JPH0849812A - Combustion furnace and low-nox combustion method thereof - Google Patents

Combustion furnace and low-nox combustion method thereof

Info

Publication number
JPH0849812A
JPH0849812A JP6204574A JP20457494A JPH0849812A JP H0849812 A JPH0849812 A JP H0849812A JP 6204574 A JP6204574 A JP 6204574A JP 20457494 A JP20457494 A JP 20457494A JP H0849812 A JPH0849812 A JP H0849812A
Authority
JP
Japan
Prior art keywords
combustion
furnace
fuel
air
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6204574A
Other languages
Japanese (ja)
Other versions
JP3052262B2 (en
Inventor
Ryota Nakanishi
良太 中西
Tomio Suzuki
富雄 鈴木
Makoto Nishimura
真 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6204574A priority Critical patent/JP3052262B2/en
Publication of JPH0849812A publication Critical patent/JPH0849812A/en
Application granted granted Critical
Publication of JP3052262B2 publication Critical patent/JP3052262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To provide a combustion furnace, reduced in the production of NOx, and a low-NOx combustion method thereof, in the combustion furnace into which high-temperature combustion air is supplied. CONSTITUTION:A combustion furnace and a low-NOx combustion method, employing a combustion furnace 10, in which a combustion air supplying port 1 is separated from a fuel supplying port 2 by a distance L in heat accumulating combustion while an injection angle alpha is provided between the air supplying port 1 and a fuel supplying port 2 so that the jet stream of air 5 and the jet stream of fuel 6 are ejected into different directions, high-temperature combustion air 5 of 700 deg.C or higher and the fuel 6 are injected into a furnace 10 so that respective jet streams may not be superposed in the main streams thereof to restrain the mixing of the fuel 6 and the air 5 and slow combustion condition due to the rolling of exhaust gas into a combustion area is maintained. The injecting speed of the fuel is preferably 60 m/sec or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種工業炉及びボイラ
の燃焼に伴う窒素酸化物(以下NOxという)の生成量
の抑制のための低NOx燃焼方法に係わり、特にセラミ
ックス等の蓄熱体を用いた顕熱回収装置によって100
0℃以上の高温まで予熱した高温燃焼用空気を使用する
燃焼炉における低NOx燃焼方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low NOx combustion method for suppressing the production of nitrogen oxides (hereinafter referred to as NOx) accompanying the combustion of various industrial furnaces and boilers, and in particular to a heat storage material such as ceramics. 100 depending on the sensible heat recovery device used
The present invention relates to a low NOx combustion method in a combustion furnace which uses high temperature combustion air preheated to a high temperature of 0 ° C. or higher.

【0002】[0002]

【従来の技術】燃焼炉における多量のNOxの発生は、
高い酸素濃度、そして、急速な高温燃焼に起因すること
が大きい。しかし、従来一般の燃焼においては、主とし
て燃焼効率の向上等の観点から、火炎の短炎化が図られ
ており、火炎を短炎化するには、燃焼用空気と燃料とを
早期に混合均一化し、急速な燃焼を行わせることが必要
である。このような急速燃焼のもとでは、火炎温度は高
くなり、且つ、炉内高温域も広がり、加えて燃焼帯にお
ける局所酸素濃度が増大する。その結果、多量のNOx
が生成されてしまい、燃焼効率と公害との両者間のジレ
ンマに悩まされているという問題を有していた。
2. Description of the Related Art Generation of a large amount of NOx in a combustion furnace is
It is largely due to the high oxygen concentration and rapid high temperature combustion. However, in conventional general combustion, the flame is shortened mainly from the viewpoint of improving the combustion efficiency, and in order to shorten the flame, the combustion air and the fuel are mixed early and uniformly. Therefore, it is necessary to make it burn rapidly. Under such rapid combustion, the flame temperature rises, the high temperature region in the furnace also widens, and in addition, the local oxygen concentration in the combustion zone increases. As a result, a large amount of NOx
Was generated, and there was a problem in that it suffered from a dilemma between both combustion efficiency and pollution.

