JPH0845917A - Plasma treatment device and plasma treatment method - Google Patents

Plasma treatment device and plasma treatment method

Info

Publication number
JPH0845917A
JPH0845917A JP7171784A JP17178495A JPH0845917A JP H0845917 A JPH0845917 A JP H0845917A JP 7171784 A JP7171784 A JP 7171784A JP 17178495 A JP17178495 A JP 17178495A JP H0845917 A JPH0845917 A JP H0845917A
Authority
JP
Japan
Prior art keywords
gas
plasma
processing chamber
plasma processing
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7171784A
Other languages
Japanese (ja)
Inventor
Kazunori Tsujimoto
和典 辻本
Shinichi Taji
新一 田地
Masabumi Kanetomo
正文 金友
Kosei Kumihashi
孝生 組橋
Junichi Kobayashi
淳一 小林
Taketo Usui
建人 臼井
Nobuyuki Mise
信行 三瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7171784A priority Critical patent/JPH0845917A/en
Publication of JPH0845917A publication Critical patent/JPH0845917A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a device with which a groove and a hole of microscopic dimensions can be etched at high speed in a highly precise manner by a method wherein an exhaust means, with which the gas plasma and the gas generated from the gas plasma are exhausted from a vacuum treatment chamber through a gas exhaust hole at the effective exhaust speed higher than the specific value. CONSTITUTION:The plasma treatment device is provided with plasma discharge mechanisms 2 to 6, a gas introducing hole 9, a means 7 with which the material to be treated is retained on the place other than the ECR position in a vacuum treatment chamber 1, and means 13 and 14 with which gas is introduced from the gas introducing hole 9 into the vacuum treatment chamber 1. Besides, a means 3 with which electromagnetic waves are introduced into a discharge part 4 for the purpose of generating gas plasma 5 by gas, and a means 11, with which the gas plasma 5 and the gas generated by the gas plasma are exhausted from the vacuum treatment chamber 1 through the gas exhaust hole 10 at the effective exhaust speed of 5001/sec or higher, are provided in the plasma treatment device. An exhaust pump, having the efficiency of exhaust speed of 20001/sec or higher, for example, is used as the means 11 with which the vacuum treatment chamber 1 is evacuated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細で深い溝や穴の加
工に好適なドライエッチング方法及びドライエッチング
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry etching method and a dry etching apparatus suitable for processing fine and deep grooves and holes.

【0002】[0002]

【従来の技術】ドライエッチング技術は、薬液を用いた
ウェットエッチング技術に比べて微細加工が容易に行え
るため半導体集積回路(LSI)の製造に広く用いられ
ている。従来の反応性イオンエッチング(RIE)法を
用いた場合、エッチング時のガス圧は10mTorrか
ら100mTorr、反応ガス流量は10sccmから
100sccmである。RIE法においては、該圧力の
下限よりも低いと放電が不安定になり、該圧力の上限よ
りも高いと等方性エッチングとなる。従来のドライエッ
チング装置では、排気速度が1000 l/sec以下
のポンプが多用されており、上記反応ガス流量は上記ガ
ス圧に設定可能な範囲の値が選ばれている。
2. Description of the Related Art A dry etching technique is widely used for manufacturing a semiconductor integrated circuit (LSI) because fine processing can be performed more easily than a wet etching technique using a chemical solution. When the conventional reactive ion etching (RIE) method is used, the gas pressure during etching is 10 mTorr to 100 mTorr, and the reaction gas flow rate is 10 sccm to 100 sccm. In the RIE method, if the pressure is lower than the lower limit, the discharge becomes unstable, and if it is higher than the upper limit, isotropic etching occurs. In a conventional dry etching apparatus, a pump having an evacuation speed of 1000 l / sec or less is often used, and the reaction gas flow rate is selected within a range in which the gas pressure can be set.

【0003】また、特公昭52−126174号やソリ
ッド ステ−ト デバイシス アンド マテリアルズ
p207,(1990)(Solid State Devices and Ma
terials P207,(1990))にはマイクロ波プラズマエッチン
グ(ECR)技術が開示されている。さらに、ドライプ
ロセスシンポジウムp54,(1988)にはマグネト
ロン放電型RIEが、ジャ−ナル オブ バキュ−ム
サイエンス テクノロジ ビ− 9(2)、310(1
991)(Journal of Vacuum Science Technology B9
(2),310(1991))にはヘリコン型RIE等のドライエッ
チング装置が開示されている。これらのドライエッチン
グ装置の反応ガス圧力は0.5mTorr以上であり、
ガス流量は20sccm以下である。エッチング速度
は、例えば、ECRエッチング法の場合、被エッチング
物として多結晶シリコン、反応ガスとして塩素(C
2)を用い、ガス圧0.5mTorr、ガス流量20
sccmとすると約300nm/minの値が得られて
いる。
Further, Japanese Patent Publication No. 52-126174 and Solid State Devices and Materials Co., Ltd.
p207, (1990) (Solid State Devices and Ma)
microwave plasma etching (ECR) technology is disclosed in terials P207, (1990). Further, in the Dry Process Symposium p54, (1988), a magnetron discharge type RIE is described as a journal of vacuum.
Science Technology Bee 9 (2), 310 (1
991) (Journal of Vacuum Science Technology B9
(2), 310 (1991)) discloses a dry etching apparatus such as a helicon type RIE. The reaction gas pressure of these dry etching apparatuses is 0.5 mTorr or more,
The gas flow rate is 20 sccm or less. In the case of the ECR etching method, the etching rate is, for example, polycrystalline silicon as the object to be etched and chlorine (C
l 2 ), gas pressure 0.5 mTorr, gas flow 20
A value of about 300 nm / min is obtained when the value is sccm.

【0004】従来のドライエッチング装置の1例とし
て、マイクロ波ドライエッチング装置を図16に示す。
101はマイクロ波発生部、102は導波管、104は
反応ガス用導入口、105は反応ガス用配管、106は
マスフロ−コントロ−ラ、107は発生したプラズマを
高密度化するための電磁石、109はシリコンウェ−
ハ、110は試料台、111はチャンバ−、112は高
周波電源、114は真空ポンプ、117はエッチング処
理室をそれぞれ示す。マイクロ波発生部101で発生し
たマイクロ波は導波管102を伝わりチャンバ−111
内に導入され、該チャンバ−111内で反応ガスをプラ
ズマ化する。該プラズマは、試料台110上のシリコン
ウェ−ハ表面をエッチングする。該ドライエッチング装
置においては、一種類のガスは一本のガス配管105と
一つのマスフロ−コントロ−ラ105を用いてチャンバ
−111内に導入され、該ガス配管105はチャンバ−
111に直接取り付けられている。そのガス導入口10
4の開口部の面積は、ガス配管105の断面積程度であ
る。チャンバ−111内のガス圧は、チャンバ−内に導
入される反応ガスの流量が多いほど高く、真空ポンプ1
14によるチャンバ−内の実効排気速度が大きいほど低
くなる。ガス圧が1mtorr以上では数十sccm、
0.1mtorr台の低ガス圧領域では数sccmの値
が用いられている。また、実効排気速度は真空ポンプの
排気速度と排気系統のコンダクタンスで決まり、従来の
装置では400 l/sec以下である。
FIG. 16 shows a microwave dry etching apparatus as an example of a conventional dry etching apparatus.
Reference numeral 101 is a microwave generator, 102 is a waveguide, 104 is a reaction gas inlet, 105 is a reaction gas pipe, 106 is a mass flow controller, 107 is an electromagnet for densifying generated plasma, 109 is a silicon wafer
C, 110 is a sample stage, 111 is a chamber, 112 is a high frequency power source, 114 is a vacuum pump, and 117 is an etching chamber. Microwaves generated by the microwave generator 101 are transmitted through the waveguide 102 and the chamber-111.
Is introduced into the chamber and the reaction gas is turned into plasma in the chamber-111. The plasma etches the silicon wafer surface on the sample stage 110. In the dry etching apparatus, one kind of gas is introduced into the chamber 111 using one gas pipe 105 and one mass flow controller 105, and the gas pipe 105 is connected to the chamber-111.
It is directly attached to 111. The gas inlet 10
The area of the opening of No. 4 is about the cross-sectional area of the gas pipe 105. The gas pressure in the chamber 111 is higher as the flow rate of the reaction gas introduced into the chamber is higher, and the vacuum pump 1
The higher the effective pumping speed in the chamber 14 is, the lower it is. When the gas pressure is 1 mtorr or more, several tens of sccm,
A value of several sccm is used in the low gas pressure region of the order of 0.1 mtorr. The effective pumping speed is determined by the pumping speed of the vacuum pump and the conductance of the pumping system, and is 400 l / sec or less in the conventional device.

【0005】導入するガス流量に対する処理室内圧力は
次式で表される。
The pressure in the processing chamber with respect to the flow rate of the introduced gas is expressed by the following equation.

【0006】P=(q+Q)/S …(1)式 ここで、P(Torr)は処理室内圧力(処理室内の場
所により圧力が異なる場合はプラズマ放電部のガス圧
力)、qはガスを導入しない場合の装置からのリーク
量、Qは導入ガス流量(Torr・l/sec)、Sは
装置の実効排気速度(l/sec)である。通常の場
合、qはQの1/1000以下でありほとんど無視でき
る。従来装置では、例えば、ポンプの排気速度(S0
が約1000 l/sec以下のターボ分子ポンプを備
え、処理室の排気コンダクタンス(C)は200 l/
sec〜1000 l/secで、この時の実効排気速
度S0は複数台の排気ポンプの排気速度S1からSn
(nはポンプの台数を示す数値)と真空処理室の排気コ
ンダクタンスCにより次式で表され、 1/S0=(1/ΣSn)+1/C …(2)式 従来は実効排気速度100〜400 l/secの排気
を行っていた。従って、0.5mTorrにガス圧力を
設定すると流すことができるガス流量は4〜20scc
mとなっていた。
P = (q + Q) / S (1) where P (Torr) is the pressure in the processing chamber (the gas pressure in the plasma discharge section when the pressure varies depending on the location in the processing chamber), and q is the gas introduced. If not, the amount of leak from the device, Q is the introduced gas flow rate (Torr.l / sec), and S is the effective pumping speed (l / sec) of the device. In the normal case, q is 1/1000 or less of Q and can be almost ignored. In the conventional device, for example, the pumping speed (S 0 ) of the pump
Equipped with a turbo molecular pump of about 1000 l / sec or less, and the exhaust conductance (C) of the processing chamber is 200 l / sec.
sec to 1000 l / sec, the effective pumping speed S0 at this time is the pumping speeds S1 to Sn of the plurality of pumps.
(N is a numerical value indicating the number of pumps) and the exhaust conductance C of the vacuum processing chamber are represented by the following formula: 1 / S0 = (1 / ΣSn) + 1 / C (2) Formula Conventionally, effective exhaust speed 100 to 400 Evacuation of 1 / sec was performed. Therefore, when the gas pressure is set to 0.5 mTorr, the gas flow rate that can be flowed is 4 to 20 scc.
It was m.

【0007】一方、真空処理室内でのガスの流れやすさ
を表す量として、ガスの処理室内滞在時間があり、これ
は次式のように表される。
On the other hand, as a quantity representing the ease of gas flow in the vacuum processing chamber, there is a gas residence time in the processing chamber, which is expressed by the following equation.

【0008】τ=V/S(=PV/Q) …(3)式 ここで、Vは真空処理室の総容積である。従来装置にお
いては、上記の通り実効排気速度が100〜400 l
/secで、真空処理室容積が100〜300l程度で
あり、ガス滞在時間は400msec〜3000mse
c程度となっていた。
Τ = V / S (= PV / Q) (3) Formula V is the total volume of the vacuum processing chamber. In the conventional device, the effective pumping speed is 100 to 400 l as described above.
/ Sec, the volume of the vacuum processing chamber is about 100 to 300 l, and the gas residence time is 400 msec to 3000 mse.
It was about c.

【0009】[0009]

【発明が解決しようとする課題】LSIの微細化に伴
い、0.3μm程度の寸法の溝や穴の加工技術が要求さ
れてきているが、従来のRIE法を用いたドライエッチ
ングでは、ガス圧が高いためガスプラズマ中でのイオン
の散乱等により基板に入射するイオンの方向性が乱れ、
微細な寸法の溝や穴を高精度に加工することが困難であ
る。
Along with the miniaturization of LSIs, a technique for processing grooves and holes having a size of about 0.3 μm has been required. However, in the conventional dry etching using the RIE method, gas pressure is required. Is high, the directionality of ions incident on the substrate is disturbed due to ion scattering in gas plasma,
It is difficult to process grooves and holes with fine dimensions with high accuracy.

【0010】反応ガス圧を低くすることにより、ガスプ
ラズマ中のイオンの散乱を防止することができる。上記
程度の寸法の溝や穴を異方性加工するためには、試料に
入射する斜めイオンの入射角度を1°以下に抑える必要
が有り、反応ガス圧(動作圧力)としては1mTorr
以下、望ましくは0.5mTorr以下にする必要があ
る。但し、プラズマを安定に放電させるためには0.0
1mTorr以上の圧力が必要である。反応ガス圧の低
いドライエッチング装置としては、上記ECRエッチン
グ装置、マグネトロン放電型RIE装置及びヘリコン型
RIE装置がある。しかしながら、従来のドライエッチ
ング装置においては、反応ガス圧が低いと、エッチング
速度が小さくなるという問題が生じる。すなわち、エッ
チングの方向性を高めることと、エッチング速度高める
こととはドレ−ドオフの関係にあり両立することが困難
である。
By lowering the reaction gas pressure, it is possible to prevent the scattering of ions in the gas plasma. In order to anisotropically process a groove or hole having the above dimensions, it is necessary to suppress the incident angle of oblique ions incident on the sample to 1 ° or less, and the reaction gas pressure (operating pressure) is 1 mTorr.
Hereafter, it is desirable to set it to 0.5 mTorr or less. However, in order to stably discharge the plasma, 0.0
A pressure of 1 mTorr or higher is required. Examples of the dry etching apparatus having a low reaction gas pressure include the ECR etching apparatus, the magnetron discharge type RIE apparatus and the helicon type RIE apparatus. However, in the conventional dry etching apparatus, when the reaction gas pressure is low, there is a problem that the etching rate becomes low. That is, it is difficult to increase the directionality of etching and increase the etching rate at the same time because there is a relationship of drain off.

【0011】さらに、LSIを形成するSiウェハの直
径は大型化してきており、例えば、上記ECRエッチン
グ装置では、ウェハを一枚ごとに真空処理室に搬送して
エッチング処理する枚葉式ドライエッチング装置が用い
られていた。このような装置を用いると、例えば6イン
チウェハで200nmの厚さのポリシリコンをエッチン
グするために、200〜300nm/minのエッチ速
度で約1〜2分間の処理時間を要する。直径8インチの
ウェハを用いると、エッチ速度はエッチング面積依存性
(いわゆるローディング効果)のために低下し、処理時
間が2〜4分間に増え、エッチング処理速度(スループ
ット)が低下するとの問題が生じる。高周波またはマイ
クロ波の入力パワーを増大してエッチング速度を高めて
スル−プットを高めると、イオンエネルギが増大して選
択性が低下するとの問題が発生する。上記枚葉式ドライ
エッチング装置を複数台用いて並列処理することによ
り、エッチング条件を変えることなくスループットの向
上をはかることが可能であるが、装置コストが膨大にな
る。
Further, the diameter of the Si wafer forming the LSI is becoming larger. For example, in the above ECR etching apparatus, a single wafer type dry etching apparatus for carrying each wafer into a vacuum processing chamber for etching processing is performed. Was used. Using such a device, for example, in order to etch polysilicon having a thickness of 200 nm on a 6-inch wafer, a processing time of about 1 to 2 minutes is required at an etching rate of 200 to 300 nm / min. When a wafer having a diameter of 8 inches is used, the etching rate decreases due to the etching area dependency (so-called loading effect), the processing time increases to 2 to 4 minutes, and the etching processing rate (throughput) decreases. . When the input power of high frequency or microwave is increased to increase the etching rate to increase the throughput, there is a problem that the ion energy increases and the selectivity decreases. By performing parallel processing using a plurality of the above single-wafer dry etching apparatuses, it is possible to improve the throughput without changing the etching conditions, but the apparatus cost becomes enormous.

