JPH0849501A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPH0849501A
JPH0849501A JP18820894A JP18820894A JPH0849501A JP H0849501 A JPH0849501 A JP H0849501A JP 18820894 A JP18820894 A JP 18820894A JP 18820894 A JP18820894 A JP 18820894A JP H0849501 A JPH0849501 A JP H0849501A
Authority
JP
Japan
Prior art keywords
steam
inlet pipe
speed control
steam inlet
stationary blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18820894A
Other languages
Japanese (ja)
Inventor
Chikanori Masuzawa
近統 増沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18820894A priority Critical patent/JPH0849501A/en
Publication of JPH0849501A publication Critical patent/JPH0849501A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the layout of stationary blades, give sufficient compressive strength to the stationary blades, reduce flow loss, and improve performance in the speed governing stages of a steam turbine. CONSTITUTION:The steam guided to a ring-like passage 6 from a steam inlet pipe 2 is guided to multiple speed governing stages of a steam turbine via multiple speed governing stage stationary blades 4a, 4b arranged in the peripheral direction. The layout in the peripheral direction of the speed governing stage stationary blades 4a in the region facing the steam inlet pipe 2 is made dense, and the layout in the peripheral direction of the speed governing stage stationary blades 4b in the region apart from the steam inlet pipe 2 is made coarser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ノズルボックス及び調
速段の信頼性と性能を向上することができるようにした
蒸気タービンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam turbine capable of improving the reliability and performance of a nozzle box and a speed control stage.

【0002】[0002]

【従来の技術】従来の蒸気タービンでは、図3及び図4
に示すように、ボイラから供給された高圧、高温の蒸気
1が蒸気入口管2を通って、リング状通路6を有するノ
ズルボックス3へ導かれた後、これと一体でリング状通
路6に隣接して同リング状通路6と同心に円周方向に配
備された調速段静翼4、及び調速段動翼5、更にはその
下流に配備された複数列の静翼、動翼を通過する際に、
圧力、温度を低下させることでタービン出力を発生させ
る。
2. Description of the Related Art In a conventional steam turbine, as shown in FIGS.
As shown in FIG. 1, after the high-pressure, high-temperature steam 1 supplied from the boiler is guided to the nozzle box 3 having the ring-shaped passage 6 through the steam inlet pipe 2, it is adjacent to the ring-shaped passage 6 integrally with the nozzle box 3. When passing through the speed-regulating stage stationary blades 4 and the speed-controlling stage moving blades 5, which are concentrically arranged with the ring-shaped passage 6, and the plurality of rows of stationary blades and the moving blades disposed downstream thereof. To
Turbine output is generated by reducing pressure and temperature.

【0003】[0003]

【発明が解決しようとする課題】前記の従来の調速段静
翼4は、図5に示すように、同一プロフィルで円周方向
に等ピッチ8で配置されている。一方、ノズルボックス
3はその円周方向断面が調速段静翼4の入口部で切欠を
有するリング状通路6を有しているが、その円周方向の
一部に蒸気入口管2が鉛直方向に接合しているため、リ
ング状通路6としてはこの接合部が開口7を有する構造
となっている。
As shown in FIG. 5, the conventional speed-control vanes 4 are arranged with the same profile at equal pitches 8 in the circumferential direction. On the other hand, the nozzle box 3 has a ring-shaped passage 6 whose cross-section in the circumferential direction has a notch at the inlet of the speed control vane 4, but the steam inlet pipe 2 extends vertically in a part of the circumferential direction. Since they are joined, the joint portion of the ring-shaped passage 6 has a structure having an opening 7.

【0004】このリング状通路6を有するノズルボック
ス3には超臨界圧タービンでは約240kg/cm2
540℃級の高圧、高温蒸気が作用するので、ノズルボ
ックス3と構造的に一体となった調速段静翼4にも内圧
による翼高さ方向引張力や蒸気の膨張による曲げ応力等
が作用する。
The nozzle box 3 having the ring-shaped passage 6 has a supercritical pressure turbine of about 240 kg / cm 2 ,
Since high-pressure and high-temperature steam of 540 ° C. acts, the blade-height direction tensile force due to the internal pressure and the bending stress due to the expansion of the vapor also act on the speed-control vanes 4 structurally integrated with the nozzle box 3.