【0003】そこで、図4に示すような低NOx燃焼方
法が提案されている。図4に示す燃焼方法は、特開平1
−300103号公報に掲載されているものである。図
4(a)において、燃焼用空気供給口51と燃料供給口
52とが距離L2だけ離されて炉壁50に設けられてい
る。そして、前記燃焼用空気供給口51と周囲炉内壁5
0とが炉内再循環流を形成するのに十分な距離L3だけ
離されている。
Therefore, a low NOx combustion method as shown in FIG. 4 has been proposed. The combustion method shown in FIG.
-300103 publication. In FIG. 4A, the combustion air supply port 51 and the fuel supply port 52 are provided in the furnace wall 50 at a distance L2. Then, the combustion air supply port 51 and the surrounding furnace inner wall 5
0 is separated by a distance L3 sufficient to form a recirculation flow in the furnace.

【0004】このような構造の燃焼炉50における燃焼
方法は、それぞれの供給口51、52から炉内へ噴射さ
れた空気と燃料の混合が悪く、それぞれ炉内の高温排ガ
スと混合した後、図2中Dで混合されるので、酸素濃度
が低い場での燃焼となり、NOxが低減される。また、
前記燃焼用空気供給口51と周囲炉内壁50との間で炉
内再循環流を形成して炉内を燃焼させる。
In the combustion method in the combustion furnace 50 having such a structure, the air and fuel injected from the respective supply ports 51 and 52 into the furnace are poorly mixed, and after mixing with the high temperature exhaust gas in the furnace, Since it is mixed in D in 2, the combustion is performed in the field where the oxygen concentration is low, and NOx is reduced. Also,
A furnace recirculation flow is formed between the combustion air supply port 51 and the surrounding furnace inner wall 50 to burn the inside of the furnace.

【0005】一方、この燃焼方法では燃焼炉の温度が低
い場合にはCOやすすが発生し、火炎安定性に欠ける。
そこで、炉50内の温度が燃料の着火温度、例えば、7
50℃以下の低温時には、燃焼用空気供給口51内に設
けられたサブ燃料供給口53から燃料を噴出させ、燃焼
用空気と燃料とを早期に混合均一化し、急速な燃焼を行
わせる。燃料の着火温度、例えば、750℃以上に達す
ると、燃料供給口52からの燃料供給に切り換える。
尚、図4(b)は、B−B線断面図である。
On the other hand, in this combustion method, CO and soot are generated when the temperature of the combustion furnace is low, and the flame stability is poor.
Therefore, the temperature in the furnace 50 is the ignition temperature of the fuel, for example, 7
At a low temperature of 50 ° C. or lower, the fuel is jetted from the sub-fuel supply port 53 provided in the combustion air supply port 51 to quickly and uniformly mix the combustion air and the fuel to perform rapid combustion. When the ignition temperature of the fuel reaches, for example, 750 ° C. or higher, the fuel supply is switched to the fuel supply port 52.
In addition, FIG.4 (b) is BB sectional drawing.

【0006】ところで、燃焼用空気は炉内に噴射される
前に、燃焼効率向上の観点から排ガス顕熱回収装置によ
って予熱される。従来の顕熱回収装置は、熱交換器等に
よるもので、その予熱温度は炉内温度が1300℃であ
る場合、せいぜい400℃〜600℃程度であった。と
ころが、最近の蓄熱性の良いセラミックス等を用いた蓄
熱燃焼(リジェネレイティブ)バーナ等の顕熱回収装置
は、予熱空気温度を1000℃以上まで昇温する。
Before being injected into the furnace, the combustion air is preheated by the exhaust gas sensible heat recovery device from the viewpoint of improving combustion efficiency. The conventional sensible heat recovery device is based on a heat exchanger or the like, and the preheating temperature thereof is at most about 400 ° C to 600 ° C when the furnace temperature is 1300 ° C. However, recent sensible heat recovery devices such as heat storage combustion (regenerative) burners that use ceramics or the like having good heat storage properties raise the preheated air temperature to 1000 ° C. or higher.