【0012】また、上記ECRエッチング装置では、ガ
ス導入口の開口部の断面積が小さいために、実効的な排
気速度を従来の装置よりも大きくしてエッチング処理室
117を流れるガス流量を大きくし、例えば、1300
l/sec以上にすると、ガス導入口104からチャ
ンバー111へガスが流れ込むときのガス流速が音速近
くまで上昇し、流れの中に衝撃波が生じて流れの中の圧
力が不均一になる。この状態では試料上のガス密度の均
一性だけでなく、放電によるプラズマの不均一や不安定
が生じて、エッチング速度の均一性の低下などの問題を
生じる。このため、ガスの流速は音速以下、望ましくは
音速の1/3以下にする必要がある。
Further, in the above ECR etching apparatus, since the cross-sectional area of the opening of the gas introduction port is small, the effective evacuation speed is made larger than that of the conventional apparatus to increase the gas flow rate in the etching processing chamber 117. , For example, 1300
When the flow rate is 1 / sec or more, the gas flow velocity when the gas flows into the chamber 111 from the gas introduction port 104 increases to near the sonic velocity, and a shock wave is generated in the flow to make the pressure in the flow uneven. In this state, not only the uniformity of the gas density on the sample but also the nonuniformity and instability of the plasma due to the discharge occur, which causes a problem such as a reduction in the uniformity of the etching rate. Therefore, it is necessary that the flow velocity of the gas is equal to or lower than the speed of sound, and preferably equal to or lower than 1/3 of the speed of sound.

【0013】また、ガス導入口104が、エッチング処
理室117の排気口である試料台110の横の部分に近
いところにある構成では、ガス導入口からチャンバー内
に入るガスがチャンバー全体に広がる前に排気口から排
気されてしまい、効率よくガスが利用されないという問
題があった。また、チャンバー形状によってはガスの流
れが十分エッチング処理室117の中心に広がらないと
いう問題があった。
Further, in the structure in which the gas inlet 104 is near the side of the sample stage 110 which is the exhaust port of the etching processing chamber 117, before the gas entering the chamber from the gas inlet spreads throughout the chamber. However, there is a problem that the gas is not efficiently used because it is exhausted from the exhaust port. Further, depending on the shape of the chamber, there is a problem that the gas flow does not sufficiently spread to the center of the etching processing chamber 117.

【0014】また、一種類のガスを流すのに一つのマス
フローコントローラ106と一本のガス配管のみを用い
ていたので、エッチング処理室117内のガスの流れが
偏るためにエッチングの均一性が悪くなるという問題が
あった。
Further, since only one mass flow controller 106 and one gas pipe are used to flow one kind of gas, the gas flow in the etching processing chamber 117 is uneven, so that the etching uniformity is poor. There was a problem of becoming.

【0015】さらに、従来の上記装置ではウェハーの大
口径化が進むにつれ、ガスの流れがエッチング処理室1
17の中心に十分広がらないという問題があった。
Further, in the above-mentioned conventional apparatus, as the diameter of the wafer becomes larger, the gas flow becomes larger.
There was a problem that it did not spread to the center of 17.

【0016】本発明の目的は、微細な寸法を有する溝や
穴を高精度に、かつ、高速にエッチングすることのでき
るドライエッチング方法及びドライエッチング装置を提
供することにある。
It is an object of the present invention to provide a dry etching method and a dry etching apparatus capable of etching a groove or a hole having a fine dimension with high accuracy and at a high speed.

【0017】本発明の他の目的は、スル−プットの大き
なドライエッチング方法及びドライエッチング装置を提
供することにある。
Another object of the present invention is to provide a dry etching method and a dry etching apparatus having a large throughput.

【0018】本発明の他の目的は、異方性の高いドライ
エッチング方法及びドライエッチング装置を提供するこ
とにある。
Another object of the present invention is to provide a dry etching method and a dry etching apparatus having high anisotropy.

【0019】本発明の他の目的は、選択性の高いドライ
エッチング方法及びドライエッチング装置を提供するこ
とにある。
Another object of the present invention is to provide a dry etching method and a dry etching apparatus with high selectivity.

【0020】本発明の他の目的は、1mTorr以下、
望ましくは0.5mTorr以下の低ガス圧力において
500nm/min以上、望ましくは1000nm/m
in以上の高エッチ速度を得るドライエッチング方法を
提供することにある。
Another object of the present invention is 1 mTorr or less,
500 nm / min or more, preferably 1000 nm / m or more at a low gas pressure of 0.5 mTorr or less
It is an object of the present invention to provide a dry etching method for obtaining a high etching rate of in or more.

【0021】本発明の他の目的は、均一性の良好なドラ
イエッチング方法及びドライエッチング装置を提供する
ことにある。
Another object of the present invention is to provide a dry etching method and a dry etching apparatus with good uniformity.

【0022】本発明の他の目的は、ウェハ表面や処理室
内壁への反応生成物の再付着による汚染の少ないドライ
エッチング方法及びドライエッチング装置を提供するこ
とにある。
It is another object of the present invention to provide a dry etching method and a dry etching apparatus in which the reaction product is less likely to be attached to the surface of the wafer or the inner wall of the processing chamber due to redeposition.

【0023】[0023]

【課題を解決するための手段】上記目的は、第一に、真
空処理室内におけるガス圧を5mTorr以下望ましく
は1mTorr以下とし、かつ、実効排気速度500
l/sec以上で反応ガスの滞在時間を300msec
以下、望ましくは実効排気速度1300 l/sec以
上で反応ガスの滞在時間を100msec以下とするこ
とにより達成される。
The above objects are as follows. First, the gas pressure in the vacuum processing chamber is set to 5 mTorr or less, preferably 1 mTorr or less, and the effective pumping speed is 500.
The residence time of the reaction gas is 300 msec at 1 / sec or more.
Hereinafter, this is preferably achieved by setting the residence time of the reaction gas to 100 msec or less at an effective pumping speed of 1300 l / sec or more.

【0024】図33に、本発明の排気速度、ガス圧力制
御範囲とその効果を示す。前述したように、ガス圧力
は、エッチング方向性(異方性)を制御するパラメータ
であり、排気速度はエッチ速度を制御するパラメータで
ある。従来エッチングでは、実効排気速度は約400
l/sec以下の低速排気のため、マイクロ波エッチン
グ等高密度プラズマエッチング装置を用いても低エッチ
速度の問題があり、また低ガス圧において入射粒子の方
向性が揃ってもマスクとの選択比が小さいこと等のため
実際には高異方性加工が困難であった。
FIG. 33 shows the pumping speed and gas pressure control range of the present invention and their effects. As described above, the gas pressure is a parameter that controls the etching direction (anisotropic), and the exhaust rate is a parameter that controls the etching rate. In conventional etching, the effective pumping speed is about 400
Because of low-speed exhaust of 1 / sec or less, there is a problem of low etching rate even when using a high-density plasma etching device such as microwave etching, and even if the directionality of incident particles is uniform at low gas pressure, the selection ratio with the mask is low. In practice, high anisotropy processing was difficult because of small size.

【0025】本発明の主な適用範囲は、図に示す三つの
領域に分けることができる。すなわち、(1)ガス圧力
の領域によらず、従来の1.5倍以上の中程度のエッチ
速度高速化を目的とする領域、すなわち、実効排気速度
800 l/sec以上を必要とする領域、(2)従来
の1.5倍以上の中程度のエッチ速度高速化、従来の
1.5倍以上の中程度の高異方性を目的とする領域、す
なわち、実効排気速度500 l/sec以上、ガス圧
力5mTorr以下を必要とする領域、(3)従来の2
倍以上の高速化、従来の2倍以上の高異方性を目的とす
る領域、すなわち、実効排気速度1300 l/sec
以上、ガス圧力1mTorr以下を必要とする領域、で
ある。
The main application range of the present invention can be divided into three areas shown in the figure. That is, (1) regardless of the region of gas pressure, a region for the purpose of speeding up the medium etching speed by 1.5 times or more of the conventional one, that is, a region requiring an effective evacuation speed of 800 1 / sec or more, (2) Area for the purpose of speeding up the etching speed by 1.5 times or more as compared with the conventional one, and medium anisotropy as high as 1.5 times or more as compared with the conventional, that is, an effective pumping speed of 500 l / sec or more , A region requiring a gas pressure of 5 mTorr or less, (3) Conventional 2
Area for the purpose of speeding up more than twice and high anisotropy more than twice that of the conventional one, that is, effective pumping speed 1300 l / sec
The above is a region requiring a gas pressure of 1 mTorr or less.

【0026】プロセス向上の点のみからすると(3)の
方式が最適であるが、半導体製造プロセスには種々の加
工工程があるため、装置のコストを考慮にいれると、低
コストで要求性能を得るために、(1)や(2)の適用
法も可能である。
The method (3) is optimal only from the viewpoint of process improvement, but the semiconductor manufacturing process has various processing steps. Therefore, if the cost of the apparatus is taken into consideration, the required performance can be obtained at low cost. Therefore, the application method of (1) or (2) is also possible.

【0027】前述の(1)式により、ガス圧力P、排気
速度S、ガス流量Qの関係は、P=Q/Sで表されるの
で、上記手段を満足するために必要なガス流量は必要最
低ガス圧力を0.5mTorr、実効排気速度を800
l/secとすると32sccmとなる。しかし、実
際にはガス圧力の微調整をするため、この変動分を考慮
し、望ましくは40sccm以上となる。
Since the relationship between the gas pressure P, the exhaust speed S and the gas flow rate Q is expressed by P = Q / S according to the above equation (1), the gas flow rate required to satisfy the above means is required. Minimum gas pressure 0.5mTorr, effective pumping speed 800
When it is set to 1 / sec, it becomes 32 sccm. However, in practice, since the gas pressure is finely adjusted, the fluctuation amount is taken into consideration, and it is preferably 40 sccm or more.

【0028】ここで、ガス圧力は0.01mTorr以
下で放電が不安定になるので、ガス圧力の下限は0.0
1mTorrを越えることが望ましい。
Since the discharge becomes unstable when the gas pressure is 0.01 mTorr or less, the lower limit of the gas pressure is 0.0.
It is desirable to exceed 1 mTorr.

【0029】また、排気速度は装置の大きさを考慮にい
れると、最大でも実効排気速度100000 l/se
cを越えるべきではない。
In consideration of the size of the apparatus, the effective pumping speed is 100,000 l / se at the maximum effective pumping speed.
c should not be exceeded.

【0030】また、ガス滞在時間は、真空処理室の容積
と上記排気速度の上限、及びエッチング表面反応の反応
時間を考慮に入れると、0.1msec以上とするべき
である。
The gas residence time should be 0.1 msec or more in consideration of the volume of the vacuum processing chamber, the upper limit of the exhaust rate, and the reaction time of the etching surface reaction.

【0031】また、ガス流量は、ガスの使用コストとガ
ス流制御を考慮に入れると、10000sccmを越え
るべきではない。
Also, the gas flow rate should not exceed 10,000 sccm, taking into consideration the cost of using the gas and gas flow control.

【0032】第二に、前項の目的は、ガス導入口の面積
を広げて導入ガスの流速を音速の1/3以下とするこ
と、ガス導入口とガス配管の間にガスバッファ室を設け
ること、排気口と試料台とを近接して設け、該試料台と
チャンバへのガス導入口取り付け位置を離すとともに、
該チャンバ−の中心方向に設けること、マスフローコン
トローラでガス流量を制御してガスを流すガス配管及び
ガス導入口をチャンバーの周りに対称性よく複数取り付
けること、ガスの流れを制御するじゃま板をチャンバー
内に設けること、エッチング処理室の高さ/幅の比を
0.5以上とすること、ガス導入口の高さをエッチング
処理室の上部から1/3以内の位置に設けること、排気
系とエッチング処理室の間に真空バッファ室を設けるこ
と、典型的には、ポンプの排気速度を2500 l/s
ec以上、望ましくは4000 l/sec以上にし、
排気コンダクタンスを2000 l/sec以上、望ま
しくは3000 l/sec以上にして実効排気コンダ
クタンスを1300 l/sec以上にすること等によ
り、効果的に達成される。
Secondly, the purpose of the preceding paragraph is to widen the area of the gas inlet so that the flow velocity of the introduced gas is 1/3 or less of the speed of sound, and to provide a gas buffer chamber between the gas inlet and the gas pipe. The exhaust port and the sample base are provided in close proximity to each other, and the mounting position of the gas inlet to the sample base and the chamber is separated,
The chamber is provided in the center direction, a plurality of gas pipes and gas inlets through which the gas flow rate is controlled by a mass flow controller are installed symmetrically around the chamber, and a baffle plate for controlling the gas flow is installed in the chamber. Inside, the height / width ratio of the etching chamber is 0.5 or more, the height of the gas inlet is within 1/3 of the upper part of the etching chamber, and an exhaust system is provided. A vacuum buffer chamber is provided between the etching processing chambers, and typically, the pumping speed is set to 2500 l / s.
ec or more, preferably 4000 l / sec or more,
It is effectively achieved by setting the exhaust conductance to 2000 l / sec or more, preferably 3000 l / sec or more and the effective exhaust conductance to 1300 l / sec or more.

【0033】第三に、前項の目的は、チャンバ−内にお
ける反応ガスの滞在時間を100msec以下とすると
するとともに、さらに大型ベッセルを用いて大口径ウェ
ハを多数枚を同時にバッチ処理することにより達成され
る。
Thirdly, the object of the preceding paragraph is achieved by setting the residence time of the reaction gas in the chamber to be 100 msec or less and further batch-processing a large number of large-diameter wafers at the same time using a large vessel. It

【0034】さらに、上記目的は、大型ベッセル内の試
料台の中心部に排気口を設けること、大型ベッセルの真
空室内に導入するガス流量を100sccm以上とする
こと、試料台となる電極面積を5000cm2以上とす
ること、処理室、及び排気管の総排気コンダクタンスを
3300 l以上とし、かつ、排気速度5000 l/
sec以上の排気ポンプを用いること、実効排気速度を
2000 l/sec以上とすること等により、効果的
に達成される。
Further, the above objects are to provide an exhaust port at the center of the sample table in the large vessel, set the gas flow rate introduced into the vacuum chamber of the large vessel to 100 sccm or more, and make the electrode area of the sample table 5000 cm. 2 or more, the total exhaust conductance of the processing chamber and the exhaust pipe is 3300 l or more, and the exhaust speed is 5000 l /
This can be effectively achieved by using an exhaust pump of sec or more and setting an effective exhaust speed of 2000 l / sec or more.

【0035】[0035]

【作用】従来のドライエッチング装置では、ガス圧力を
低くするとエッチング速度は著しく減少し、実用的なエ
ッチング速度が得られなくなる。これは、ガス圧力を低
くすると反応室内のイオン数が減少するためであると考
えられている。本発明者らは、ガス圧力を低くし、か
つ、高エッチング速度を得るために種々の検討を重ね
た。その結果、イオンが最初に被エッチング物と衝突す
る際、エッチングが生じることを見出した。即ち、未反
応のイオン(反応性ガス)が既反応イオン(反応生成
物)に比べて反応室内に多数存在すれば、ガス圧力が同
一でもエッチング速度を高めることができることを見出
した。そこで、さらに、未反応のイオンと反応生成物と
の割合を決定する要因について検討を行った。
In the conventional dry etching apparatus, when the gas pressure is lowered, the etching rate is remarkably reduced, and a practical etching rate cannot be obtained. It is considered that this is because the number of ions in the reaction chamber decreases when the gas pressure is lowered. The present inventors have made various studies in order to reduce the gas pressure and obtain a high etching rate. As a result, it was found that etching occurs when the ions first collide with the object to be etched. That is, it has been found that, if a large number of unreacted ions (reactive gas) exist in the reaction chamber as compared with already reacted ions (reaction product), the etching rate can be increased even if the gas pressure is the same. Therefore, the factors that determine the ratio of unreacted ions and reaction products were further investigated.