【0005】ノズルボックス3の蒸気入口管2の接合部
では、リング状通路が一部開口していて内圧に対する剛
性が弱く、かつ、蒸気導入部となっているので、この部
分の調速段静翼4aに作用する蒸気力は、他の円周方向
に配置された調速段静翼4bに比較して大きい。従っ
て、この蒸気入口管2の接合部領域の調速段静翼4aは
他の調速段静翼4bに比較に対して強度的に厳しい。
At the joint portion of the steam inlet pipe 2 of the nozzle box 3, the ring-shaped passage is partially open, so that the rigidity against internal pressure is weak and the steam inlet portion is provided. The steam force acting on is larger than that of the speed-control stage stationary blades 4b arranged in the other circumferential direction. Therefore, the speed control stage stationary blade 4a in the joint area of the steam inlet pipe 2 is stricter than the other speed control stage stationary blades 4b in terms of strength.

【0006】一方、蒸気入口管2との接合部より離れた
領域の調速段静翼4bは、開口部がないので剛性が高
く、かつ、蒸気流入量も少ないので蒸気力は小さい。し
かも、図5に示すように、蒸気入口管2との接合部では
調速段静翼4aに正対して蒸気1aが流入するのに対し
て、接合部より離れた領域ではリング状通路6が円周方
向に左右に分岐するので、この領域の調速段静翼4bに
は正対せずに大きなインシデンスをもった蒸気1bの流
れが流入する。このように、大きなインシデンスをもっ
た蒸気1bの流れが前記調速段静翼4bに流入すると、
図6に示すように、調速段静翼4bにおける流動損失
(インシデント損失)が増大する。なお、図6中、iは
蒸気の流れのインシデンスを示す。
On the other hand, the speed control vane 4b in a region away from the joint with the steam inlet pipe 2 has a high rigidity because it has no opening and a small steam inflow amount, so the steam power is small. Moreover, as shown in FIG. 5, the steam 1a flows in directly to the speed control vanes 4a at the joint with the steam inlet pipe 2, whereas the ring-shaped passage 6 is surrounded by the circumference of the ring-shaped passage 6 in the region away from the joint. Since it branches left and right in the direction, the flow of the steam 1b having a large incident flows into the speed control vane 4b in this region without directly confronting it. Thus, when the flow of the steam 1b having a large incident flows into the speed control vane 4b,
As shown in FIG. 6, the flow loss (incident loss) in the speed control vane 4b increases. In addition, in FIG. 6, i shows the incident of the flow of steam.

【0007】従って、等ピッチ配置した調速段静翼では
蒸気入口管との前記接合部領域の調速段静翼4aは強度
的に厳しく、かつ、接合部より離れた領域の調速段静翼
4bは流動損失の増大を招き、タービンの信頼性と性能
に悪影響を及ぼすことが懸念される。
Therefore, in the speed-control vanes 4a arranged at equal pitches, the speed-control vanes 4a in the joint region with the steam inlet pipe are severe in strength, and the speed-control vanes 4b in the region away from the joint have flow loss. It is feared that this will increase and adversely affect the reliability and performance of the turbine.

【0008】本発明は、以上の問題点を解決することが
できる蒸気タービンを提供しようとするものである。
The present invention is intended to provide a steam turbine which can solve the above problems.

【0009】[0009]

【課題を解決するための手段】本発明は、蒸気入口管よ
りノズルボックスのリング状通路へ導かれた蒸気が円周
方向に配備され前記ノズルボックスと一体の複数の調速
段静翼を経て調速段動翼へ導かれる蒸気タービンにおい
て、前記調速段静翼の円周方向の配置を、蒸気入口管に
正対する領域では密となし蒸気入口管から離れるに従っ
て粗となしたことを特徴とする。
According to the present invention, the steam introduced from the steam inlet pipe to the ring-shaped passage of the nozzle box is circumferentially arranged, and the speed is adjusted via a plurality of speed-control vanes integrated with the nozzle box. In the steam turbine guided to the stage rotor blades, the arrangement of the speed-control stage stationary blades in the circumferential direction is not dense in the region directly facing the steam inlet pipe, and is roughened as the distance from the steam inlet pipe increases.