【0007】[0007]

【発明が解決しようとする課題】従って、燃焼用空気
が、炉内に噴射される時には既に1000℃以上の高温
であるため、炉内温度が下がらず燃焼効率が低下しない
ものの上記従来のような燃焼方法では、高温の燃焼用空
気と燃料が炉内で燃焼反応すると、更に高温になり、多
量のNOxが発生してしまうという問題が生じる。燃焼
用空気供給口51と燃料供給口52との距離L2を更に
大きく離して混合を抑制することも考えられるが、炉全
体が大きくなってしまう。また、図4に示す燃焼炉では
燃料供給孔52が炉壁に設けられているためには大がか
りな工事を必要とする。
Therefore, since the combustion air is already at a high temperature of 1000 ° C. or higher when it is injected into the furnace, the temperature inside the furnace does not decrease and the combustion efficiency does not decrease, but it is the same as in the conventional case. In the combustion method, when high temperature combustion air and fuel undergo a combustion reaction in the furnace, the temperature becomes even higher, and a large amount of NOx is generated. It is possible to further increase the distance L2 between the combustion air supply port 51 and the fuel supply port 52 to suppress the mixing, but the entire furnace becomes large. Further, in the combustion furnace shown in FIG. 4, since the fuel supply hole 52 is provided in the furnace wall, large-scale work is required.

【0008】本発明は、従来技術の有するこのような問
題点に鑑みてなされたものであり、その目的とするとこ
ろは、高温の燃焼用空気が供給される蓄熱燃焼において
NOxの発生を低減する燃焼炉及びその低NOx燃焼方
法を提供しようとするものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to reduce the generation of NOx in heat storage combustion to which high temperature combustion air is supplied. It is intended to provide a combustion furnace and a low NOx combustion method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、蓄熱燃焼において高温燃焼用空気と燃料
とを炉内に噴射供給する燃焼用空気供給口と燃料供給口
とを離すと共に、前記空気噴流軸と燃料噴流軸が異なる
方向に噴射されるように双方の供給口間に噴出角度を持
たせた燃焼炉である。
In order to achieve the above object, the present invention separates a combustion air supply port and a fuel supply port for injecting high temperature combustion air and fuel into a furnace in heat storage combustion. At the same time, the combustion furnace has a jet angle between both supply ports so that the air jet axis and the fuel jet axis are injected in different directions.

【0010】また、700℃以上の高温燃焼用空気と燃
料を炉内に噴射する際に、それぞれの噴流の主流部が重
ならないように前記高温燃焼用空気と燃料を炉内に噴射
し、燃料と空気の混合を抑制しながら炉内の排ガス自己
循環により、緩慢な燃焼状態を維持する低NOx燃焼方
法である。前記燃料の噴出速度は60m/sec以上で
あることが望ましい。
Further, when injecting high temperature combustion air and fuel of 700 ° C. or higher into the furnace, the high temperature combustion air and fuel are injected into the furnace so that the main flow portions of the jets do not overlap with each other. This is a low NOx combustion method that maintains a slow combustion state by suppressing the mixture of air and air by the exhaust gas self-circulation in the furnace. The jet speed of the fuel is preferably 60 m / sec or more.

【0011】[0011]

【作用】顕熱回収装置の向上に伴い、炉内温度は、一
旦、燃料着火温度にまで上がると、燃焼用空気の供給等
よっては余り下がらず、略定常的に燃料着火温度以上を
保ち続ける。そこへ、高温燃焼用空気と燃料のそれぞれ
の噴流の主流部が重ならないように炉内噴射すると、そ
れぞれの噴流がそれぞれに炉内排ガスを巻き込みながら
低い酸素濃度で燃焼する。この燃焼は、燃焼用空気と燃
料とが直接混合して燃焼するよりも緩慢な燃焼で、急速
に高温にならない。そして、酸素濃度も低いためNOx
の発生が少なくなる。
With the improvement of the sensible heat recovery device, once the temperature inside the furnace rises to the fuel ignition temperature, it does not drop much due to the supply of combustion air, etc. . When there is injected into the furnace so that the main flow parts of the jets of high temperature combustion air and fuel do not overlap, the respective jets burn with a low oxygen concentration while entraining the exhaust gas in the furnace. This combustion is slower than the combustion in which the combustion air and the fuel are directly mixed and burns, and the temperature does not rise rapidly. And since the oxygen concentration is also low, NOx
Is less likely to occur.

【0012】そして、前記燃料の噴出速度は60m/s
ec以上であると、炉内に輝炎の火炎が延び、放射によ
る加熱率も大きくなる。炉内の加熱性も向上する。燃料
の噴射する方向で空気流のある方と反対側での燃料の熱
分解による還元反応で、脱硝反応も進む。
The jet speed of the fuel is 60 m / s.
When it is ec or more, a luminous flame spreads in the furnace, and the heating rate by radiation also increases. The heating property in the furnace is also improved. The denitration reaction also progresses due to the reduction reaction due to the thermal decomposition of the fuel on the side opposite to the side with the air flow in the direction of fuel injection.