【0036】図5は、ガス流量を変化させた時の反応性
ガスと全入射粒子(反応性ガス+反応生成物)の基板へ
の入射割合Rを計算した結果である。即ち、該入射割合
Rは、 R=1/(1+2.735×1021・A・P/(α・Q)) …( 4)式 で与えられる。ここで、C1は被エッチング物及びエッ
チングガスにより決まる定数で、0.1から10の範囲
の値を有する。Aはエッチングされる面積、Pはガス
圧、αはガスの利用率を表し、エッチング装置における
導入ガスの放電効率やエッチング処理室の形状等により
決まる定数で10から100%の範囲の値を有する。Q
はガス流量である。図5は、エッチング面積Aを78.
5cm2、ガス利用率αを42%、ガス圧力を0.5m
Torrとして表示したものである。この結果から、反
応性ガスの割合はガス流量とともに増大することがわか
る。一方、図6にガス流量を変化させた時のガス滞在時
間の変化を式(3)を用いて計算で求めた結果を示す。
ガス流量が増大するとガス滞在時間は急激に減少する。
従って、ガス流量の増加にともないエッチング反応を阻
害する反応生成物の処理室内滞在時間が減少し、速やか
に処理室外に排気されるため、エッチング反応が促進さ
れ、エッチング速度が増大する。しかしながら、単にガ
ス流量を大きくすると、図17に示すように動作圧力
(ガス圧力)が大きくなり、その結果、異方性が低下す
る。動作圧力(ガス圧力)を変えず、ガス流量を大きく
する方法については、図17に示すように実効排気速度
(エッチング処理内部におけるガス流量)が大きいほど
同一動作圧力でのガス導入口でのガス流量が大きくなる
ことになる。即ち、実効排気速度を大きくすることによ
り、同一動作圧力でのガス流量を大きくすることができ
る。
FIG. 5 shows the calculation results of the incident ratio R of the reactive gas and all the incident particles (reactive gas + reaction product) to the substrate when the gas flow rate is changed. That is, the incident rate R is given by R = 1 / (1 + 2.735 × 10 2 C 1 · A · P / (α · Q)) (4). Here, C 1 is a constant determined by the object to be etched and the etching gas, and has a value in the range of 0.1 to 10. A is the area to be etched, P is the gas pressure, and α is the gas utilization rate. It is a constant determined by the discharge efficiency of the introduced gas in the etching apparatus, the shape of the etching chamber, etc., and has a value in the range of 10 to 100%. . Q
Is the gas flow rate. In FIG. 5, the etching area A is 78.
5 cm 2 , gas utilization rate α 42%, gas pressure 0.5 m
It is displayed as Torr. From this result, it can be seen that the ratio of the reactive gas increases with the gas flow rate. On the other hand, FIG. 6 shows the result of calculation of the change in the gas residence time when the gas flow rate is changed, using Equation (3).
As the gas flow rate increases, the gas residence time decreases rapidly.
Therefore, as the gas flow rate increases, the residence time of the reaction product, which inhibits the etching reaction, in the processing chamber decreases and is quickly exhausted to the outside of the processing chamber, so that the etching reaction is accelerated and the etching rate is increased. However, if the gas flow rate is simply increased, the operating pressure (gas pressure) increases as shown in FIG. 17, and as a result, the anisotropy decreases. Regarding the method of increasing the gas flow rate without changing the operating pressure (gas pressure), as shown in FIG. 17, the gas at the gas inlet at the same operating pressure is increased as the effective exhaust rate (gas flow rate inside the etching process) is increased. The flow rate will increase. That is, by increasing the effective pumping speed, the gas flow rate at the same operating pressure can be increased.

【0037】図7は反応性ガス及び全入射粒子の割合と
ガス滞在時間との関係を式(3)及び式(4)を用いて
求めた結果を示す。なお、真空処理室内の総容積は10
0l、エッチング面積Aは78.5cm2、ガス利用率
αは42%として求めた。
FIG. 7 shows the results of the relationship between the ratio of the reactive gas and the total incident particles and the gas residence time obtained by using the equations (3) and (4). The total volume of the vacuum processing chamber is 10
0 l, the etching area A was 78.5 cm 2 , and the gas utilization rate α was 42%.

【0038】図7から、ガス滞在時間の減少とともに反
応性ガスの割合が増大し、1secから100msec
の間に大幅に変化することがわかる。従って、エッチン
グ反応を効率良く行うためには、反応性ガスの割合をウ
ェハ入射全粒子の60%以上とした場合、図5からガス
流量を40sccm以上、望ましくは100sccm以
上、また、図7からガス滞在時間を100msec以
下、望ましくは50msec以下にすればよいことがわ
かる。
From FIG. 7, the proportion of the reactive gas increases with the decrease of the gas residence time, and the range from 1 sec to 100 msec.
It can be seen that it changes drastically during. Therefore, in order to efficiently perform the etching reaction, when the ratio of the reactive gas is 60% or more of all the particles incident on the wafer, the gas flow rate is 40 sccm or more, preferably 100 sccm or more from FIG. It is understood that the staying time should be 100 msec or less, preferably 50 msec or less.

【0039】エッチング処理室内の容積が1000 l
以下の場合、該室内を流れるガス流量を1300 l/
sec以上とすることにより、上記ガス滞在時間を実現
できる。また、ガス導入口の総開口部面積を150cm
2とすることによりガス導入口でのガス流速を音速の1
/3以下とすることが可能となり、ガスの流れが圧縮性
になることを防ぐことができた。これにより、ガスの流
れに発生する衝撃波を抑えることができ、プラズマの不
安定性や不均一性を抑制することができた。
The volume of the etching chamber is 1000 l
In the following cases, the gas flow rate in the chamber is 1300 l /
The gas residence time can be realized by setting the time to be not less than sec. Moreover, the total opening area of the gas inlet is 150 cm.
By setting it to 2 , the gas flow velocity at the gas inlet is set to 1
It was possible to set the ratio to / 3 or less, and it was possible to prevent the gas flow from becoming compressible. Thereby, the shock wave generated in the gas flow can be suppressed, and the instability and nonuniformity of plasma can be suppressed.

【0040】ガス導入口を、エッチング処理室の排気口
である試料台の横の部分から遠い位置に取り付けた結
果、ガスの流れがチャンバー内に十分広がるようにな
り、効率よくガスがプラズマ化されるのでエッチング処
理速度と均一性が増加した。またその向きをチャンバー
中心方向に向けたためにチャンバー中心方向にガスが十
分流れるようになり、そのためエッチング速度と均一性
が向上した。
As a result of mounting the gas inlet at a position far from the side of the sample stage which is the exhaust port of the etching chamber, the gas flow spreads sufficiently into the chamber, and the gas is efficiently turned into plasma. As a result, the etching processing speed and uniformity are increased. Moreover, since the direction was directed toward the center of the chamber, the gas was allowed to sufficiently flow toward the center of the chamber, which improved the etching rate and uniformity.

【0041】マスフローコントローラでガス流量を制御
してガスを流すガス配管をチャンバーの周りに対称性よ
く複数取り付けることにより、チャンバー内のガスの流
れの偏りを防止することができた。その結果、エッチン
グの均一性が上昇した。ガス導入口の取り付けも対称性
を考慮したため、ガスの流れの均一性が改善された。ま
た、じゃま板を取り付けることにより、チャンバー内の
ガスの流れを制御することが可能になり、特にプラズマ
を生成する場所にガスの流れを作ることができ、エッチ
ング速度が増加した。
By arranging a plurality of gas pipes through which the gas flow is controlled by a mass flow controller to flow the gas with good symmetry, it is possible to prevent the gas flow in the chamber from being biased. As a result, the etching uniformity increased. The installation of the gas inlet also considered the symmetry, so the uniformity of the gas flow was improved. Further, by attaching the baffle plate, it became possible to control the gas flow in the chamber, and in particular, the gas flow could be created at the place where plasma was generated, and the etching rate was increased.

【0042】チャンバーの高さ/幅の比を0.5以上に
することにより、チャンバー中心方向へ十分にガスが流
れるようになった。これを図15を用いて説明する。図
に示したのはエッチング処理室内のガスの流れの密度が
エッチング処理室の高さ/幅の比にどのように影響を受
けるかをシミュレーションした結果である。エッチング
処理室の高さ/幅の比を大きくすればエッチング処理室
の中心であるウェハー上部の流れの密度が大きくなり、
均一性が向上することがわかる。このように本発明では
エッチング処理室の中心へ効率よく均一にガスが流れる
ようにできたので、プラズマ密度が増加し、プラズマの
均一性がよくなった。その結果、低圧力領域でもエッチ
ング速度が速く均一性の良いエッチングを行うことがで
きるようになった。
By setting the height / width ratio of the chamber to 0.5 or more, the gas could sufficiently flow toward the center of the chamber. This will be described with reference to FIG. Shown in the figure are the simulation results of how the density of the gas flow in the etching chamber is affected by the height / width ratio of the etching chamber. Increasing the height / width ratio of the etching chamber increases the density of the flow above the wafer, which is the center of the etching chamber.
It can be seen that the uniformity is improved. As described above, in the present invention, the gas can be made to flow efficiently and uniformly to the center of the etching processing chamber, so that the plasma density is increased and the plasma uniformity is improved. As a result, it becomes possible to perform etching with a high etching rate and good uniformity even in a low pressure region.

【0043】ドライエッチング装置では動作圧力が低い
ほど、プラズマからウェハに入射するイオンの散乱の頻
度が減り、エッチングの異方性が高くなる。本発明によ
れば、実用的なエッチング速度で低圧力動作による異方
性エッチングを均一性よく行なうことができる。
In the dry etching apparatus, the lower the operating pressure is, the less the frequency of scattering of the ions incident on the wafer from the plasma and the higher the etching anisotropy. According to the present invention, anisotropic etching by low-pressure operation can be performed with good uniformity at a practical etching rate.

【0044】大型の真空処理室を用いてドライエッチン
グを行うことにより、一度に多数の試料を処理すること
ができるのでスル−プットを向上することができる。大
型ベッセルを用いた場合、特に、エッチング反応によっ
て発生する反応生成物を速やかに処理室外に排気するこ
とが重要である。そのために、高速排気が必要である。
従来装置では、例えば、ポンプ排気速度が約1000
l/sec以下のターボ分子ポンプを備え、排気コンダ
クタンスCが200 l/sec〜1000l/sec
で、100〜400 l/secであった。従って、5
mTorrにガス圧力を設定すると流すことができるガ
ス流量は40〜200sccmとなっていた。本発明で
は、大型ベッセル装置において前述のような高速排気ポ
ンプと大きい排気コンダクタンスにより実効排気速度1
300 l/sec以上、望ましくは2000 l/s
ec以上にし、5mTorrで800sccmのガス流
量を流すことが可能である。
By performing dry etching using a large vacuum processing chamber, a large number of samples can be processed at one time, and thus throughput can be improved. When a large vessel is used, it is particularly important to quickly exhaust the reaction product generated by the etching reaction to the outside of the processing chamber. Therefore, high-speed exhaust is necessary.
In the conventional device, for example, the pump exhaust speed is about 1000.
Equipped with a turbo molecular pump of 1 / sec or less, and an exhaust conductance C of 200 l / sec to 1000 l / sec
And was 100 to 400 l / sec. Therefore, 5
When the gas pressure was set to mTorr, the gas flow rate that could be flown was 40 to 200 sccm. According to the present invention, in the large vessel device, the effective pumping speed 1 is achieved by the high-speed pumping pump and the large pumping conductance as described above.
300 l / sec or more, preferably 2000 l / s
It is possible to flow at a gas flow rate of 800 sccm at 5 mTorr and above ec.

【0045】図18は真空処理室容積を100 lから
10000 lまで変化させた場合の、実効排気速度と
ガス滞在時間の関係を示す。処理室容積が100 lの
場合実効排気速度を700 l/sec以上、容積50
0 lでは3600 l/sec以上、容積10000
lでは70000 l/sec以上の実効排気速度と
することにより、ガス滞在時間を100msec以下に
することができる。一例として実効排気速度70000
l/secを実現するためには、前記(2)式から、
例えば140000 l/secの排気速度のポンプを
用い、140000 l/secの排気コンダクタンス
の真空処理室を用いればよい。
FIG. 18 shows the relationship between the effective pumping speed and the gas residence time when the volume of the vacuum processing chamber is changed from 100 l to 10000 l. When the processing chamber volume is 100 l, the effective pumping speed is 700 l / sec or more, and the volume is 50
At 0 l, 3600 l / sec or more, volume: 10000
At l, the gas residence time can be set to 100 msec or less by setting the effective pumping speed to 70,000 l / sec or more. As an example, an effective pumping speed of 70000
To realize 1 / sec, from the above equation (2),
For example, a pump having an exhaust rate of 140,000 l / sec and a vacuum processing chamber having an exhaust conductance of 140,000 l / sec may be used.

【0046】また、試料台の中心部に排気口を設けるこ
とにより、試料台の中心と周辺での処理ガス密度を均一
にすることができる。
By providing an exhaust port at the center of the sample table, the processing gas density can be made uniform at the center and the periphery of the sample table.

【0047】[0047]

【実施例】【Example】

(実施例1)本発明による高速排気マイクロ波プラズマ
エッチング装置の一実施例を図1に示す。真空処理室1
にエッチングガスを導入し、マイクロ波発生器2におい
て2.45GHzの高周波を発生させ、これを導波管3
により放電部4に輸送してガスプラズマ5を発生させ
る。高効率放電のために磁場発生用のソレノイドコイル
6が放電部周囲に配置され、875ガウスの磁場により
電子サイクロトロン共鳴(Electron Cycl
otron Resonance: ECRともいう)
により高密度のプラズマが発生される。放電部には試料
台7があり、この上に設置されたウェハ8をガスプラズ
マによりエッチング処理する。処理後のエッチングガス
はガス導入口9から放電部4、真空処理室1を経て排気
管10から排気ポンプ11により真空処理室外へ排出さ
れる。この際、コンダクタンスバルブ12を可変にする
ことにより、排気速度を変えることができる。処理ガス
はガス流量コントローラー13を通しガス配管14を経
てガス導入口9からメッシュ状に小孔の開いたバッファ
室15を通して放電部4へ導入される。ガス導入口9は
2個所以上設け、放電部中心軸に対して対称に配置し
た。エッチング時のガス圧力はプラズマ放電部に設置し
たガス圧力センサ23により測定した。これにより、プ
ラズマ放電部におけるガス流量、ガス圧力、ガス排気速
度、ガス滞在時間を決定できる。ウェハを設置する試料
台には、ウェハを0℃以下に冷却する冷却機構16が備
えられ、13.56MHzから400KHzのRFバイ
アス17が印加できる。真空処理室にはヒータ18が付
いており、50℃以上に加熱できる。
(Embodiment 1) FIG. 1 shows an embodiment of a high speed exhaust microwave plasma etching apparatus according to the present invention. Vacuum processing chamber 1
An etching gas is introduced into the microwave generator 2 to generate a high frequency of 2.45 GHz in the microwave generator 2, which is used as the waveguide 3
And is transported to the discharge part 4 to generate gas plasma 5. A solenoid coil 6 for generating a magnetic field is arranged around the discharge part for high-efficiency discharge, and an electron cyclotron resonance (Electron Cycle) is generated by a magnetic field of 875 Gauss.
otron Resonance: Also called ECR)
Generate high density plasma. The discharge part has a sample table 7, and a wafer 8 placed on the sample table 7 is etched by gas plasma. The processed etching gas is discharged from the gas inlet 9 through the discharge unit 4, the vacuum processing chamber 1 and the exhaust pipe 10 to the outside of the vacuum processing chamber by the exhaust pump 11. At this time, the exhaust speed can be changed by making the conductance valve 12 variable. The processing gas is introduced into the discharge unit 4 through the gas flow rate controller 13, the gas pipe 14, and the gas inlet 9 through the buffer chamber 15 having mesh-shaped small holes. Two or more gas inlets 9 were provided and arranged symmetrically with respect to the central axis of the discharge part. The gas pressure during etching was measured by a gas pressure sensor 23 installed in the plasma discharge part. This makes it possible to determine the gas flow rate, gas pressure, gas exhaust rate, and gas residence time in the plasma discharge unit. The sample stage on which the wafer is installed is equipped with a cooling mechanism 16 for cooling the wafer to 0 ° C. or lower, and an RF bias 17 of 13.56 MHz to 400 KHz can be applied. The vacuum processing chamber is equipped with a heater 18 and can be heated to 50 ° C. or higher.

