルコア 14 非磁性の金属シース 15 導体接続部 16 接続部補強絶縁層 17 非磁性外箱 18 鉛工 19 永久磁石 20 磁界検出センサ 21 センサ収納ケース 1 magnetic field detection sensor 2 permanent magnet 3 current source 4 amplifier 5 multiplexer 6 A / D converter 7 microcomputer 11 cable conductor 12 cable insulating layer 13 cable core 14 non-magnetic metal sheath 15 conductor connecting portion 16 connecting portion reinforcing insulating layer 17 non Magnetic outer box 18 Lead 19 Permanent magnet 20 Magnetic field detection sensor 21 Sensor storage case

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 移動の測定対象に取付けた永久磁石のN
S極の方向と直交する方向に複数個の磁界検出センサを
直線上に配置し、かつそれらの磁界検出センサの磁界を
検出する方向は磁界検出センサを配置した直線方向にそ
ろえ、各磁界検出センサの検出した磁界値を直線か曲線
で補問して得た磁界分布で、磁界値が零になる点を求め
ることによって、永久磁石の位置が磁界検出センサの配
置された直線上の磁界値が零になる点を含み、磁界検出
センサの配置された直線と直交する平面上にあることを
測定することを特徴とする磁石位置測定方法。
1. An N of a permanent magnet attached to a moving object to be measured.
A plurality of magnetic field detection sensors are arranged on a straight line in a direction orthogonal to the direction of the S pole, and the magnetic fields of these magnetic field detection sensors are aligned with the linear direction in which the magnetic field detection sensors are arranged. In the magnetic field distribution obtained by interrogating the detected magnetic field value with a straight line or a curve, by finding the point where the magnetic field value becomes zero, the magnetic field value on the straight line where the position of the permanent magnet is located A method for measuring a magnet position, which comprises measuring on a plane including a point which becomes zero and being orthogonal to a straight line where a magnetic field detection sensor is arranged.
【請求項2】 磁界検出センサがホール素子であること
を特徴とする請求項1記載の磁石位置測定方法。
2. The magnet position measuring method according to claim 1, wherein the magnetic field detection sensor is a Hall element.
【請求項3】 磁界検出センサの列を2列以上平行に配
列したことを特徴とする請求項1又は2記載の磁石位置
測定方法。
3. The magnet position measuring method according to claim 1, wherein two or more rows of magnetic field detection sensors are arranged in parallel.
【請求項4】 磁界検出センサを配置した直線に直交
し、かつ永久磁石のNS極の方向にも直交する方向に磁
界検出センサを配列したことを特徴とする請求項1〜3
のいずれか記載の磁石位置測定方法。
4. The magnetic field detection sensors are arranged in a direction orthogonal to a straight line where the magnetic field detection sensors are arranged and also in a direction orthogonal to the direction of the NS pole of the permanent magnet.
2. A magnet position measuring method according to any one of 1.
【請求項5】 非磁性金属の導体で、かつ非磁性の金属
シースを有する電力ケーブルの接続部のケーブルコアの
補強絶縁体上に、ケーブルコアと同一の動きを行う永久
磁石を配設し、上記金属シースと同一の動きを行う接続
部の非磁性外箱に複数個の磁界検出センサを直線上に配
置したことを特徴とする請求項1〜4のいずれか記載の
磁石位置測定方法。
5. A permanent magnet that performs the same movement as the cable core is disposed on the reinforcing insulator of the cable core of the connection portion of the power cable, which is a non-magnetic metal conductor and has a non-magnetic metal sheath, 5. The magnet position measuring method according to claim 1, wherein a plurality of magnetic field detection sensors are arranged on a straight line in a non-magnetic outer box of a connecting portion that performs the same movement as the metal sheath.
JP20450994A 1994-08-05 1994-08-05 Magnet position measurement method Expired - Lifetime JP3477837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20450994A JP3477837B2 (en) 1994-08-05 1994-08-05 Magnet position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20450994A JP3477837B2 (en) 1994-08-05 1994-08-05 Magnet position measurement method