【0010】[0010]

【作用】ノズルボックスの蒸気入口管に正対する領域で
は、等ピッチ配置した従来の場合に比較して調速段静翼
の枚数が多いので、静翼1枚当りについてはリング状通
路に働く内圧による静翼の翼高さ方向引張力は小さく、
かつ、蒸気の膨張による曲げ応力も小さくなる。
In the area directly facing the steam inlet pipe of the nozzle box, the number of speed-control stage stationary vanes is larger than in the conventional case in which the pitch is arranged. Therefore, each stationary vane is controlled by the internal pressure acting on the ring-shaped passage. The tensile force of the blade in the blade height direction is small,
In addition, the bending stress due to the expansion of steam is also reduced.

【0011】一方、蒸気入口管に正対する領域から離れ
た領域では、前記のように逆に強度的負担が軽いので、
調速段静翼の配置を粗にしても充分な耐圧強度を有する
ことができ、かつ、調速段静翼が配置されるピッチが大
きいので蒸気の流れにインシデンスが存在しても流れの
制御性が良くインシデンス損失が小さくなる。
On the other hand, in the area away from the area directly facing the steam inlet tube, the load on the strength is conversely light as described above,
Even if the speed control stage stationary blades are arranged roughly, sufficient pressure resistance can be achieved, and since the pitch between the speed control stage stationary blades is large, the flow controllability is good even if there is an incident in the steam flow. The loss is small.

【0012】[0012]

【実施例】本発明の一実施例を、図1によって説明す
る。図1は、本実施例に係る調速段静翼を同一半径位置
において円筒面に展開した図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram in which a speed control vane according to the present embodiment is developed on a cylindrical surface at the same radial position.

【0013】本実施例は、図3及び図4に示す蒸気ター
ビンにおいて、調速段静翼を以下説明するように配置し
たものでり、蒸気入口管2、リング状通路6及び蒸気入
口管2とノズルボックスの接合部の開口7は相違すると
ころはない。
In this embodiment, in the steam turbine shown in FIGS. 3 and 4, the speed control vanes are arranged as described below. The steam inlet pipe 2, the ring-shaped passage 6, the steam inlet pipe 2 and the nozzle are arranged. The opening 7 at the junction of the boxes is no different.

【0014】本実施例では、蒸気入口管2に正対する領
域の調速段静翼4aは、その円周方向配置が密となるよ
うにピッチ8aを小さくして翼枚数を多く配置し、蒸気
入口管2から左右に離れるに従って調速段静翼8bの配
置が粗となるようにピッチ8bを徐々に大きくして翼枚
数を少なく配置している。具体的には、前記調速段静翼
の枚数は、図3及び図4に示す場合に比して、約10〜
20%減となるように設定される。
In this embodiment, the speed control vanes 4a in the region directly facing the steam inlet pipe 2 are arranged with a small pitch 8a so that the circumferential direction of the vanes 4a is dense, and a large number of blades are arranged. The pitch 8b is gradually increased and the number of blades is reduced so that the speed-control stage stationary blades 8b become coarser as the distance from the right and left increases. Specifically, the number of speed control vanes is about 10 to 10 as compared with the cases shown in FIGS.
It is set to reduce by 20%.

【0015】蒸気入口管2が存在するためリング状通路
6の一部に開口7を有することにより剛性が低下した蒸
気入口管2に正対する領域においては、以上のように調
速段静翼4aの枚数を増やすことにより剛性が強化され
るので耐圧強度が増す効果があり、ノズルボックス及び
調速段の信頼性を向上させることができる。
In the region directly facing the steam inlet pipe 2 in which the rigidity is lowered due to the presence of the opening 7 in a part of the ring-shaped passage 6 due to the existence of the steam inlet pipe 2, the number of the speed control vanes 4a is as described above. Since the rigidity is increased by increasing, the pressure resistance is increased, and the reliability of the nozzle box and the speed control stage can be improved.

【0016】一方、蒸気入口管2より離れた領域ではリ
ング状通路6に開口7がないので剛性は十分に高く、調
速段静翼に作用する荷重も比較的小さいので、この部分
の調速段静翼4bの配置を粗にして同静翼4bの枚数を
減らしても耐圧強度は充分余裕あるものとすることがで
きる。
On the other hand, since there is no opening 7 in the ring-shaped passage 6 in the region away from the steam inlet pipe 2, the rigidity is sufficiently high and the load acting on the speed control vanes is relatively small. Even if the number of the stationary vanes 4b is reduced by roughening the arrangement of the above, the pressure resistance can be sufficiently increased.