【0048】排気ポンプには排気速度2000 l/s
ecのターボ分子ポンプ2台を用い、総排気速度400
0 l/secにして放電部の中心軸に対して対称に配
置した。また、真空処理室の実質的なガス排気口部分1
0もウエハ中心軸に対して対照に配置した。これによ
り、排気コンダクタンスを極力大きくしながら、ガスの
流れをウェハ中心に対して対照にすることができた。ガ
スの通路となる放電部、真空処理室、排気管及びコンダ
クタンスバルブの総排気コンダクタンスは4000 l
/secとした。このために、放電部4の下方部の直径
を上方部より大きくし、これにともなって、この部分に
設置する磁場コイル6の直径も、その上部に位置するコ
イル直径より大きくした。エッチング時のウェハ位置
は、最下段のコイルの厚み方向の中心よりも下に位置さ
せ、放電部の下方の排気コンダクタンスを極力大きくす
る構造とした。この時、最大実効排気速度は2000
l/secである。また、放電部、真空処理室、排気管
の総容積は100 lであり、真空処理室内のガス滞在
時間は前述の(3)式より50msecである。
The exhaust pump has an exhaust speed of 2000 l / s.
Using two turbo ec molecular pumps, total pumping speed 400
It was set to 0 l / sec and arranged symmetrically with respect to the central axis of the discharge part. In addition, the substantial gas exhaust port portion 1 of the vacuum processing chamber
0 was also arranged as a control with respect to the central axis of the wafer. This made it possible to make the gas flow symmetrical with respect to the wafer center while maximizing the exhaust conductance. The total exhaust conductance of the discharge part that serves as a gas passage, the vacuum processing chamber, the exhaust pipe, and the conductance valve is 4000 l.
/ Sec. For this reason, the diameter of the lower part of the discharge part 4 is made larger than that of the upper part, and accordingly, the diameter of the magnetic field coil 6 installed at this part is also made larger than the coil diameter located at the upper part thereof. The wafer position during etching is located below the center of the bottommost coil in the thickness direction so that the exhaust conductance below the discharge part is maximized. At this time, the maximum effective pumping speed is 2000
1 / sec. The total volume of the discharge part, the vacuum processing chamber, and the exhaust pipe is 100 l, and the gas residence time in the vacuum processing chamber is 50 msec according to the above formula (3).

【0049】この高速排気マイクロ波プラズマエッチン
グ装置を用いて、Siトレンチに用いられるSi単結晶
のエッチングを行なった。試料は、Si基板を500n
mの厚さに熱酸化膜し、その上にホトレジストマスクを
形成し、酸化膜をドライエッチングして直径0.1μm
から1.0μmのホ−ルパタ−ンを形成後、ホトレジス
トを除去してSiO2マスクを形成したものである。エ
ッチングガスにはCl2を用い、ガス圧力0.5mTo
rr、マイクロ波パワー500W、RFバイアスは2M
Hzで20W、ウェハ温度は−30℃とし、ガス流量を
2から100sccmまで変化させた。磁場強度分布は
放電部の上方から下方に向けて小さく、ECR条件を満
たす875ガウスの位置はウェハ上方40mmであっ
た。この時のSiエッチ速度のガス流量依存性を図2に
示す。2sccmでは80nm/minのエッチ速度は
Cl2ガス流量とともに増加し、100sccmにおい
て1300nm/minとなった。また、同様のエッチ
ング条件による、ガス圧力とSiのマスクからのアンダ
ーカット量の関係を図3に示す。Siのエッチング形状
は、0.5mTorrの低ガス圧力であるため高い方向
性が得られ、5μmの深さのSi深孔のアンダーカット
量は0.03μm以下で、ガス流量依存性はほとんどな
かった。図4に、本発明による実効排気速度2500
l/secの装置、及び従来の実効排気速度150 l
/secの装置を用いた場合のSiエッチング速度のガ
ス圧力依存性を示す。エッチング条件は図2の結果にお
けるものと同様である。従来エッチング装置ではガス圧
力低下とともにSiのエッチング速度は大幅に減少して
いる。これはガス滞在時間が470msecと長く、ま
た、排気速度が遅いため低ガス圧でガス流量が減少して
いることによる。高排気速度の本発明装置を用いると、
0.5mTorr以下の低ガス圧において従来装置の1
0倍以上のエッチ速度が得られ、0.5mTorr以下
で1μm/min以上の高速エッチングを行なうことが
できた。一方、エッチング速度の孔径依存性は小さく
0.1μmから1.0μmの間の孔径において速度差は
3%以内であった。また、ガス流量を変化させても、S
iO2のエッチ速度はほとんど変化せず、ガス流量10
0sccmにおいてエッチングマスクに用いたSiO2
との選択比(Si/SiO2)は約50であった。
Using this high-speed exhaust microwave plasma etching apparatus, the Si single crystal used for the Si trench was etched. Sample is Si substrate 500n
Thermal oxide film with a thickness of m, a photoresist mask is formed on it, and the oxide film is dry-etched to a diameter of 0.1 μm.
After forming a 1.0 μm hole pattern, the photoresist is removed and a SiO 2 mask is formed. Cl 2 is used as the etching gas, and the gas pressure is 0.5 mTo
rr, microwave power 500W, RF bias 2M
The frequency was 20 W at Hz, the wafer temperature was -30 ° C., and the gas flow rate was changed from 2 to 100 sccm. The magnetic field strength distribution was small from the upper part to the lower part of the discharge part, and the position of 875 Gauss satisfying the ECR condition was 40 mm above the wafer. FIG. 2 shows the gas flow rate dependency of the Si etch rate at this time. The etch rate of 80 nm / min at 2 sccm increased with the Cl 2 gas flow rate, and reached 1300 nm / min at 100 sccm. FIG. 3 shows the relationship between the gas pressure and the amount of undercut from the Si mask under the same etching conditions. Since the etching shape of Si has a low gas pressure of 0.5 mTorr, a high directionality is obtained, and the undercut amount of the Si deep hole having a depth of 5 μm is 0.03 μm or less, and there is almost no gas flow rate dependency. . FIG. 4 shows an effective pumping speed 2500 according to the present invention.
1 / sec device and conventional effective pumping speed 150 l
The gas pressure dependence of the Si etching rate when using a device of 1 / sec is shown. The etching conditions are the same as those in the result of FIG. In the conventional etching apparatus, the etching rate of Si is greatly reduced as the gas pressure is lowered. This is because the gas residence time is as long as 470 msec, and the gas exhaust flow rate is low, so that the gas flow rate is reduced at a low gas pressure. With the device of the present invention having a high pumping speed,
1) of conventional equipment at low gas pressure of 0.5 mTorr or less
An etching rate of 0 times or more was obtained, and high-speed etching of 1 μm / min or more could be performed at 0.5 mTorr or less. On the other hand, the dependence of the etching rate on the pore size was small, and the rate difference was within 3% in the pore size between 0.1 μm and 1.0 μm. Even if the gas flow rate is changed, S
The etch rate of iO 2 hardly changed, and the gas flow rate was 10
SiO 2 used as an etching mask at 0 sccm
The selection ratio (Si / SiO 2 ) was about 50.

【0050】また、リンドープポリシリコンのエッチン
グでも図2および図3とほぼ同様の結果が得られ、Cl
2流量100sccmで1500nm/minで、アン
ダーカット量は0.03μm以下であった。
Further, the etching of phosphorus-doped polysilicon gives almost the same results as in FIGS.
2 At a flow rate of 100 sccm and 1500 nm / min, the undercut amount was 0.03 μm or less.

【0051】(実施例2)図1に示す高速排気マイクロ
波プラズマエッチング装置により、コンタクトホールに
用いられるSiO2のエッチングを行った。試料はSi
基板上に2μmの厚さにCVD法でSi酸化膜を形成
し、その上に、ホトレジストマスクを形成した。エッチ
ングガスにはCHF3を用い、ガス圧力0.5mTor
r、マイクロ波パワー500W、RFバイアスは800
KHzで200W、ウェハ温度は−30℃とし、ガス流
量を2から100sccmまで変化させた。2sccm
では50nm/minのエッチ速度はCl2ガス流量と
ともに増加し、100sccmにおいて500nm/m
inとなった。SiO2のエッチング形状は、0.5m
Torrの低ガス圧力であるため高い方向性が得られ、
2μmの深さのSiO2深孔のアンダーカット量は0.
05μm以下で、ガス流量依存性はほとんどなかった。
さらに、エッチング速度の孔径依存性は小さく0.1μ
mから1.0μmの間の孔径において速度差は3%以内
であった。また、ガス流量を2sccmから100sc
cm増大させた時のSiO2とホトレジストとの選択比
は、2倍以上増大した。
Example 2 SiO 2 used for contact holes was etched by the high-speed exhaust microwave plasma etching apparatus shown in FIG. Sample is Si
A Si oxide film having a thickness of 2 μm was formed on the substrate by a CVD method, and a photoresist mask was formed thereon. CHF 3 is used as the etching gas, and the gas pressure is 0.5 mTorr.
r, microwave power 500W, RF bias 800
The gas flow rate was changed from 2 to 100 sccm at 200 W at KHz and a wafer temperature of -30 ° C. 2 sccm
The etch rate of 50 nm / min increases with the flow rate of Cl 2 gas to 500 nm / m at 100 sccm.
became in. The etching shape of SiO 2 is 0.5 m
High directionality can be obtained due to the low gas pressure of Torr,
The undercut amount of the SiO 2 deep hole having a depth of 2 μm is 0.
When it was less than 05 μm, there was almost no gas flow rate dependency.
Furthermore, the dependence of the etching rate on the hole diameter is small and 0.1μ
The velocity difference was within 3% at pore sizes between m and 1.0 μm. Also, the gas flow rate is 2 sccm to 100 sc
The selection ratio between SiO 2 and photoresist when the cm was increased increased more than twice.

【0052】(実施例3)図8に高速排気反応性イオン
エッチング(RIE)装置の実施例を示す。磁場コイル
を備えた磁場印加型であるため、1mTorr以下でも
放電は可能である。真空処理室1にエッチングガスを導
入し、13.56MHzの高周波で放電しガスプラズマ
5を発生させる。放電部には試料台7があり、この上に
設置されたウェハ8をガスプラズマによりエッチング処
理する。処理後のエッチングガスはガス導入口9から真
空処理室1を経て排気管10から排気ポンプ11により
真空処理室外へ排出される。この際、コンダクタンスバ
ルブ12を可変にすることにより、排気速度を変えるこ
とができる。処理ガスはガス流量コントローラー13を
通しガス配管14を経てガス導入口9からメッシュ状に
小孔の開いたバッファ室15を通して真空処理室1へ導
入される。ガス導入口9は2個所以上設け、放電部中心
軸に対して対称に配置した。ウェハを設置する試料台に
は、ウェハを0℃以下に冷却する冷却機構16が備えら
れている。真空処理室にはヒータ18が付いており、5
0℃以上に加熱できる。
(Embodiment 3) FIG. 8 shows an embodiment of a rapid exhaust reactive ion etching (RIE) apparatus. Since it is a magnetic field application type equipped with a magnetic field coil, discharge is possible even at 1 mTorr or less. An etching gas is introduced into the vacuum processing chamber 1 and discharged at a high frequency of 13.56 MHz to generate a gas plasma 5. The discharge part has a sample table 7, and a wafer 8 placed on the sample table 7 is etched by gas plasma. The processed etching gas is discharged from the gas inlet 9 through the vacuum processing chamber 1 through the exhaust pipe 10 to the outside of the vacuum processing chamber by the exhaust pump 11. At this time, the exhaust speed can be changed by making the conductance valve 12 variable. The processing gas is introduced into the vacuum processing chamber 1 from the gas introduction port 9 through the gas flow rate controller 13 and the gas introduction port 9 through the buffer chamber 15 having mesh-shaped small holes. Two or more gas inlets 9 were provided and arranged symmetrically with respect to the central axis of the discharge part. The sample table on which the wafer is installed is equipped with a cooling mechanism 16 for cooling the wafer to 0 ° C. or lower. The vacuum processing chamber is equipped with a heater 18
It can be heated to 0 ° C or higher.

【0053】排気ポンプには排気速度2000 l/s
ecのターボ分子ポンプ2台を放電部の中心軸に対して
対称に配置した。ガスの通路となる放電部、真空処理
室、排気管及びコンダクタンスバルブの総排気コンダク
タンスは4000 l/secとした。この時、実効排
気速度は2000 l/secである。また、放電部、
真空処理室、排気管の総容積は100 lであり、真空
処理室内のガス滞在時間は前述の(3)式より50ms
ecである。
The exhaust pump has an exhaust speed of 2000 l / s.
Two turbo molecular pumps ec were arranged symmetrically with respect to the central axis of the discharge part. The total exhaust conductance of the discharge part serving as a gas passage, the vacuum processing chamber, the exhaust pipe, and the conductance valve was 4000 l / sec. At this time, the effective pumping speed is 2000 l / sec. Also, the discharge part,
The total volume of the vacuum processing chamber and the exhaust pipe is 100 l, and the gas residence time in the vacuum processing chamber is 50 ms according to the above equation (3).
ec.

【0054】図8に示す高速排気反応性イオンエッチン
グ装置により、多層レジストマスクに用いられるホトレ
ジストのエッチングを行った。試料は、Si基板上にホ
トレジストを1.5μmの厚さに塗布しベークし、SO
G(Spin−On−Glass)やチタンシリカ等の
中間層を形成し、その上にホトレジストでパターニング
を行った後、中間層をドライエッチングして下層ホトレ
ジストをエッチングするためのマスクを形成したもので
ある。エッチングガスにはO2を用い、ガス圧力0.5
mTorr、RFパワー500W、ウェハ温度は−10
0℃とし、ガス流量を2から100sccmまで変化さ
せた。2sccmでは100nm/minのエッチ速度
はCl2ガス流量とともに増加し、100sccmにお
いて1000nm/minとなった。レジストのエッチ
ング形状は、0.5mTorrの低ガス圧力であるため
高い方向性が得られ、1.5μmの深さのレジストのア
ンダーカット量は0.05μm以下で、ガス流量依存性
はほとんどなかった。さらに、エッチング速度の孔径依
存性は小さく0.1μmから1.0μmの間の孔径にお
いて速度差は3%以内であった。
The photoresist used for the multilayer resist mask was etched by the high-speed exhaust reactive ion etching apparatus shown in FIG. The sample was coated with a photoresist on a Si substrate to a thickness of 1.5 μm, baked, and then subjected to SO
An intermediate layer such as G (Spin-On-Glass) or titanium silica is formed, and after patterning with a photoresist thereon, the intermediate layer is dry-etched to form a mask for etching the lower-layer photoresist. is there. O 2 was used as the etching gas, and the gas pressure was 0.5.
mTorr, RF power 500W, wafer temperature -10
The temperature was set to 0 ° C. and the gas flow rate was changed from 2 to 100 sccm. At 2 sccm, the etch rate of 100 nm / min increased with the flow rate of Cl 2 gas to reach 1000 nm / min at 100 sccm. The etching shape of the resist has a high directionality because of the low gas pressure of 0.5 mTorr, and the undercut amount of the resist having a depth of 1.5 μm is 0.05 μm or less, and there is almost no gas flow rate dependency. . Further, the dependence of the etching rate on the pore size was small, and the rate difference was within 3% in the pore size between 0.1 μm and 1.0 μm.

【0055】(実施例4)本発明の一実施例を図9に示
す。マイクロ波発生器101から発生したマイクロ波は
導波管102を通り、マイクロ波導入口を通してチャン
バー111内のエッチング処理室117に送られる。ガ
スはマスフローコントローラ106で流量を調節した
後、ガス配管105を通してエッチング処理室117に
送られる。ガスはガス配管105の後に備え付けられた
ガス導入口104を通ってエッチング処理室117に広
がる。
(Embodiment 4) An embodiment of the present invention is shown in FIG. The microwave generated from the microwave generator 101 passes through the waveguide 102 and is sent to the etching processing chamber 117 in the chamber 111 through the microwave introduction port. After the flow rate of the gas is adjusted by the mass flow controller 106, the gas is sent to the etching processing chamber 117 through the gas pipe 105. The gas spreads into the etching processing chamber 117 through the gas inlet 104 provided after the gas pipe 105.