Publications (2)

Publication Number Publication Date
JPH0850004A true JPH0850004A (en) 1996-02-20
JP3477837B2 JP3477837B2 (en) 2003-12-10

Family

ID=16491712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20450994A Expired - Lifetime JP3477837B2 (en) 1994-08-05 1994-08-05 Magnet position measurement method

Country Status (1)

Country Link
JP (1) JP3477837B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124760A1 (en) * 2001-05-21 2003-02-20 Siemens Ag Method for contactless, linear position measurement
JP2009074991A (en) * 2007-09-21 2009-04-09 East Japan Railway Co Magnetic storage sensor, measuring instrument, and measuring method
JP2009174906A (en) * 2008-01-22 2009-08-06 Nippon Denshi Gijutsu Kk Position detection unit for magnetized-object, and position detection apparatus for magnetized object using the same
JP2016038356A (en) * 2014-08-11 2016-03-22 セイコーNpc株式会社 Method for measuring zero magnetic field position of permanent magnet
CN106949822A (en) * 2017-01-24 2017-07-14 瑞声科技(新加坡)有限公司 The real-time displacement reponse system and its feedback method of microdevice
JP6374129B1 (en) * 2018-02-14 2018-08-15 株式会社マコメ研究所 Position detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124760A1 (en) * 2001-05-21 2003-02-20 Siemens Ag Method for contactless, linear position measurement
JP2009074991A (en) * 2007-09-21 2009-04-09 East Japan Railway Co Magnetic storage sensor, measuring instrument, and measuring method
JP2009174906A (en) * 2008-01-22 2009-08-06 Nippon Denshi Gijutsu Kk Position detection unit for magnetized-object, and position detection apparatus for magnetized object using the same
JP2016038356A (en) * 2014-08-11 2016-03-22 セイコーNpc株式会社 Method for measuring zero magnetic field position of permanent magnet
CN106949822A (en) * 2017-01-24 2017-07-14 瑞声科技(新加坡)有限公司 The real-time displacement reponse system and its feedback method of microdevice
JP6374129B1 (en) * 2018-02-14 2018-08-15 株式会社マコメ研究所 Position detection device

Also Published As

Publication number Publication date
JP3477837B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
JP3028377B2 (en) Magnetoresistive proximity sensor
US8274276B2 (en) System and method for the non-destructive testing of elongate bodies and their weldbond joints
EP0419040A1 (en) Speed/position sensor based upon magnetoresistive effect
US5886521A (en) Device and method for determining the thickness of an insulating coating on an electrical conductor of a cable and the diameter of the cable
US6104187A (en) Magneto-resistive angle sensing device with a temperature-stable zero point
JPH11513797A (en) Position detection encoder
US8319491B2 (en) System including circuit that determines calibration values
KR101984024B1 (en) Contactless magnetic linear position sensor
US9574865B2 (en) Method and apparatus for sensing magnetic fields
CN1207493A (en) Method and apparatus for non-contact measuring thickness of non-metal coating on surface of metal matrix
CN103376052A (en) Magnet device and position sensing system
JPH08304466A (en) Ammeter
ATE322670T1 (en) MEASUREMENT OF VOLTAGE IN A FERROMAGNETIC MATERIAL
EP1365208A1 (en) Displacement sensor
JP3477837B2 (en) Magnet position measurement method
US10788546B2 (en) Magnetic sensor with integrated solenoid
US7576532B2 (en) Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor
WO2020049883A1 (en) Electric current measurement apparatus and electric current measurement method
CN110073230B (en) Magnetic sensor
JPH074905A (en) Moving-amount detector
JP2001337146A (en) Sensitivity calibration device for magnetic sensor
SU1068849A1 (en) Method and device for measuring magnetic induction in sheet steel
JPH0235241B2 (en)
JP2576136B2 (en) Magnetic direction measurement device
SU777404A1 (en) Method of measuring the thickness of layers of laminated articles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20071003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9