【0013】[0013]

【実施例】次に、図面を参照しつつ本発明を説明する。
図1(b)は本発明の燃焼に用いられる燃焼炉10の一
具体例を示す断面概要図である。図1(a)は図1
(b)のA−A線断面図であり、図2は図1(b)のC
−C線断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
FIG. 1B is a schematic sectional view showing a specific example of the combustion furnace 10 used for combustion of the present invention. 1 (a) is shown in FIG.
It is the sectional view on the AA line of (b), and FIG. 2 is C of FIG. 1 (b).
It is a -C line sectional view.

【0014】図1(b)において、バーナタイル8に、
燃焼用空気供給口1と燃料供給口2とが距離Lだけ離さ
れ、一体形で設けられ、このLは空気噴流と燃料噴流の
主流がバーナ近傍で重ならないように噴射するのに必要
最小限の長さで良く、噴射角度にもよるがL/D=1〜
2で十分である。ここで、Dは空気噴射口の径である。
また、バーナタイル8の燃焼用空気供給口1と燃料供給
口2とが炉10内壁に面一に合わされている。これは、
噴流の運動量によって炉内の高温排ガスを巻き込み、燃
焼帯への自己排ガス循環を有効に行うものである。燃焼
用空気供給口1は水平に真っ直ぐ、燃料供給口2の先端
は角度αだけ水平から傾いており、燃焼用空気5と燃料
6を異なる向きに炉内に噴射するようになっている。角
度αは、約5〜45°の範囲で選択する。最も好ましく
は約15°である。
In FIG. 1B, the burner tile 8 is
The combustion air supply port 1 and the fuel supply port 2 are separated by a distance L and provided integrally with each other, and this L is the minimum necessary for injecting the main flow of the air jet and the fuel jet so that they do not overlap in the vicinity of the burner. L / D = 1 ~ depending on the injection angle
2 is sufficient. Here, D is the diameter of the air injection port.
Further, the combustion air supply port 1 and the fuel supply port 2 of the burner tile 8 are flush with the inner wall of the furnace 10. this is,
The high-temperature exhaust gas in the furnace is entrained by the momentum of the jet flow, and the self-exhaust gas circulation to the combustion zone is effectively performed. The combustion air supply port 1 is horizontally straight, and the tip of the fuel supply port 2 is inclined from the horizontal by an angle α so that the combustion air 5 and the fuel 6 are injected into the furnace in different directions. The angle α is selected in the range of approximately 5 to 45 °. Most preferably, it is about 15 °.

【0015】バーナタイル8の燃焼用空気供給口1の下
方に顕熱回収装置のセラミックス等の蓄熱体4が設けら
れている。顕熱回収装置は、蓄熱体4によって、高温の
燃焼排ガスからは熱を吸収して出入口9から排出し、出
入口9から供給された空気へは熱を供給する。燃焼用空
気供給口1を通る空気は顕熱回収装置によって1000
℃以上まで昇温される。燃焼用空気供給口1の中心の図
左方延長上には更に、サブ燃料供給口3が設けられてお
り、炉10内の温度が400℃以下の低温時に安全対策
上から燃料を噴出させ、燃焼用空気と燃料とを早期に混
合均一化し、安定な燃焼を行わせる炉をウォーミングア
ップさせるためのものである。
Below the combustion air supply port 1 of the burner tile 8, a heat storage body 4 such as ceramics of a sensible heat recovery device is provided. The sensible heat recovery device absorbs heat from the high-temperature combustion exhaust gas by the heat storage body 4 and discharges it from the inlet / outlet 9, and supplies heat to the air supplied from the inlet / outlet 9. The air passing through the combustion air supply port 1 is 1000
The temperature is raised to ℃ or more. A sub-fuel supply port 3 is further provided on the left side of the center of the combustion air supply port 1 in the drawing, and when the temperature inside the furnace 10 is 400 ° C. or lower, fuel is jetted from a safety measure, This is for warming up the furnace for stable combustion by uniformly mixing combustion air and fuel at an early stage.