【0056】エッチング処理室117に入ったガスはじ
ゃま板108により流れを制御されてエッチング処理室
117の中心部の密度が均一になるように流れる。この
ガスの流れはウェハー109の上部でマイクロ波により
励起されてプラズマ状態になる。このプラズマにより活
性な粒子を生成してウェハーのエッチングを行なう。こ
の時に電磁石107により外部磁場を印加することによ
りマイクロ波のエネルギーが効率よくプラズマに伝わる
ように調整する。
The flow of the gas entering the etching processing chamber 117 is controlled by the baffle plate 108 so that the density of the central portion of the etching processing chamber 117 becomes uniform. This gas flow is excited by microwaves in the upper part of the wafer 109 and becomes a plasma state. This plasma generates active particles to etch the wafer. At this time, an external magnetic field is applied by the electromagnet 107 to adjust the microwave energy to be efficiently transmitted to the plasma.

【0057】試料台には高周波電源112により高周波
電圧を印加することができる。この電源によりウェハー
109にバイアス電圧を印加して入射イオンの方向性や
エネルギーを制御する。この試料台に冷却機構や加熱機
構を装備すればウェハー温度を制御したエッチングを行
なうこともできる。
A high frequency voltage can be applied to the sample table by a high frequency power source 112. A bias voltage is applied to the wafer 109 by this power source to control the directionality and energy of incident ions. If this sample stage is equipped with a cooling mechanism and a heating mechanism, it is possible to perform etching while controlling the wafer temperature.

【0058】ガス導入口104からチャンバー111内
に入り、エッチング処理室117でプラズマ状態になっ
てウェハー109でエッチング反応に用いられたガスの
流れは、反応生成物とともにエッチング処理室117か
らみた排気口である試料台110の横を通り、排気バッ
ファ室113を介して真空ポンプ114により排気され
る。
The flow of the gas that enters the chamber 111 from the gas inlet 104, becomes a plasma state in the etching processing chamber 117, and is used in the etching reaction on the wafer 109 is the exhaust port viewed from the etching processing chamber 117 together with the reaction products. Then, the gas is exhausted by the vacuum pump 114 through the exhaust buffer chamber 113 through the side of the sample table 110.

【0059】高排気速度の真空ポンプを用いるときや、
真空ポンプを複数用いるときには、チャンバー111に
直接真空ポンプ114を取り付けるのではなく、排気バ
ッファ室113を介してチャンバー111に取り付ける
ことにより、エッチング処理室117からみた排気口で
ある試料台の横の排気速度を均一化することができる。
その結果、ガスの流れにムラがなくなるために、均一性
のよいエッチングが可能になる。
When using a vacuum pump with a high pumping speed,
When a plurality of vacuum pumps are used, the vacuum pump 114 is not directly attached to the chamber 111, but is attached to the chamber 111 via the exhaust buffer chamber 113, so that the exhaust gas next to the sample stage, which is the exhaust port as viewed from the etching processing chamber 117, is exhausted. The speed can be made uniform.
As a result, the flow of gas is uniform, which enables etching with good uniformity.

【0060】本実施例のガスの流れを制御するための構
成要素にはガス導入口104とじゃま板108と排気バ
ッファ室113がある。
The components for controlling the gas flow of this embodiment include the gas inlet 104, the baffle 108 and the exhaust buffer chamber 113.

【0061】ガス導入口104は従来の装置では特に何
も処理がされていなかった。ガス配管105をチャンバ
ー111に直接接続し、その接続位置も特に考慮はされ
ていなかった。従来の装置の一例を図16に示してい
る。ガス配管105はチャンバー111に直接取り付け
てある。
The gas inlet 104 was not treated in the conventional apparatus. The gas pipe 105 was directly connected to the chamber 111, and its connection position was not particularly considered. An example of a conventional device is shown in FIG. The gas pipe 105 is directly attached to the chamber 111.

【0062】本発明ではガス導入口の開口部の面積を広
げることにより、ガス流速が音速の1/3を越えないよ
うにすることを特徴とする。図9に示した実施例ではガ
ス配管105がチャンバー111と接続する部分にガス
導入バッファ室116を設けて、そのバッファ部の壁面
に複数のガス導入口104を設けることにより、ガス導
入口の開口部面積を増やしてガス流速を音速の1/3以
下に抑えている。
The present invention is characterized in that the gas flow velocity does not exceed 1/3 of the sonic velocity by widening the area of the opening of the gas inlet. In the embodiment shown in FIG. 9, a gas introduction buffer chamber 116 is provided at a portion where the gas pipe 105 is connected to the chamber 111, and a plurality of gas introduction ports 104 are provided on the wall surface of the buffer portion to open the gas introduction port. By increasing the area of the part, the gas flow velocity is suppressed to 1/3 or less of the speed of sound.

【0063】マスフローコントローラ106通してガス
配管105を流れるガスの圧力は1気圧程度であり、そ
のガスを直接チャンバーの中に流し込むと、圧力差から
チャンバーにガスが入るところで流れが乱れやすい。本
実施例ではガス配管105とチャンバー111との間に
ガス導入バッファ室116を設けたことにより、圧力差
による流れの乱れを抑えることもできる。
The pressure of the gas flowing through the gas pipe 105 through the mass flow controller 106 is about 1 atm, and if the gas is poured directly into the chamber, the flow tends to be disturbed where the gas enters the chamber due to the pressure difference. In this embodiment, since the gas introduction buffer chamber 116 is provided between the gas pipe 105 and the chamber 111, the flow disturbance due to the pressure difference can be suppressed.

【0064】さらに本実施例ではマスフローコントロー
ラ106を含めたガス配管105をチャンバーの周りに
対称性を考慮して複数取り付けることにより、ガスの流
れの均一性を上げている。
Further, in this embodiment, a plurality of gas pipes 105 including the mass flow controller 106 are attached around the chamber in consideration of symmetry to improve the uniformity of gas flow.

【0065】プラズマはエッチング処理室の中心付近に
生じる方が活性粒子が効率良くウェハーに入射し、均一
性も上昇する。エッチング処理室117の壁面に沿って
流れるガスの流れはエッチングに対する寄与が小さい。
そこで本実施例ではこのチャンバー111の壁面を流れ
るガスの流れをチャンバーの中心付近に流れるように流
れを制御するために、じゃま板108を取り付けた。じ
ゃま板108は流れのコンダクタンスを悪くする副作用
もあるので、あまり大きなものを取り付けると逆効果に
なる可能性もある。本実施例ではガス導入口104か
ら、エッチング処理室117の排気口になる試料台11
0とチャンバー111の間の隙間が見えなくなり、かつ
ウェハー109の上にかからないようにした。
When the plasma is generated near the center of the etching processing chamber, the active particles are efficiently incident on the wafer and the uniformity is increased. The flow of gas flowing along the wall surface of the etching processing chamber 117 has a small contribution to etching.
Therefore, in this embodiment, the baffle plate 108 is attached in order to control the flow of the gas flowing through the wall surface of the chamber 111 to the vicinity of the center of the chamber. Since the baffle 108 also has a side effect of deteriorating the flow conductance, it may have an adverse effect if a too large one is attached. In the present embodiment, the sample table 11 is used as the exhaust port of the etching chamber 117 from the gas inlet 104.
The gap between 0 and the chamber 111 is invisible and does not cover the wafer 109.

【0066】さらに本実施例ではチャンバー111と真
空ポンプ114の間に排気バッファ室113を取り付け
たことも流れを制御する特徴の一つである。流れを均一
にするためには排気系も対称性がよいことが望ましい。
しかし、試料台112にはバイアス印加電圧のための高
周波電源112を接続したり、ウェハー109の温度制
御をする低温ドライエッチングを行なうために、冷媒を
流すための冷却機構を取り付けたりする必要がある。そ
のために、真空ポンプを含めた排気系を対称性良く配置
することは難しい。本実施例で取り付けた真空バッファ
113は真空ポンプ114の排気能力がエッチング処理
室117の排気部分に均一にかかるようにする働きがあ
る。さらに排気能力を上げるために複数の真空ポンプを
取り付けるときなども、排気バッファ室113はエッチ
ング処理室117の排気を均一にする働きの効果が高
い。
Further, in this embodiment, the exhaust buffer chamber 113 is provided between the chamber 111 and the vacuum pump 114, which is one of the features for controlling the flow. In order to make the flow uniform, it is desirable that the exhaust system also has good symmetry.
However, it is necessary to connect a high frequency power source 112 for bias application voltage to the sample table 112, or to attach a cooling mechanism for flowing a coolant in order to perform low temperature dry etching for controlling the temperature of the wafer 109. . Therefore, it is difficult to arrange the exhaust system including the vacuum pump with good symmetry. The vacuum buffer 113 attached in the present embodiment has a function of making the exhaust capacity of the vacuum pump 114 uniformly apply to the exhaust portion of the etching processing chamber 117. Further, even when a plurality of vacuum pumps are attached to increase the exhaust capacity, the exhaust buffer chamber 113 has a high effect of making the exhaust of the etching processing chamber 117 uniform.

【0067】図10は本実施例のチャンバー111のガ
ス配管105を含んだ水平方向の断面図である。ここで
はガス配管105は4本取り付けてあるが、ガス導入バ
ッファ室116があるのでガス配管105は1本でもよ
い。しかし流れを均一にするためには対称性を考慮して
複数本取り付けた方がよい。
FIG. 10 is a horizontal sectional view of the chamber 111 of this embodiment including the gas pipe 105. Although four gas pipes 105 are attached here, the number of the gas pipes 105 may be one because there is the gas introduction buffer chamber 116. However, in order to make the flow uniform, it is better to attach multiple wires in consideration of symmetry.

【0068】以上のような構成のマイクロ波ドライエッ
チング装置を用いて0.3〜0.5μmの穴や溝をSi
基板表面に形成した。試料はレジストマスク、もしくは
SiO2マスクによりパターンを形成したものを用い、
マイクロ波パワー400W、圧力0.5mTorr、ガ
ス流量50sccm、RFバイアス30W(13.56
MHz)の条件で、SF6ガスを用いた。その結果、エ
ッチング速度は500nm/min以上であった。ま
た、サイドエッチ量は0.05μm以下であり、良好な
垂直形状を得ることができた。
Using the microwave dry etching apparatus having the above-mentioned structure, a hole or groove of 0.3 to 0.5 μm is formed into Si.
It was formed on the substrate surface. As the sample, a resist mask or a pattern formed by a SiO2 mask is used.
Microwave power 400W, pressure 0.5mTorr, gas flow rate 50sccm, RF bias 30W (13.56)
SF 6 gas was used under the condition of (MHz). As a result, the etching rate was 500 nm / min or more. The side etch amount was 0.05 μm or less, and a good vertical shape could be obtained.

【0069】(実施例5)図11は本発明の他の一実施
例を示したものである。この実施例ではガス導入バッフ
ァ室116を円周状ではなく、ガス配管105に対応し
た数の孤立したガス導入バッファ室116を取り付け
た。均一性を比べると図9に示した実施例の方がよい
が、装置を作成するのは、図11に示した実施例の方が
簡単にできるという長所がある。
(Embodiment 5) FIG. 11 shows another embodiment of the present invention. In this embodiment, the gas introducing buffer chamber 116 is not formed in a circumferential shape, but the number of isolated gas introducing buffer chambers 116 corresponding to the gas pipe 105 is attached. Compared with the uniformity, the embodiment shown in FIG. 9 is preferable, but the device shown in FIG. 11 has an advantage that the apparatus can be easily manufactured.

【0070】じゃま板108も円周状でなく、孤立した
ものを複数取り付ける方法がある。また円周状のじゃま
板108をチャンバー111の違う高さの場所に複数取
り付けたり、円周状のじゃま板と孤立したじゃま板を組
み合せて使ったり、大きさや形の違うじゃま板をチャン
バー111内のさまざまな部分に取り付けて、ガスの流
れを制御することができる。このように、バッファ室1
16を設けることにより、該室を設けない場合に比べて
8インチウェ−ハ内のエッチング速度の均一性が2倍以
上向上し、±10%以下にすることができた。
There is a method of attaching a plurality of isolated baffle plates 108 instead of having a circular shape. Further, a plurality of circular baffles 108 may be attached at different heights in the chamber 111, or a combination of a circular baffle and an isolated baffle may be used. Can be attached to various parts of the to control the flow of gas. In this way, the buffer chamber 1
By providing No. 16, the uniformity of the etching rate in the 8-inch wafer was improved by more than 2 times as compared with the case where the chamber was not provided, and it could be set to ± 10% or less.

【0071】(実施例6)図12は本発明の一実施例と
して他のガス配管法を説明したものである。この例では
ガス配管105がチャンバー111に複数の部分で接続
しているのに対し、ボンベ115から流れてくるガスを
1つのマスフローコントローラ106だけで流量を制御
している。1つのマスフローコントローラだけで流量を
制御しているので、流量を正確に制御でき、装置構造も
簡単にできるという長所があるのに対し、マスフローコ
ントローラ106からチャンバー111までのガス配管
105の距離が変わってくるために、エッチング処理室
117内のガスの流れの均一性が多少悪くなる欠点があ
る。しかし、ガス導入口バッファ室116の大きさを場
所によって変化させたり、ガス導入口104の開口面積
や開口率を場所によって変化させたり取付け高さを調節
することにより、ガスの流れの均一性をシステムとして
調整することもできるので、均一性の低下は実用上はそ
れほど問題にならない。
(Embodiment 6) FIG. 12 illustrates another gas piping method as an embodiment of the present invention. In this example, the gas pipe 105 is connected to the chamber 111 at a plurality of portions, but the flow rate of the gas flowing from the cylinder 115 is controlled by only one mass flow controller 106. Since the flow rate is controlled by only one mass flow controller, the flow rate can be accurately controlled and the device structure can be simplified, while the distance of the gas pipe 105 from the mass flow controller 106 to the chamber 111 is changed. Therefore, there is a drawback that the uniformity of the gas flow in the etching processing chamber 117 is somewhat deteriorated. However, by changing the size of the gas inlet buffer chamber 116 depending on the location, changing the opening area and opening ratio of the gas inlet 104 depending on the location, and adjusting the mounting height, the uniformity of the gas flow can be improved. Since it can be adjusted as a system, the deterioration of uniformity is not so problematic in practical use.

【0072】このように、複数のガス配管105を用い
ることにより、単一ガス配管の場合に比べて8インチウ
ェ−ハ内のエッチング速度の均一性が2倍以上向上し、
±10%以下にすることができた。
As described above, by using the plurality of gas pipes 105, the uniformity of the etching rate in the 8-inch wafer is more than doubled as compared with the case of the single gas pipe,
It was possible to reduce it to ± 10% or less.

【0073】(実施例7)図13は本発明の一実施例と
して他のガス配管法を説明したものである。チャンバー
111に接続する複数のガス配管105に対して、それ
ぞれ一つ以上のマスフローコントローラ106を用いて
1つ以上のボンベ115からのガス流量を制御すること
が本実施例の特徴である。それぞれのマスフローコント
ローラ106を流れるガス流量を調整することによりチ
ャンバー111内のガスの流れを均一にすることができ
る。また同一ガス種のボンベを複数用いることによりそ
のガスのエッチング処理室内の流れを均一にするという
使用法の他に、異なる種類のガス種をエッチング処理室
で混合するために違うガス種のボンベを使用する方法も
行なうことができる。それぞれのガス種に対するガス配
管の数や位置、そしてその中を流れるガス流量を調節す
ることにより、異なる種類のガスを十分均一に混合し
て、なおかつその混合ガスのエッチング処理室内での流
れを均一にすることができる。このように、複数のガス
配管105と複数のガスボンベを用いることにより、単
一ガス配管、単一ガスボンベを用いる場合に比べて8イ
ンチウェ−ハ内のエッチング速度の均一性が2倍以上向
上し、±10%以下にすることができた。
(Embodiment 7) FIG. 13 illustrates another gas piping method as an embodiment of the present invention. The present embodiment is characterized in that the gas flow rate from one or more cylinders 115 is controlled by using one or more mass flow controllers 106 for each of the plurality of gas pipes 105 connected to the chamber 111. By adjusting the flow rate of the gas flowing through each mass flow controller 106, the gas flow in the chamber 111 can be made uniform. In addition to using the cylinders of the same gas species to make the flow of the gas uniform in the etching chamber, in addition to using different gas species to mix different gas species in the etching chamber, The method used can also be performed. By adjusting the number and position of the gas pipes for each gas type, and adjusting the gas flow rate flowing through them, it is possible to mix the different types of gas sufficiently uniformly, and even the flow of the mixed gas in the etching chamber. Can be As described above, by using the plurality of gas pipes 105 and the plurality of gas cylinders, the uniformity of the etching rate in the 8-inch wafer is more than doubled as compared with the case of using the single gas pipe and the single gas cylinder. It was possible to reduce it to ± 10% or less.