【0017】また、この領域では蒸気の流れ1bは調速
段静翼4bに正対せずインシデンスを有することになる
が、図5に示すように調速段静翼4bのピッチ8bを大
きくすることにより流れの制御性が良くなるので、図6
に示すようにインシデンス損失が低減される効果があ
る。
Further, in this region, the steam flow 1b has an incident that does not directly face the speed control vane 4b, but as shown in FIG. 5, by increasing the pitch 8b of the speed control vanes 4b, the flow of the flow is increased. Since the controllability is improved, FIG.
As shown in, there is an effect that the incident loss is reduced.

【0018】また、本発明者の翼列実験によれば、蒸気
タービンノズルにおけ静翼枚数(ノズル枚数)が翼列性
能に及ぼす影響は、図2に示す通りである。この実験結
果によれば、調速段静翼を10%削減すると、翼列損失
を1〜2%低減することができることを示している。従
って、本実施例では、蒸気流入管2に正対する領域から
離れるに従って調速段静翼4bの配置を粗にすることに
よって、調速段静翼4bによる流動損失を低減して調速
段の性能を向上させることができる。
Further, according to the blade row experiment of the present inventor, the influence of the number of stationary blades (the number of nozzles) on the blade row performance in the steam turbine nozzle is as shown in FIG. According to this experimental result, it is shown that the blade row loss can be reduced by 1 to 2% if the speed control vane is reduced by 10%. Therefore, in the present embodiment, by disposing the speed control vane 4b roughly as it moves away from the area directly facing the steam inflow pipe 2, the flow loss due to the speed control vane 4b is reduced and the performance of the speed control stage is improved. be able to.

【0019】以上の結果から、本実施例では、調速段及
びタービン全体の信頼性及び性能を向上することができ
る。
From the above results, in this embodiment, the reliability and performance of the speed control stage and the turbine as a whole can be improved.

【0020】[0020]

【発明の効果】本発明は、調速段静翼の円周方向の配置
を、蒸気入口管に正対する領域では密とし蒸気入口管か
ら離れるに従って粗になるようにしているために、以上
説明したように、リング状通路まわりにおいて必要な耐
圧強度を確保すると共に、調速段静翼による流動損失を
小さくすることができ、従って調速段及びタービン全体
の信頼性と性能を向上することができる。
As described above, according to the present invention, the arrangement of the speed control vanes in the circumferential direction is made dense in the region directly facing the steam inlet pipe and becomes coarser as the distance from the steam inlet pipe increases. In addition, it is possible to secure the necessary pressure resistance around the ring-shaped passage and reduce the flow loss due to the speed control vanes, thus improving the reliability and performance of the speed control stage and the turbine as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の調速段静翼の部分の展開図
である。
FIG. 1 is a development view of a portion of a speed control vane according to an embodiment of the present invention.

【図2】蒸気タービンノズルにおける静翼枚数が翼列性
能に及ぼす影響を示すグラフである。
FIG. 2 is a graph showing how the number of stationary blades in a steam turbine nozzle affects blade row performance.

【図3】従来の蒸気タービンのノズルボックスと調速段
を一部断面で示す立面図である。
FIG. 3 is an elevation view showing a nozzle box and a speed control stage of a conventional steam turbine in a partial cross section.

【図4】従来の蒸気タービンのノズルボックスと調速段
を示す円周方向の断面図である。
FIG. 4 is a circumferential sectional view showing a nozzle box and a speed control stage of a conventional steam turbine.

【図5】従来の蒸気タービンの調速段静翼の部分の展開
図である。
FIG. 5 is a development view of a portion of a speed control vane of a conventional steam turbine.

【図6】調速段静翼のインシデンスとインシデンス損失
の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the incident and the loss of the speed control vane.