【0016】燃焼炉10には、図1(a)に示すよう
に、上記のようなバーナタイル8が一対設けられ、これ
らに対向する側の炉壁中央に補助煙道7が設けられてい
る。この補助煙道7は、一対のバーナタイル8から供給
される空気5及び燃料6の燃焼排ガスを対面側へ引き込
むようにして、炉内全体に行き渡らせる働きがある。
尚、一対のバーナ部8は任意に交番運転する。
As shown in FIG. 1 (a), the combustion furnace 10 is provided with a pair of burner tiles 8 as described above, and an auxiliary flue 7 is provided in the center of the furnace wall on the side facing them. . The auxiliary flue 7 has a function of drawing the combustion exhaust gas of the air 5 and the fuel 6 supplied from the pair of burner tiles 8 to the opposite side so that the exhaust gas is spread throughout the furnace.
The pair of burner units 8 are operated in an alternating manner.

【0017】このような構造の燃焼炉10の運転を説明
する。運転開始時の炉内温度が、400℃以下の低温時
には、サブ燃料供給口3から燃料を噴出させ、燃焼用空
気と燃料とを早期に混合均一化し、急速な燃焼を行わせ
る。そして、400℃以上に達すると、燃料供給口2か
らの燃料も供給する。その後のサブ燃料供給口3からの
燃料供給は、炉の使用方法によって異なるが所定温度ま
で同時併用したり、炉内温度が所定温度よりも下がり、
急速な燃焼を行わせて炉内温度を上昇させる必要がある
時にだけ補充的に供給することとなる。
The operation of the combustion furnace 10 having such a structure will be described. When the temperature in the furnace at the start of operation is low at 400 ° C. or lower, the fuel is jetted from the sub fuel supply port 3 to quickly and uniformly mix the combustion air and the fuel to perform rapid combustion. Then, when the temperature reaches 400 ° C. or higher, the fuel from the fuel supply port 2 is also supplied. Subsequent fuel supply from the sub-fuel supply port 3 depends on the method of use of the furnace, but is used together up to a predetermined temperature, or the temperature inside the furnace falls below a predetermined temperature
It is supplied supplementarily only when it is necessary to raise the temperature in the furnace by performing rapid combustion.

【0018】このような構造の燃焼炉10の低NOx燃
焼方法においては、炉内温度が1300℃である場合、
燃料6と顕熱回収装置によって1000℃以上まで昇温
された高温の燃焼用空気5とが、それぞれの噴流の主流
部が重ならないように供給口1、2から炉内へ噴射され
る。すると、それぞれの噴流がそれぞれに炉内排ガスを
巻き込みながら順次混合して燃焼する。その燃焼は、燃
焼用空気5と燃料6とが直接混合して燃焼するよりも緩
慢な燃焼で、局所的な高温部をもたない。そして、酸素
濃度も低いためNOxの発生が少なくなる。その結果、
高温の燃焼用空気が供給される燃焼効率の良い燃焼炉に
おいてNOx発生を充分に低減する。
In the low NOx combustion method of the combustion furnace 10 having such a structure, when the temperature in the furnace is 1300 ° C.,
The fuel 6 and the high-temperature combustion air 5 heated to 1000 ° C. or higher by the sensible heat recovery device are injected from the supply ports 1 and 2 into the furnace so that the main flow parts of the respective jets do not overlap. Then, the respective jets sequentially mix and burn while incorporating the exhaust gas in the furnace. The combustion is slower than the combustion in which the combustion air 5 and the fuel 6 are directly mixed and burned, and does not have a local high temperature portion. Since the oxygen concentration is also low, the generation of NOx is reduced. as a result,
NOx generation is sufficiently reduced in a combustion furnace with high combustion efficiency to which high-temperature combustion air is supplied.

【0019】この時、燃料と燃焼用空気の流速比を0.
3以上、とりわけ約0.5〜2にしておくと燃料と燃焼
用空気との混合が抑制され、それぞれの噴流がそれぞれ
に炉内排ガスを巻き込みながら燃焼することを促進す
る。また、それぞれの噴流と炉内排ガスとの混合をよく
するためには火炎の長さが炉径の半分以上になるように
噴出速度60m/sec以上で噴射するとよい。尚、噴
出速度が余りに速い場合は、炉内の排ガスと混合しても
燃焼反応が起こりにくく保炎できないので、炉に保炎用
バーナを備えさせて炎が消えない程度に僅かに着火させ
ておくことが必要である。
At this time, the flow velocity ratio between the fuel and the combustion air is set to 0.
When it is set to 3 or more, especially about 0.5 to 2, mixing of fuel and combustion air is suppressed, and each jet promotes combustion while entraining in-reactor exhaust gas into each jet. Further, in order to improve the mixing of each jet flow with the exhaust gas in the furnace, it is preferable to inject at a jet speed of 60 m / sec or more so that the flame length becomes half the furnace diameter or more. If the ejection speed is too fast, combustion reaction does not occur easily even when mixed with the exhaust gas in the furnace, and flame holding cannot be performed.Therefore, a flame holding burner should be provided in the furnace to slightly ignite the flame so that it does not go out. It is necessary to leave.