【0074】(実施例8)本発明の他の一実施例を図1
4に示す。この実施例ではマイクロ波導入窓103の下
にガス導入バッファ室116を取り付け、ウェハー10
9の上部にガス導入口104を形成した。この方法はガ
スの流れの均一性が良くなり、特にチャンバー中心部の
ガス流量密度が増加するという長所を持つ。しかしマイ
クロ波の通り道にガス圧力が高い部分が生じるために、
マイクロ波の進行を妨げたり、ガス導入バッファ室11
6内で放電を起こす可能性があるという問題点もある。
しかしこれはマイクロ波のパワーや電磁石107による
調整、ガス導入口バッファ室116内の圧力上昇を抑え
るためにガス流量に時間変調をかけたり、その時間変調
と同期してマイクロ波を投入するようにして回避するこ
とができるために、実用上はそれほど問題ではない。
(Embodiment 8) Another embodiment of the present invention is shown in FIG.
4 shows. In this embodiment, the gas introduction buffer chamber 116 is attached below the microwave introduction window 103, and the wafer 10
The gas introduction port 104 was formed on the upper part of 9. This method has the advantage that the uniformity of the gas flow is improved and the gas flow density in the center of the chamber is increased. However, due to the high gas pressure in the microwave path,
Blocking the progress of microwaves, gas introduction buffer chamber 11
There is also a problem in that discharge may occur within 6.
However, this is performed by adjusting the microwave power or the electromagnet 107, by time-modulating the gas flow rate in order to suppress the pressure rise in the gas inlet buffer chamber 116, or by supplying the microwave in synchronization with the time modulation. It is not a problem in practice because it can be avoided.

【0075】(実施例9)本発明による大型ベッセル高
速排気反応性イオンエッチング(RIE)装置の実施例
を図19示す。真空処理室201にエッチングガスを導
入し、13.56MHzの高周波202で放電しガスプ
ラズマ203を発生させる。真空処理室は直径120c
m、高さ約40cmの円筒型で、電極は平行平板型のカ
ソードカップリング型で、上部電極204がアース電
位、下部電極205が高周波印加電極であり、下部電極
がウェハを載置する試料台になっている。下部電極の直
径は90cmで、エッチングの均一性向上のため、下部
電極中央部にも処理ガスを排気できる直径10cmの排
気口206を設け、下部電極の中央と周辺の両方から真
空処理室外へ排気した。電極面積は約6300cm2
り、8インチウェハ207を6枚載置して同時にエッチ
ング処理した。処理ガスの排気速度はコンダクタンスバ
ルブ208を可変にすることにより変えることができ
る。処理ガスはガス流量コントローラー209を通しガ
ス配管210を経てガス導入口211からメッシュ状に
小孔の開いたバッファ室212を通して真空処理室20
1へ導入される。ガス導入口211は2個所以上設け、
放電部中心軸に対して対称に配置した。ウェハを設置す
る試料台には、ウェハを0℃以下に冷却する冷却機構2
13が備えられている。真空処理室にはヒータ214が
付いており50℃以上に加熱できる。
(Embodiment 9) FIG. 19 shows an embodiment of a large-sized vessel fast exhaust reactive ion etching (RIE) apparatus according to the present invention. An etching gas is introduced into the vacuum processing chamber 201 and discharged at a high frequency 202 of 13.56 MHz to generate a gas plasma 203. Vacuum processing chamber has a diameter of 120c
m is a cylindrical type having a height of about 40 cm, the electrode is a parallel plate type cathode coupling type, the upper electrode 204 is a ground potential, the lower electrode 205 is a high frequency applying electrode, and the lower electrode is a sample table on which a wafer is placed. It has become. The lower electrode has a diameter of 90 cm, and in order to improve the uniformity of etching, an exhaust port 206 having a diameter of 10 cm that allows the processing gas to be exhausted is also provided in the central portion of the lower electrode, and the central electrode and the peripheral portion of the lower electrode are exhausted to the outside of the vacuum processing chamber. did. The electrode area is about 6300 cm 2, and six 8-inch wafers 207 were placed and simultaneously etched. The exhaust rate of the processing gas can be changed by making the conductance valve 208 variable. The processing gas passes through a gas flow controller 209, a gas pipe 210, a gas inlet 211, and a buffer chamber 212 having mesh-shaped small holes.
1 is introduced. Two or more gas inlets 211 are provided,
They were arranged symmetrically with respect to the central axis of the discharge part. The sample table on which the wafer is installed has a cooling mechanism 2 for cooling the wafer to 0 ° C. or less.
13 are provided. The vacuum processing chamber is equipped with a heater 214 and can be heated to 50 ° C. or higher.

【0076】排気ポンプには排気速度6000 l/s
ecのターボ分子ポンプ2台を放電部の中心軸に対して
対称に配置した。ガスの通路となる放電部、真空処理
室、排気管及び全開のコンダクタンスバルブの総排気コ
ンダクタンスは12000 l/secであった。この
時、実効排気速度は6000 l/secである。ま
た、真空処理室、排気管の総容積は約500 lであ
り、真空処理室内のガス滞在時間は前述の(3)式より
83msecである。
The exhaust pump has an exhaust speed of 6000 l / s.
Two turbo molecular pumps ec were arranged symmetrically with respect to the central axis of the discharge part. The total exhaust conductance of the discharge part serving as a gas passage, the vacuum processing chamber, the exhaust pipe, and the fully open conductance valve was 12000 l / sec. At this time, the effective pumping speed is 6000 l / sec. Further, the total volume of the vacuum processing chamber and the exhaust pipe is about 500 l, and the gas residence time in the vacuum processing chamber is 83 msec according to the above formula (3).

【0077】図19に示す高速排気反応性イオンエッチ
ング装置により、Si単結晶のエッチングを行なった。
試料は、8インチSi基板の上にホトレジストマスクを
形成したもので、試料台に6枚同時に載置した。エッチ
ングガスにはCF4を用い、ガス圧力200mTor
r、RFパワー2KW(パワー密度は0.32W/cm
2)、ウェハ温度は−50℃とし、コンダクタンスバル
ブの開度を変えることにより排気速度を変えてガス滞在
時間を変化させた。このとき、ガス圧力は一定でガス流
量を変化させた。この時のSiエッチ速度のガス流量依
存性を図20に示す。ガス流量50sccmの時、Si
エッチ速度は100nm/minであったが、ガス流量
900sccmでは800nm/minにエッチ速度が
増大した。この時、1μmの深さにエッチングしSiの
マスクからのアンダーカット量は0.1μm以下であっ
た。また、Siとホトレジストとの選択比は4.0であ
った。エッチ速度のウェハ内及びウェハ間均一性は±5
%以下であった。
The Si single crystal was etched by the high-speed exhaust reactive ion etching apparatus shown in FIG.
The sample was a photoresist mask formed on an 8-inch Si substrate, and six sheets were simultaneously placed on the sample table. CF 4 is used as the etching gas, and the gas pressure is 200 mTorr.
r, RF power 2 kW (power density 0.32 W / cm
2 ) The wafer temperature was set to -50 ° C, and the gas residence time was changed by changing the exhaust speed by changing the opening of the conductance valve. At this time, the gas pressure was constant and the gas flow rate was changed. FIG. 20 shows the gas flow rate dependence of the Si etch rate at this time. Si at a gas flow rate of 50 sccm
The etching rate was 100 nm / min, but at a gas flow rate of 900 sccm, the etching rate increased to 800 nm / min. At this time, the undercut amount from the Si mask after etching to a depth of 1 μm was 0.1 μm or less. The selection ratio between Si and photoresist was 4.0. Within-wafer and across-wafer uniformity of etch rate is ± 5
% Or less.

【0078】(実施例10)本発明による大型ベッセル
高速排気マイクロ波プラズマエッチング装置の実施例を
図21示す。真空処理室201には5個所のマイクロ波
放電部216が設置され、それぞれ独立にガスプラズマ
203を発生させることができる。真空処理室内に配置
された試料台上で5個所のマイクロ波放電部の下にそれ
ぞれ、合計5枚の8インチウェハ207を設置し、同時
にエッチング処理した。試料台内部で5個所のウェハ設
置部の近辺にそれぞれガス排気口206を設けた。ガス
プラズマは、真空処理室201にエッチングガスを導入
し、マイクロ波発生器217において2.45GHzの
高周波を発生させ、これを導波管218により放電部2
16に輸送して発生させる。高効率放電のために磁場発
生用のソレノイドコイル219が放電部周囲に配置さ
れ、875ガウスの磁場により電子サイクロトロン共鳴
(Electron Cyclotron Reson
ance: ECRともいう)により高密度のプラズマ
が発生される。エッチングガスはガス導入口211から
放電部219、真空処理室201を経て排気ポンプ21
5により真空処理室外へ排出される。排気速度はコンダ
クタンスバルブ208を可変にすることにより変えるこ
とができる。処理ガスはガス流量コントローラー209
を通しガス配管210を経てガス導入口211からメッ
シュ状に小孔の開いたバッファ室212を通して放電部
216へ導入される。ガス導入口211は2個所以上設
け、放電部中心軸に対して対称に配置した。ウェハを設
置する試料台には、ウェハを0℃以下に冷却する冷却機
構213が備えられ、13.56MHzから400KH
zのRFバイアス202が印加できる。真空処理室には
ヒータ214が付いており、50℃以上に加熱できる。
(Embodiment 10) FIG. 21 shows an embodiment of a large-sized vessel high-speed exhaust microwave plasma etching apparatus according to the present invention. In the vacuum processing chamber 201, five microwave discharge parts 216 are installed, and the gas plasma 203 can be independently generated. A total of five 8-inch wafers 207 were placed under each of the five microwave discharge parts on the sample table arranged in the vacuum processing chamber, and simultaneously subjected to etching processing. Gas exhaust ports 206 were provided in the vicinity of five wafer installation parts inside the sample table. The gas plasma introduces an etching gas into the vacuum processing chamber 201 to generate a high frequency of 2.45 GHz in the microwave generator 217, which is guided by the waveguide 218 to the discharge unit 2.
16 and generate. A solenoid coil 219 for generating a magnetic field is arranged around the discharge part for high-efficiency discharge, and an electron cyclotron resonance (Electron Cyclotron Reson) is generated by a magnetic field of 875 Gauss.
ance: (also referred to as ECR) generates high-density plasma. The etching gas passes through the gas inlet 211, the discharge unit 219, the vacuum processing chamber 201, and the exhaust pump 21.
5 is discharged to the outside of the vacuum processing chamber. The exhaust speed can be changed by making the conductance valve 208 variable. The processing gas is a gas flow controller 209.
Through the gas pipe 210, and is introduced into the discharge part 216 from the gas introduction port 211 through the buffer chamber 212 having mesh-shaped small holes. Two or more gas inlets 211 are provided and arranged symmetrically with respect to the central axis of the discharge part. The sample table on which the wafer is installed is equipped with a cooling mechanism 213 for cooling the wafer to 0 ° C. or lower, and 13.56 MHz to 400 KH.
An RF bias 202 of z can be applied. The vacuum processing chamber is equipped with a heater 214 and can be heated to 50 ° C. or higher.

【0079】排気ポンプには排気速度20000 l/
secのターボ分子ポンプ2台を放電部の中心軸に対し
て対称に配置した。ガスの通路となる放電部、真空処理
室、排気管及び全開のコンダクタンスバルブの総排気コ
ンダクタンスは40000l/secとした。この時、
実効排気速度は20000 l/secである。また、
真空処理室、放電部、排気管の総容積は約2000 l
であり、真空処理室内のガス滞在時間は100msec
である。
The exhaust pump has an exhaust speed of 20000 l /
Two turbo molecular pumps of sec were arranged symmetrically with respect to the central axis of the discharge part. The total exhaust conductance of the discharge part serving as a gas passage, the vacuum processing chamber, the exhaust pipe, and the fully open conductance valve was set to 40,000 l / sec. This time,
The effective pumping speed is 20000 l / sec. Also,
The total volume of the vacuum processing chamber, discharge section, and exhaust pipe is about 2000 l
The gas residence time in the vacuum processing chamber is 100 msec.
Is.

【0080】図21に示す大型ベッセル高速排気マイク
ロ波プラズマエッチング装置により、Si単結晶のエッ
チングを行なった。試料は、8インチSi基板の上にホ
トレジストマスクを形成したもので、試料台に5枚同時
に載置した。エッチングガスにはCF4を用い、ガス圧
力5mTorr、マイクロ波パワー2KW、RFバイア
スは2MHzで200W、ウェハ温度は−50℃とし
た。この時のSiエッチ速度は、ガス流量900scc
mにおいて1.5μm/minであった。この時、1μ
mの深さにエッチングしSiのマスクからのアンダーカ
ット量は0.1μm以下であった。また、Siとホトレ
ジストとの選択比は3.0であった。エッチ速度のウェ
ハ内及びウェハ間均一性は±5%以下であった。
The single-crystal Si was etched by the large vessel high-speed exhaust microwave plasma etching apparatus shown in FIG. The sample was a photoresist mask formed on an 8-inch Si substrate, and five samples were simultaneously placed on the sample table. CF 4 was used as the etching gas, the gas pressure was 5 mTorr, the microwave power was 2 KW, the RF bias was 200 W at 2 MHz, and the wafer temperature was −50 ° C. At this time, the Si etch rate is 900 cc gas flow rate.
m was 1.5 μm / min. At this time, 1μ
The undercut amount from the Si mask after etching to a depth of m was 0.1 μm or less. The selection ratio between Si and photoresist was 3.0. The within-wafer and inter-wafer uniformity of the etch rate was ± 5% or less.

【0081】(実施例11)図1に示す高速排気マイク
ロ波プラズマエッチング装置により、8インチウェハ上
に総面積の異なるパターンを形成して、Alエッチング
を行った。エッチング条件はCl2ガス圧力3mTor
r、マイクロ波パワー500W、RFバイアスは2MH
zで50W、ウェハ温度は0℃とした。ウェハ口径を6
インチから8インチに変化させた場合の実効排気速度
(以下の実施例内容説明では単に排気速度と表す)とエ
ッチ速度の関係を、図22に示す。ウェハ内エッチング
面積比率は50%である。ガス圧を一定(3mTor
r)にしているので、排気速度(Sl/sec)に対す
るガス流量(Q sccm)は、Q=79.05×S×
0.003である。
(Embodiment 11) Using the high-speed exhaust microwave plasma etching apparatus shown in FIG. 1, patterns having different total areas were formed on an 8-inch wafer and Al etching was performed. The etching condition is Cl 2 gas pressure 3 mTorr
r, microwave power 500W, RF bias 2MH
Z was 50 W and the wafer temperature was 0 ° C. Wafer diameter is 6
FIG. 22 shows the relationship between the effective evacuation rate (which will be simply referred to as an evacuation rate in the following description of the embodiments) and the etching rate when the inch is changed to 8 inches. The in-wafer etching area ratio is 50%. Constant gas pressure (3 mTorr
r), the gas flow rate (Q sccm) with respect to the exhaust speed (Sl / sec) is Q = 79.05 × S ×
It is 0.003.

【0082】従来の低速排気(約200 l/sec)
のAlエッチングでは6インチの場合、エッチ速度は約
0.8μm/minであった。排気速度を500 l/
secにすると、エッチ速度は約1.5倍の1.2μm
/minとなり、800 l/secでは約1.8倍の
1.4μm/minになり、1300 l/secでは
2倍の1.6μm/minとなった。8インチウェハで
は、より顕著な変化が認められ、800 l/secで
は従来の2.4倍、1300 l/secでは従来の約
3倍になった。
Conventional low speed exhaust (about 200 l / sec)
In the case of Al etching of 6 inches, the etching rate was about 0.8 μm / min. Pumping speed is 500 l /
When it is set to sec, the etching speed is about 1.5 times 1.2 μm.
/ Min, which was about 1.8 times to 1.4 μm / min at 800 l / sec, and doubled to 1.6 μm / min at 1300 l / sec. In the case of the 8-inch wafer, a more remarkable change was recognized, and at 800 l / sec, it was 2.4 times that of the conventional method, and at 1300 l / sec, it was about 3 times that of the conventional method.