【符号の説明】[Explanation of symbols]

1,1a,1b 蒸気 2 蒸気入口管 3 ノズルボックス 4,4a,4b 調速段静翼 5 調速段動翼 6 ノズルボックスのリング状通路 7 リング状通路の開口 8,8a,8b 調速段静翼のピッチ 1,1a, 1b Steam 2 Steam inlet pipe 3 Nozzle box 4,4a, 4b Speed control vane 5 Speed control blade 6 Ring passage of nozzle box 7 Ring passage opening 8,8a, 8b Pitch of speed control vane

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気入口管よりノズルボックスのリング
状通路へ導かれた蒸気が円周方向に配備され前記ノズル
ボックスと一体の複数の調速段静翼を経て調速段動翼へ
導かれる蒸気タービンにおいて、前記調速段静翼の円周
方向の配置を、蒸気入口管に正対する領域では密となし
蒸気入口管から離れるに従って粗となしたことを特徴と
する蒸気タービン。
1. A steam turbine in which steam introduced from a steam inlet pipe to a ring-shaped passage of a nozzle box is circumferentially arranged and is introduced to a speed-control blade via a plurality of speed-control vanes integrated with the nozzle box. In the steam turbine, the arrangement of the speed control vanes in the circumferential direction is not dense in a region directly facing the steam inlet pipe, and is coarser as the distance from the steam inlet pipe increases.
JP18820894A 1994-08-10 1994-08-10 Steam turbine Withdrawn JPH0849501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18820894A JPH0849501A (en) 1994-08-10 1994-08-10 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18820894A JPH0849501A (en) 1994-08-10 1994-08-10 Steam turbine

Publications (1)

Publication Number Publication Date
JPH0849501A true JPH0849501A (en) 1996-02-20

Family

ID=16219665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18820894A Withdrawn JPH0849501A (en) 1994-08-10 1994-08-10 Steam turbine

Country Status (1)

Country Link
JP (1) JPH0849501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144717A (en) * 2008-12-16 2010-07-01 Man Turbo Ag Influx stage for steam turbine
JP2011058498A (en) * 2009-09-14 2011-03-24 Alstom Technology Ltd Axial turbine and method for discharging flow from the same
CN102052095A (en) * 2010-07-07 2011-05-11 北京全四维动力科技有限公司 Asymmetric diaphragm static cascade and asymmetric blades in nozzle set for axial flow steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144717A (en) * 2008-12-16 2010-07-01 Man Turbo Ag Influx stage for steam turbine
JP2011058498A (en) * 2009-09-14 2011-03-24 Alstom Technology Ltd Axial turbine and method for discharging flow from the same
CN102052090A (en) * 2009-09-14 2011-05-11 阿尔斯托姆科技有限公司 Axial turbine and method for discharging a flow from an axial turbine
CN102052095A (en) * 2010-07-07 2011-05-11 北京全四维动力科技有限公司 Asymmetric diaphragm static cascade and asymmetric blades in nozzle set for axial flow steam turbine

Similar Documents

Publication Publication Date Title
US9476315B2 (en) Axial flow turbine
EP0563054B1 (en) Gas turbine engine clearance control
JP3911309B2 (en) Chip shroud assembly for axial gas turbine engines
KR101665702B1 (en) Methods, systems and/or apparatus relating to inducers for turbine engines
US8444387B2 (en) Seal plates for directing airflow through a turbine section of an engine and turbine sections
US20140328675A1 (en) Axial Turbomachine Stator with Ailerons at the Blade Roots
EP2055895A2 (en) Turbomachine rotor disk
JP2007247645A (en) High pressure ratio aft fan assembly and gas turbine engine
US20110085892A1 (en) Vortex chambers for clearance flow control
JP2012052525A (en) Turbine nozzle with contoured band
JP2015121224A (en) Seal system for gas turbine
KR102042907B1 (en) Method for manufacturing gas turbine
JPH0216305A (en) Axial-flow gas turbine
JP2008133829A (en) Device for facilitating reduction of loss in turbine engine
WO2019027661A1 (en) Gas turbine exhaust diffuser having flow guiding elements
GB2075123A (en) Turbine cooling air deswirler
JP6153650B2 (en) Steam turbine stationary body and steam turbine provided with the same
EP2692987B1 (en) Gas turbine
US8870532B2 (en) Exhaust hood diffuser
JP2001271709A (en) Method and device for minimizing thermal stress in center body
JP6518526B2 (en) Axial flow turbine
US8708639B2 (en) Turbine bucket shroud tail
WO2015094990A1 (en) Adjustable clearance control system for airfoil tip in gas turbine engine
KR101013263B1 (en) Simplified support device for nozzles of a gas turbine stage
JPH0849501A (en) Steam turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106