【0020】具体的な試験結果を以下に示す。燃焼用空
気供給口1と燃料供給口2との距離L/D=1.5、燃
料供給口2の水平からの傾きα=15°、燃料噴出速度
80m/s、空気噴出速度30〜40m/sとし、空気
の予熱温度が約1000℃で燃焼させた場合、サブ燃料
供給口3から噴射すると、1000ppmのNOx発生
したが、燃料供給口2から噴射すると10ppmまでに
低減できた。この時、火炎は輝炎で、大きく、放射によ
る加熱率も大きくなり、炉内の加熱性も向上した。燃料
の噴射する方向で空気流のある方と反対側で燃料の熱分
解による脱硝反応も進んでいた。
The specific test results are shown below. Distance L / D between combustion air supply port 1 and fuel supply port 2 = 1.5, inclination α of fuel supply port 2 from the horizontal α = 15 °, fuel ejection speed 80 m / s, air ejection speed 30-40 m / s, and when the air was burned at a preheating temperature of about 1000 ° C., NOx of 1000 ppm was generated when injected from the sub fuel supply port 3, but could be reduced to 10 ppm when injected from the fuel supply port 2. At this time, the flame was a bright flame and was large, the heating rate by radiation was also large, and the heating property in the furnace was also improved. The denitration reaction due to the thermal decomposition of the fuel also proceeded on the side opposite to the side where the air flow was in the direction of fuel injection.

【0021】尚、上記実施例では、水平から所定角度の
傾きαを有する一つの燃焼用空気供給口1と一つの燃料
供給口2とが距離Lだけ離されてバーナタイル8に設け
られていたが、図3に示すように、水平から所定角度の
傾きを有する一つの燃料供給口2を中心とする所定半径
Lの同心円上に複数の燃焼用空気供給口1を設けてもよ
い。この場合は、炉内に噴射された燃料と燃焼用空気の
それぞれの噴流の向きを異ならせるために、前記燃料供
給口1の傾きと反対側に中心角θが240°以下の扇形
を形成するように複数の燃焼用空気供給口1を配置する
必要がある。また、前記所定半径Lはそれぞれの噴流の
主流部が重ならないようにするために充分に大きくとる
ことが肝要である。
In the above embodiment, one combustion air supply port 1 and one fuel supply port 2 having an inclination α of a predetermined angle from the horizontal are provided on the burner tile 8 at a distance L. However, as shown in FIG. 3, a plurality of combustion air supply ports 1 may be provided on a concentric circle having a predetermined radius L centered on one fuel supply port 2 having an inclination of a predetermined angle from the horizontal. In this case, a fan shape having a central angle θ of 240 ° or less is formed on the side opposite to the inclination of the fuel supply port 1 in order to make the jet directions of the fuel and the combustion air injected into the furnace different from each other. Thus, it is necessary to arrange a plurality of combustion air supply ports 1. Further, it is important that the predetermined radius L is set sufficiently large so that the main flow portions of the jet flows do not overlap.

【0022】[0022]

【発明の効果】上記のように本発明の燃焼炉及びその低
NOx燃焼方法は、燃料供給口と、燃焼用空気供給口と
を離すと共に、前記空気噴流軸と燃料噴流軸が異なる方
向に噴射されるように両者の間に噴出角度を持たせ、高
温燃焼用空気と燃料のそれぞれの噴流の主流部が重なら
ないように炉内に噴射することにより、それぞれの噴流
をそれぞれに炉内排ガスと十分反応させた後に燃焼空気
と燃料とを混合して燃焼させ、急速に高温にならない緩
慢なしかも酸素濃度が低い燃焼を実現し、高温の燃焼用
空気が供給される燃焼炉においてNOx発生を低減す
る。
As described above, according to the combustion furnace and the low NOx combustion method thereof of the present invention, the fuel supply port and the combustion air supply port are separated from each other, and the air jet axis and the fuel jet axis are injected in different directions. As described above, by injecting an injection angle between the two, and by injecting into the furnace so that the main flow parts of the high-temperature combustion air and fuel jets do not overlap, the respective jets and After sufficiently reacting, the combustion air and fuel are mixed and burned to realize a slow combustion in which the temperature does not rise rapidly and the oxygen concentration is low, and NOx generation is reduced in a combustion furnace to which high-temperature combustion air is supplied. To do.