【0083】従って、8インチウェハで従来エッチ速度
(6インチ、200 l/sec)の1.5倍以上を得
ようとすると、少なくとも800 l/sec以上が必
要であることがわかり、2倍以上を得ようとすると少な
くとも1300 l/sec以上が必要であることがわ
かった。
Therefore, when it is attempted to obtain 1.5 times or more of the conventional etching rate (6 inches, 200 l / sec) with an 8-inch wafer, it is found that at least 800 l / sec or more is required, and it is more than twice. It was found that at least 1300 l / sec or more was required to obtain the above.

【0084】なお、このようなエッチ速度の面積依存性
はAl以外にSi等の他材料でもほぼ同様に見られ、8
インチウェハで従来エッチ速度の1.5倍以上を得るた
めには、800 l/sec以上の排気速度が必要であ
った。またガス圧力、マイクロ波パワー、試料温度、バ
イアス等のエッチング条件の異なる場合も同様に、8イ
ンチウェハで従来エッチ速度の1.5倍以上を得るため
には、800 l/sec以上の排気速度が必要であっ
た。
The area dependence of the etching rate is almost the same in other materials such as Si in addition to Al.
In order to obtain an etching rate of 1.5 times or more with an inch wafer, an evacuation rate of 800 l / sec or more was required. Similarly, when the etching conditions such as gas pressure, microwave power, sample temperature, and bias are different, in order to obtain 1.5 times or more of the conventional etching rate with an 8-inch wafer, an evacuation rate of 800 l / sec or more is required. Was needed.

【0085】(実施例12)図1に示す高速排気マイク
ロ波プラズマエッチング装置により、ECR面(プラズ
マ内で磁場が875Gになる面)とウェハとの距離(E
CR面距離)を変化させて、Siエッチングを行った。
エッチング条件はCl2ガス圧力0.5mTorr、マ
イクロ波パワー500W、RFバイアスは2MHzで2
0W、ウェハ温度は−30℃とした。排気速度を変化さ
せた場合のECR面距離とエッチ速度の関係を図23に
示す。従来排気速度(200 l/sec)ではECR
面距離を0から150mmに遠ざけるとエッチ速度は3
00から100nm/minまで減少した。一方、50
0 l/secの高速排気によるエッチングではECR
面距離が150mmと遠くても、エッチ速度は300n
m/minが得られ、さらに距離を近付けると1000
nm/min以上に増大した。すなわち、高速排気エッ
チングによりECR面距離がある程度離れても、ECR
面を近付けた場合と同等もしくはそれ以上のエッチ速度
が得られることがわかった。
(Embodiment 12) The distance (E) between the ECR surface (the surface where the magnetic field becomes 875 G in the plasma) and the wafer was measured by the high-speed exhaust microwave plasma etching apparatus shown in FIG.
The Si etching was performed by changing the CR surface distance).
The etching conditions are Cl 2 gas pressure 0.5 mTorr, microwave power 500 W, and RF bias 2 MHz at 2 MHz.
The wafer temperature was 0 W and -30 ° C. FIG. 23 shows the relationship between the ECR surface distance and the etch rate when the exhaust rate is changed. ECR at conventional pumping speed (200 l / sec)
When the surface distance is increased from 0 to 150 mm, the etching speed is 3
It decreased from 00 to 100 nm / min. On the other hand, 50
ECR in etching by high-speed exhaust of 0 l / sec
Even if the surface distance is as long as 150 mm, the etching speed is 300 n
m / min is obtained, and 1000 is obtained when the distance is further reduced.
nm / min or more. That is, even if the ECR surface distance is increased to some extent by high-speed exhaust etching,
It was found that an etching speed equal to or higher than that when the surfaces were brought close to each other was obtained.

【0086】ECR面を近付けた場合に問題となるの
は、ECR領域ではプラズマの解離効率が高いために、
ウェハから発生した反応生成物が再解離してウェハ表面
に再デポジションすることである。この減少により、エ
ッチング形状の劣化や表面汚染につながる場合がある。
また、ECR面距離を小さくすると、エッチング均一性
が低下する場合もある。表面分析から、反応生成物のウ
ェハへの吸着量を調べると図24に示すように、排気速
度が500 l/secの場合、ECR面距離が小さく
なるにつれて吸着量の増大することが分かった。排気速
度が小さい場合(200 l/sec)には反応生成物
の排気速度が遅いためECR面距離がある程度離れて再
解離が少なくても、ウェハへの吸着量が多くなる。従っ
て、反応生成物吸着の少ない低汚染で高速のエッチング
のためには、ECR面距離をある程度大きくして高速排
気することが良い。図24の結果から、ECR面距離は
40mm以上離して、排気速度500 l/sec以上
を用いることが適当であることが分かった。
A problem when the ECR surfaces are brought close to each other is that the plasma dissociation efficiency is high in the ECR region.
The reaction product generated from the wafer is redissolved and redeposited on the wafer surface. This reduction may lead to deterioration of etching shape and surface contamination.
Further, if the ECR surface distance is reduced, the etching uniformity may decrease. From the surface analysis, when the adsorption amount of the reaction product on the wafer was examined, it was found that the adsorption amount increased as the ECR surface distance decreased when the evacuation rate was 500 l / sec, as shown in FIG. When the exhaust rate is low (200 l / sec), the exhaust rate of the reaction product is slow, and the amount of adsorption to the wafer is large even if the ECR surface distance is separated to some extent and re-dissociation is small. Therefore, in order to perform low-contamination and high-speed etching with less adsorption of reaction products, it is preferable to increase the ECR surface distance to some extent and to perform high-speed exhaust. From the results shown in FIG. 24, it was found that it is appropriate to use an evacuation speed of 500 l / sec or more with an ECR surface distance of 40 mm or more.

【0087】(実施例13)図1に示す高速排気マイク
ロ波プラズマエッチング装置により、1から10mTo
rrのガス圧力においてAlをエッチングした。エッチ
ング条件はCl2ガス圧力5mTorr、マイクロ波パ
ワー500W、RFバイアスは2MHzで20W、ウェ
ハ温度は0℃とした。排気速度とAlエッチ速度の関係
を図25に示す。ガス流量はガス圧力に排気速度を乗じ
たものである。500 l/sec以上でエッチ速度は
大きく増大する。一方、アンダーカット量の排気速度依
存性を図26に示す。ガス圧が5mTorrと高いため
アンダーカットは生じやすく、特に排気速度1300
l/sec以上において増大傾向が大きかった。排気速
度1300 l/sec以下においてアンダーカット量
が小さい理由は、反応生成物の滞在時間が長く、これが
パターン側壁にデポして側面エッチングを防止するから
である。従って、側壁デポを用いなければアンダーカッ
トを押さえられないエッチングで、しかも高エッチ速度
が必要な場合に、1000nm/min以上の高エッチ
速度で、アンダーカット量を0.1μm以下に抑えるた
めには、500 l/secが適当であった。また、同
様のエッチング傾向は1から10mTorrの圧力で得
られ、1000nm/min以上の高エッチ速度で、ア
ンダーカット量0.1μm以下を満足する排気速度は5
00 l/secと1300l/secの間にあった。
なお、ガス滞在時間は500 l/secの時に300
msecであった。
(Embodiment 13) The high speed exhaust microwave plasma etching apparatus shown in FIG.
Al was etched at a gas pressure of rr. The etching conditions were Cl 2 gas pressure of 5 mTorr, microwave power of 500 W, RF bias of 20 MHz at 2 MHz, and wafer temperature of 0 ° C. FIG. 25 shows the relationship between the exhaust rate and the Al etch rate. The gas flow rate is the gas pressure multiplied by the exhaust rate. At 500 l / sec or more, the etching rate greatly increases. On the other hand, FIG. 26 shows the exhaust speed dependency of the undercut amount. Since the gas pressure is as high as 5 mTorr, undercut is likely to occur.
At 1 / sec or more, the increasing tendency was large. The reason why the amount of undercut is small when the exhaust speed is 1300 l / sec or less is that the reaction product stays for a long time and is deposited on the pattern side wall to prevent side surface etching. Therefore, in the case where the undercut can be suppressed only by using the side wall deposition and the high etching rate is required, in order to suppress the undercut amount to 0.1 μm or less at a high etching rate of 1000 nm / min or more, , 500 l / sec was suitable. Further, a similar etching tendency is obtained at a pressure of 1 to 10 mTorr, a high etching rate of 1000 nm / min or more, and an exhaust rate of 5 which satisfies an undercut amount of 0.1 μm or less.
It was between 00 l / sec and 1300 l / sec.
It should be noted that the gas residence time is 300 at the time of 500 l / sec.
It was msec.

【0088】(実施例14)図1に示す高速排気マイク
ロ波プラズマエッチング装置により、BCl3ガスを用
いてAlをエッチングした。エッチング条件はBCl3
ガス圧力4mTorr、マイクロ波パワー500W、R
Fバイアスは2MHzで20W、ウェハ温度は20℃と
した。Alアンダーカット量のガス圧力依存性を図27
に示す。排気速度は800 l/secとした。アンダ
ーカット量は5mTorr以下で顕著に減少し、0.1
μm以下になった。Cl2によるエッチングに比較し、
BCl3ではより高いガス圧力でアンダーカットが減少
する。この理由は、BCl3がパターン側壁にデポジシ
ョンし側壁を保護する効果があるためである。一方、A
lエッチ速度のマイクロローディング(パターンサイズ
依存性:ここでは0.2μm;aと10μm;bの溝パ
ターンでのエッチ速度の比;a/b)の排気速度依存性
を図28に示す。マイクロロディングは排気速度の増大
とともに減少し、800 l/sec以上で実用に適す
る0.9以上となった。排気速度増大とともにマイクロ
ロディングが減少する理由は、排気速度増大によりエッ
チング反応粒子が小さい溝内にも十分供給されるように
なるためである。従って、BCl3を用いたAlエッチ
ングにおいてアンダーカットとマイクロローディングを
抑えたエッチングを行うためには、ガス圧力5mTor
r以下で排気速度800 l/sec以上が良いことが
わかった。マイクロロディグは、小さい溝内を最後まで
エッチングするのに必要なオーバーエッチング量に関係
するが、この場合マイクロローディングは0.9以上で
は実用上大きな問題がないため、排気速度を必要以上に
大きくする必要はない。
Example 14 Al was etched using BCl 3 gas by the high speed exhaust microwave plasma etching apparatus shown in FIG. The etching conditions are BCl 3
Gas pressure 4mTorr, microwave power 500W, R
The F bias was 20 W at 2 MHz and the wafer temperature was 20 ° C. FIG. 27 shows the gas pressure dependency of the Al undercut amount.
Shown in The pumping speed was 800 l / sec. Undercut amount decreases significantly below 5 mTorr, 0.1
It became less than μm. Compared to etching with Cl 2 ,
BCl 3 reduces undercut at higher gas pressures. The reason for this is that BCl 3 has the effect of depositing on the pattern sidewall and protecting the sidewall. On the other hand, A
FIG. 28 shows the exhaust rate dependency of the microloading of the etch rate (pattern size dependency: here 0.2 μm; the ratio of etch rates in groove patterns of a and 10 μm; b; a / b). The microloading decreased with an increase in the exhaust speed, and became more than 0.9, which is suitable for practical use, at 800 l / sec or more. The reason why the microloading decreases with the increase of the exhaust speed is that the etching reaction particles are sufficiently supplied also into the small groove due to the increase of the exhaust speed. Therefore, in order to perform undercut and micro-loading controlled etching in Al etching using BCl 3 , the gas pressure is 5 mTorr.
It was found that a pumping speed of 800 l / sec or more is preferable at r or less. Microrodig is related to the amount of over-etching required to etch the inside of a small groove to the end. In this case, if the microloading is 0.9 or more, there is no practical problem, so the pumping speed is set higher than necessary. do not have to.

【0089】(実施例15)図1に示す高速排気マイク
ロ波プラズマエッチング装置及び図29に示す反応性イ
オンエッチング装置により、Alをエッチングした。エ
ッチング条件は、マイクロ波エッチング装置ではCl2
ガス、マイクロ波パワー500W、RFバイアスは2M
Hzで20W、ウェハ温度は10℃とし、反応性イオン
エッチングではRFパワー500W、Cl2ガス、ウェ
ハ温度は10℃とした。Alエッチ速度とガス圧力の関
係を図30に示す。排気速度は500 l/secとし
た。マイクロ波エッチングではガス圧力の低いところで
エッチングできるため、4mTorrでアンダーカット
が0.1μm以下になり、エッチ速度は1000nm/
minであった。反応性イオンエッチングでは、低ガス
圧ではエッチングできず、10mTorrでアンダーカ
ットは0.2μmであり、エッチ速度は300nm/m
inであった。すなわち、マイクロ波エッチングは反応
性イオンエッチングに比べると、低ガス圧でアンダーカ
ットが小さく高速のエッチングが可能である。一方、A
lエッチ速度と排気速度との関係を図31に示す。ガス
圧力は4mTorrである。排気速度を増大すると、A
lエッチ速度は反応性イオンエッチングよりもマイクロ
波エッチングの方が顕著に増大する。これは、マイクロ
波エッチングでは反応性イオンエッチングに比べて表面
反応速度が大きく、いわばエッチング反応粒子の供給律
速の状態にあるため、排気速度増大によりエッチング反
応粒子の供給を増大するとエッチング反応が促進される
ためである。特に、500 l/sec以上でエッチ速
度が飽和傾向にあった。一方、反応性イオンエッチング
では、表面反応速度が小さく、反応律速の状態にあるた
め、排気速度増大によりエッチング反応粒子の供給を増
やしてもエッチ速度の増加は小さい。従って、マイクロ
波プラズマエッチングを用いて、低ガス圧でアンダーカ
ットを防止し、高速排気でエッチ速度を増大させるため
に、ガス圧を4mTorr以下にし、500 l/se
c以上の排気速度にすることが適する。アンダーカット
はガス圧力を下げるほど小さくなるが、Alエッチ速度
は0.5mTorr以下で大きく低下して300nm/
min以下になり、実用的にはあまり適さない。
Example 15 Al was etched by the high speed exhaust microwave plasma etching apparatus shown in FIG. 1 and the reactive ion etching apparatus shown in FIG. The etching condition is Cl 2 in the microwave etching device.
Gas, microwave power 500W, RF bias 2M
The frequency was 20 W in Hz, the wafer temperature was 10 ° C., the RF power was 500 W in reactive ion etching, the Cl 2 gas was used, and the wafer temperature was 10 ° C. FIG. 30 shows the relationship between the Al etch rate and the gas pressure. The pumping speed was 500 l / sec. Since the microwave etching can be performed at a low gas pressure, the undercut becomes 0.1 μm or less at 4 mTorr and the etching rate is 1000 nm /
It was min. The reactive ion etching cannot be performed at a low gas pressure, the undercut is 0.2 μm at 10 mTorr, and the etching rate is 300 nm / m.
It was in. That is, compared with reactive ion etching, microwave etching has a low gas pressure, has a small undercut, and enables high-speed etching. On the other hand, A
FIG. 31 shows the relationship between the 1 etch rate and the exhaust rate. The gas pressure is 4 mTorr. When the pumping speed is increased, A
l The etch rate is significantly increased in microwave etching than in reactive ion etching. This is because microwave etching has a higher surface reaction rate than reactive ion etching and is, so to speak, a rate-determining state of the supply of etching reaction particles. This is because In particular, the etching rate tended to be saturated at 500 l / sec or more. On the other hand, in the reactive ion etching, the surface reaction rate is small and the reaction rate is controlled, and therefore the increase in the etching rate is small even if the supply of the etching reaction particles is increased by increasing the exhaust rate. Therefore, in order to prevent undercut at a low gas pressure using microwave plasma etching and to increase the etching rate by high-speed exhaust, the gas pressure is set to 4 mTorr or less and 500 l / se.
A pumping speed of c or higher is suitable. The undercut becomes smaller as the gas pressure is lowered, but the Al etch rate is greatly reduced at 0.5 mTorr or less and is 300 nm /
It is less than min, which is not suitable for practical use.