【0023】この結果、燃料供給口と空気供給口とが一
体のバーナー体形のコンパクト構造となり、改造が容易
となる。また、上記蓄熱燃焼バーナでは空気供給口を高
温燃焼排ガスが通過するため、燃料供給口が空気供給口
の中にあると、燃料のコーキングや燃料の噴射孔の焼損
が発生する問題が生ずるが、本発明では燃料供給口と空
気供給口とが離れているので完全に解決できる。また、
本発明によると低温でも使用が可能であり操業性が良
い。
As a result, the fuel supply port and the air supply port are integrated into a compact burner body structure, which facilitates modification. Further, in the heat storage combustion burner, since the high temperature combustion exhaust gas passes through the air supply port, if the fuel supply port is in the air supply port, there is a problem that fuel caulking or burnout of the fuel injection hole occurs. According to the present invention, since the fuel supply port and the air supply port are separated from each other, the problem can be solved completely. Also,
According to the present invention, it can be used even at a low temperature and has good operability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃焼に用いられる燃焼炉の一具体例を
示す断面概要図である。
FIG. 1 is a schematic sectional view showing a specific example of a combustion furnace used for combustion of the present invention.

【図2】図1のC−C線断面図である。FIG. 2 is a sectional view taken along the line CC of FIG.

【図3】本発明の燃焼炉における燃焼用空気供給口と燃
料供給口を示す図である。
FIG. 3 is a diagram showing a combustion air supply port and a fuel supply port in the combustion furnace of the present invention.

【図4】従来の燃焼に用いられる燃焼炉のを示す断面概
要図である。
FIG. 4 is a schematic cross-sectional view showing a conventional combustion furnace used for combustion.

【符号の説明】[Explanation of symbols]

1 燃焼用空気供給口 2 燃料供給口 4 セラミックス等(顕熱回収装置) 5 空気 6 燃料 7 煙道 8 バーナ部 10 燃焼炉 α 傾き L 供給口間距離 1 Combustion Air Supply Port 2 Fuel Supply Port 4 Ceramics, etc. (Sensible Heat Recovery Device) 5 Air 6 Fuel 7 Flue 8 Burner Section 10 Combustion Furnace α Slope L Distance between Supply Ports

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱燃焼において高温燃焼用空気と燃料
とを炉内に噴射して燃焼を行う燃焼炉であって、燃料供
給口と、燃焼用空気供給口とを離すと共に、前記空気噴
流軸と燃料噴流軸が異なる方向に噴射されるように両者
の間に噴出角度を持たせたことを特徴とする燃焼炉。
1. A combustion furnace for injecting high temperature combustion air and fuel into a furnace for combustion in heat storage combustion, wherein the fuel supply port and the combustion air supply port are separated from each other, and the air jet shaft is provided. Combustion furnace characterized by having a jet angle between the fuel injection axis and the fuel injection axis so that they are injected in different directions.
【請求項2】 700℃以上の高温燃焼用空気と燃料を
炉内に噴射して燃焼を行う燃焼炉の低NOx燃焼方法で
あって、それぞれの噴流の主流部が重ならないように前
記高温燃焼用空気と燃料を炉内に噴射し、燃料と空気の
混合を抑制しながら炉内の排ガス自己再循環により緩慢
な燃焼状態を維持することを特徴とする低NOx燃焼方
法。
2. A low NOx combustion method for a combustion furnace in which high temperature combustion air and fuel at 700 ° C. or higher are injected into a furnace for combustion, and the high temperature combustion is performed so that main flow portions of respective jets do not overlap. A low NOx combustion method, characterized by injecting commercial air and fuel into a furnace, and maintaining a slow combustion state by suppressing exhaust gas self-recirculation in the furnace.
【請求項3】 前記燃料の噴出速度は60m/sec以
上であることを特徴とする請求項2記載の低NOx燃焼
方法。
3. The low NOx combustion method according to claim 2, wherein the jet speed of the fuel is 60 m / sec or more.
JP6204574A 1994-08-04 1994-08-04 Combustion furnace and its low NOx combustion method Expired - Lifetime JP3052262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6204574A JP3052262B2 (en) 1994-08-04 1994-08-04 Combustion furnace and its low NOx combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6204574A JP3052262B2 (en) 1994-08-04 1994-08-04 Combustion furnace and its low NOx combustion method

Publications (2)

Publication Number Publication Date
JPH0849812A true JPH0849812A (en) 1996-02-20
JP3052262B2 JP3052262B2 (en) 2000-06-12

Family

ID=16492731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6204574A Expired - Lifetime JP3052262B2 (en) 1994-08-04 1994-08-04 Combustion furnace and its low NOx combustion method

Country Status (1)

Country Link
JP (1) JP3052262B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271861B1 (en) * 2010-09-09 2013-06-07 쥬가이로 고교 가부시키가이샤 Regenerative-combustion apparatus and heating furnace
JP2014508267A (en) * 2011-01-21 2014-04-03 テクニップ フランス Burner and furnace equipped with the burner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167591A (en) * 1987-12-23 1989-07-03 Tokyo Gas Co Ltd Combustion in furnace
JPH01300103A (en) * 1988-05-25 1989-12-04 Tokyo Gas Co Ltd Furnace combustion method
JPH0526410A (en) * 1991-04-12 1993-02-02 Union Carbide Ind Gases Technol Corp Combustion in isolated region

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167591A (en) * 1987-12-23 1989-07-03 Tokyo Gas Co Ltd Combustion in furnace
JPH01300103A (en) * 1988-05-25 1989-12-04 Tokyo Gas Co Ltd Furnace combustion method
JPH0526410A (en) * 1991-04-12 1993-02-02 Union Carbide Ind Gases Technol Corp Combustion in isolated region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271861B1 (en) * 2010-09-09 2013-06-07 쥬가이로 고교 가부시키가이샤 Regenerative-combustion apparatus and heating furnace
JP2014508267A (en) * 2011-01-21 2014-04-03 テクニップ フランス Burner and furnace equipped with the burner
US9410700B2 (en) 2011-01-21 2016-08-09 Technip France Burner and a furnace comprising such a burner

Also Published As

Publication number Publication date
JP3052262B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
US5542840A (en) Burner for combusting gas and/or liquid fuel with low NOx production
US5458481A (en) Burner for combusting gas with low NOx production
US20030148236A1 (en) Ultra low NOx burner for process heating
WO2001013041A1 (en) Combustion method and burner
WO2015069458A1 (en) Low nox burner for ethylene cracking furnaces and other heating applications
EP1335163B2 (en) Ultra low NOx burner for process heating
JP2524025B2 (en) Low calorie gas combustion burner structure and its combustion method
CN105209825B (en) Using high temperature FGR and the super low NOx combustion apparatus of Coanda effect
JPH0849812A (en) Combustion furnace and low-nox combustion method thereof
JP3680659B2 (en) Combustion apparatus and combustion method
CN107461742A (en) It is classified nonflame low nitrogen burning head
JPH09137916A (en) Low nitrogen oxide generation combustion method and device therefor
KR100460195B1 (en) A burner system reducing air-polution material
JPH10160163A (en) Nitrogen oxide reduction structure of gas turbine combustor
JP3059288B2 (en) Low nitrogen oxide boiler equipment
JPH07145916A (en) Oxygen burner
KR100560814B1 (en) Two-staged low NOx burner equipped with single biased primary air nozzle
JP2000356310A (en) Regenerative radiant tube burner
JP3590495B2 (en) Low NOx burner for high temperature air
KR100395783B1 (en) Premix combustion device of boiler
KR20010065375A (en) Three step combustion type burner of an oxide rare combustion type
JPH06257723A (en) Oxygen burner
KR200347977Y1 (en) A burner system reducing air-polution material
JPH0449466Y2 (en)
JP2761962B2 (en) Low NO lower x boiler burner, low NO lower x boiler and operating method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 14

EXPY Cancellation because of completion of term