【0090】(実施例16)図1に示す高速排気マイク
ロ波プラズマエッチング装置及び図29に示す反応性イ
オンエッチング装置により、Alをエッチングした。エ
ッチング条件は、マイクロ波エッチング装置ではCl2
ガス圧4mTorr、マイクロ波パワー500W、RF
バイアスは2MHzで20W、ウェハ温度は10℃と
し、反応性イオンエッチングではRFパワー500W、
Cl2ガス圧10mTorr、ウェハ温度は10℃とし
た。Alエッチ速度とガス滞在時間の関係を図32に示
す。ここではガス流量を可変とした。滞在時間の減少も
にいずれのエッチング方法でもAlエッチ速度は増加傾
向にあるが、マイクロ波エッチングの方が顕著に増加し
た。滞在時間300msecにおいてAlエッチ速度は
1000nm/minであった。従って、アンダーカッ
ト0.1μm以下で、エッチ速度1000nm/min
を得るためには、ガス圧力4mTorr以下でガス滞在
時間300msec以下にすることが必要である。
Example 16 Al was etched by the high speed exhaust microwave plasma etching apparatus shown in FIG. 1 and the reactive ion etching apparatus shown in FIG. The etching condition is Cl 2 in the microwave etching device.
Gas pressure 4mTorr, microwave power 500W, RF
The bias was 20 W at 2 MHz, the wafer temperature was 10 ° C., and the RF power was 500 W in reactive ion etching.
The Cl 2 gas pressure was 10 mTorr and the wafer temperature was 10 ° C. FIG. 32 shows the relationship between the Al etch rate and the gas residence time. Here, the gas flow rate was variable. The Al etching rate tended to increase with any etching method due to the decrease in the residence time, but the microwave etching showed a marked increase. The Al etching rate was 1000 nm / min at a residence time of 300 msec. Therefore, when the undercut is 0.1 μm or less, the etching rate is 1000 nm / min.
In order to obtain the above, it is necessary to set the gas residence time to 300 msec or less at a gas pressure of 4 mTorr or less.

【0091】[0091]

【発明の効果】本発明によれば、1mTorr以下の高
真空下でガス流量を40sccm以上に増大でき、ガス
滞在時間を100msec以下にできるため、高真空下
でアンダーカットを防止し、大ガス流量で高いエッチ速
度を達成でき、被エッチング材料とその他の材料とのエ
ッチング速度比(選択比)も増大できる効果がある。そ
の結果、非常に高い方向性が必要となるSiトレンチや
コンタクト孔等の高アスペクト比(パターン幅/エッチ
ング深さの比)エッチングを、高速度で高精度に加工す
ることができる。
According to the present invention, the gas flow rate can be increased to 40 sccm or more under a high vacuum of 1 mTorr or less, and the gas residence time can be 100 msec or less, so that undercut can be prevented under a high vacuum and a large gas flow rate can be achieved. Has the effect of achieving a high etching rate and increasing the etching rate ratio (selection ratio) between the material to be etched and other materials. As a result, high aspect ratio (ratio of pattern width / etching depth) etching of Si trenches, contact holes, etc., which requires very high directionality, can be processed at high speed and with high precision.

【0092】また、1mTorr以上のガス圧力でもア
ンダーカットをある程度防止し、エッチ速度、エッチン
グ選択性を向上することができる。
Even under a gas pressure of 1 mTorr or more, undercut can be prevented to some extent, and the etching rate and etching selectivity can be improved.

【0093】また、反応生成物の再デポジションが少な
いので、これによるウェハや装置の汚染、エッチング形
状の異常などを低減できる。
Further, since the redeposition of reaction products is small, it is possible to reduce the contamination of wafers and devices, the abnormal etching shape, etc.

【0094】本発明の効果は前述のエッチング装置やエ
ッチング材料に限らず、例えば、マグネトロン型RIE
やヘリコン共振型RIE等の他の装置、およびアルミニ
ウム、タングステン、タングステンシリサイド、銅、G
aAs、Si窒化膜等の他の材料についても同様の効果
がある。
The effects of the present invention are not limited to the above-described etching apparatus and etching material, but may be, for example, magnetron type RIE.
And other devices such as helicon resonance type RIE, and aluminum, tungsten, tungsten silicide, copper, G
Similar effects are obtained with other materials such as aAs and Si nitride film.

【0095】また、大型ベッセルを用いることにより、
例えば8インチ以上のウェハを多数枚同時にエッチング
処理でき、そのエッング速度も従来と同程度にできるの
で、ドライエッチングのスループットを向上でき、半導
体製品のコスト低減できる効果がある。
By using a large vessel,
For example, a large number of 8-inch or larger wafers can be simultaneously etched, and the etching speed thereof can be made about the same as the conventional one, so that the throughput of dry etching can be improved and the cost of semiconductor products can be reduced.

【0096】本発明による大型ベッセル、高速排気処理
装置での大口径ウェハ一括処理は、ドライエッチング以
外のプロセスにおいてもスループット増大の効果が大き
い。例えば、プラズマCVD装置、スパッタリング装
置、イオンミリング装置、プラズマドーピング装置等が
その例である。いずれの装置でも真空処理室が大型化す
ると処理室内の残留ガス量が増加し、例えば形成膜内へ
の残留ガス混入による膜質劣化等の問題が生ずるが、高
速排気によりこのような効果が低減でき、良質の薄膜を
形成できる。さらに、残留ガス量を膜形成のために必要
な値以下にする時間を高速排気により短縮でき、プロセ
ススループット向上を図ることも可能である。
The large-diameter wafer batch processing in the large-sized vessel and the high-speed evacuation processing apparatus according to the present invention has a great effect of increasing the throughput in the processes other than the dry etching. For example, a plasma CVD device, a sputtering device, an ion milling device, a plasma doping device, etc. are examples. In any of these devices, if the vacuum processing chamber becomes large, the amount of residual gas in the processing chamber will increase, causing problems such as film quality deterioration due to residual gas mixing into the formed film, but high-speed exhaust can reduce such effects. A good quality thin film can be formed. Furthermore, the time required for making the residual gas amount equal to or less than the value required for film formation can be shortened by high-speed exhaust, and the process throughput can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高真空高速排気型のマイクロ波プ
ラズマエッチング装置の概略断面図である。
FIG. 1 is a schematic sectional view of a high-vacuum, high-speed evacuation type microwave plasma etching apparatus according to the present invention.

【図2】本発明に係る高真空高速排気型のマイクロ波プ
ラズマエッチング装置を用いたSiエッチングにおける
ガス流量とエッチング速度の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a gas flow rate and an etching rate in Si etching using a high-vacuum high-speed exhaust type microwave plasma etching apparatus according to the present invention.

【図3】本発明に係る高真空高速排気型のマイクロ波プ
ラズマエッチング装置を用いたSiエッチングにおけ
る、ガス圧力とアンダーカット量の関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a gas pressure and an undercut amount in Si etching using a high-vacuum rapid-exhaust type microwave plasma etching apparatus according to the present invention.

【図4】本発明に係る高真空高速排気型のマイクロ波プ
ラズマエッチング装置を用いたSiエッチングにおけ
る、ガス圧力とエッチ速度の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a gas pressure and an etching rate in Si etching using a high-vacuum rapid-exhaust type microwave plasma etching apparatus according to the present invention.

【図5】ガス流量を変化させた時の反応性ガスと反応生
成物の基板への入射割合を求めた計算結果を示す図であ
る。
FIG. 5 is a diagram showing the calculation results of the incident ratios of the reactive gas and the reaction product to the substrate when the gas flow rate is changed.

【図6】ガス流量を変化させた時のガス滞在時間を求め
た計算結果を示す図である。
FIG. 6 is a diagram showing a calculation result of a gas residence time when a gas flow rate is changed.

【図7】ガス滞在時間を変化させた時の反応性ガスと反
応生成物の基板への入射割合を求めた計算結果を示す図
である。
FIG. 7 is a diagram showing the calculation results of the incident ratios of the reactive gas and the reaction product on the substrate when the gas residence time is changed.

【図8】本発明に係る高真空高速排気型の反応性イオン
エッチング(RIE)装置の概略断面図である。
FIG. 8 is a schematic cross-sectional view of a high-vacuum rapid-evacuation type reactive ion etching (RIE) apparatus according to the present invention.

【図9】本発明に係るドライエッチング装置の概略断面
図である。
FIG. 9 is a schematic sectional view of a dry etching apparatus according to the present invention.

【図10】本発明に係るドライエッチング装置の部分平
面図である。
FIG. 10 is a partial plan view of the dry etching apparatus according to the present invention.

【図11】本発明に係るドライエッチング装置の部分平
面図である。
FIG. 11 is a partial plan view of the dry etching apparatus according to the present invention.

【図12】本発明に係るドライエッチング装置のガス配
管の構成を示した平面図である。
FIG. 12 is a plan view showing a configuration of a gas pipe of the dry etching apparatus according to the present invention.

【図13】本発明に係るドライエッチング装置のガス配
管の構成を示した平面図である。
FIG. 13 is a plan view showing a configuration of a gas pipe of the dry etching apparatus according to the present invention.

【図14】本発明に係るドライエッチング装置の概略断
面図である。
FIG. 14 is a schematic sectional view of a dry etching apparatus according to the present invention.

【図15】エッチング処理室の高さと幅の比と、エッチ
ング処理室内のガスの流れ密度の関係を、シミュレーシ
ョンにより求めた結果である。
FIG. 15 is a result of simulating the relationship between the height-width ratio of the etching processing chamber and the gas flow density in the etching processing chamber.

【図16】従来のドライエッチング装置の概略断面図で
ある。
FIG. 16 is a schematic sectional view of a conventional dry etching apparatus.

【図17】異なる実行排気速度に対するガス圧力とガス
流量との関係を示す図である。
FIG. 17 is a diagram showing the relationship between gas pressure and gas flow rate for different execution exhaust speeds.

【図18】実効排気速度とガス滞在時間との関係を真空
処理室容積をパラメ−タとして示す図である。
FIG. 18 is a diagram showing the relationship between the effective pumping speed and the gas residence time, with the volume of the vacuum processing chamber as a parameter.

【図19】本発明に係る大型ベッセル高速排気反応性イ
オンエッチング(RIE)装置の概略図である。
FIG. 19 is a schematic view of a large-sized vessel rapid evacuation reactive ion etching (RIE) apparatus according to the present invention.

【図20】高真空高速排気型のマイクロ波プラズマエッ
チング装置を用いたSiエッチングにおける、ガス流量
とエッチ速度の関係を示す図である。
FIG. 20 is a diagram showing a relationship between a gas flow rate and an etching rate in Si etching using a high-vacuum high-speed exhaust type microwave plasma etching apparatus.

【図21】本発明に係る大型ベッセル高速排気マイクロ
波プラズマエッチング装置の概略図である。
FIG. 21 is a schematic view of a large-sized vessel high-speed exhaust microwave plasma etching apparatus according to the present invention.

【図22】本発明に係るAlエッチ速度と実効排気速度
のグラフである。
FIG. 22 is a graph of Al etch rate and effective pumping rate according to the present invention.

【図23】本発明に係るSiエッチ速度とウェハ−EC
R面距離のグラフである。
FIG. 23: Si etch rate and wafer-EC according to the present invention
It is a graph of R surface distance.

【図24】本発明に係るウェハ表面への反応生成物とウ
ェハ−ECR面距離のグラフである。
FIG. 24 is a graph of the reaction product on the wafer surface and the wafer-ECR surface distance according to the present invention.

【図25】本発明に係るAlエッチ速度と実効排気速度
のグラフである。
FIG. 25 is a graph of Al etch rate and effective pumping rate according to the present invention.

【図26】本発明に係るAlアンダーカット量と実効排
気速度のグラフである。
FIG. 26 is a graph of Al undercut amount and effective pumping speed according to the present invention.

【図27】本発明に係るAlアンダーカット量とガス圧
力のグラフである。
FIG. 27 is a graph of Al undercut amount and gas pressure according to the present invention.

【図28】本発明に係るAlエッチング深さ比(パター
ンサイズ依存)と実効排気速度のグラフである。
FIG. 28 is a graph of Al etching depth ratio (depending on pattern size) and effective pumping speed according to the present invention.

【図29】本発明に係る高速排気反応性イオンエッチン
グ(RIE)装置の概略図である。
FIG. 29 is a schematic view of a rapid exhaust reactive ion etching (RIE) apparatus according to the present invention.

【図30】本発明に係るAlエッチ速度とガス圧力のグ
ラフである。
FIG. 30 is a graph of Al etch rate and gas pressure according to the present invention.

【図31】本発明に係るAlエッチ速度と実効排気速度
のグラフである。
FIG. 31 is a graph of Al etch rate and effective pumping rate according to the present invention.

【図32】本発明に係るAlエッチ速度とガス滞在時間
のグラフである。
FIG. 32 is a graph of Al etch rate and gas residence time according to the present invention.

【図33】本発明の効果を適用する処理ガス圧力と実効
排気速度の範囲を示す図である。
FIG. 33 is a diagram showing a range of a process gas pressure and an effective evacuation rate to which the effect of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…真空処理室、2…マイクロ波発生器、3…導波管、
4…放電部、5…ガスプラズマ、6…ソレノイドコイ
ル、7…試料台、8…ウェハ、9…ガス導入口、10…
排気管、11…排気ポンプ、12…コンダクタンスバル
ブ、13…ガス流量コントローラ、14…ガス配管、1
5…バッファ室、16…冷却機構、17…RFバイア
ス、18…ヒータ、19…バタフライバルブ、20…ガ
スの流れ、21…マイクロ波動導入窓、22…上部電
極、23…ガス圧センサ 101…マイクロ波発生部、102…導波管、103…
マイクロ波導入窓、104…ガス導入口、105…ガス
配管、106…マスフローコントローラ、107…電磁
石、108…じゃま板、109…ウェハ、110…試料
台、111…チャンバー、112…高周波電源、113
…排気バッファ室、114…真空ポンプ、115…ガス
ボンベ、116…ガス導入バッファ室、117…エッチ
ング処理室 201…真空処理室、202…高周波、203…ガスプ
ラズマ、204…上部電極、205…下部電極、206
…ガス排気口、207…8インチウェハ、208…コン
ダクタンスバルブ、209…ガス流量コントローラ、2
10…ガス配管、211…ガス導入口、212…バッフ
ァ室、213…冷却機構、214…ヒータ、215…排
気ポンプ、216…放電部、217…マイクロ波発生
器、RFバイアス、218…導波管、219…ソレノイ
ドコイル、220…ガスの流れ。
1 ... Vacuum processing chamber, 2 ... Microwave generator, 3 ... Waveguide,
4 ... Discharge part, 5 ... Gas plasma, 6 ... Solenoid coil, 7 ... Sample stage, 8 ... Wafer, 9 ... Gas inlet, 10 ...
Exhaust pipe, 11 ... Exhaust pump, 12 ... Conductance valve, 13 ... Gas flow controller, 14 ... Gas pipe, 1
5 ... Buffer chamber, 16 ... Cooling mechanism, 17 ... RF bias, 18 ... Heater, 19 ... Butterfly valve, 20 ... Gas flow, 21 ... Microwave introduction window, 22 ... Upper electrode, 23 ... Gas pressure sensor 101 ... Micro Wave generator, 102 ... Waveguide, 103 ...
Microwave introduction window, 104 ... Gas introduction port, 105 ... Gas pipe, 106 ... Mass flow controller, 107 ... Electromagnet, 108 ... Baffle plate, 109 ... Wafer, 110 ... Sample stage, 111 ... Chamber, 112 ... High frequency power supply, 113
... Exhaust buffer chamber, 114 ... Vacuum pump, 115 ... Gas cylinder, 116 ... Gas introduction buffer chamber, 117 ... Etching processing chamber 201 ... Vacuum processing chamber, 202 ... High frequency, 203 ... Gas plasma, 204 ... Upper electrode, 205 ... Lower electrode , 206
... Gas exhaust port, 207 ... 8-inch wafer, 208 ... Conductance valve, 209 ... Gas flow rate controller, 2
10 ... Gas piping, 211 ... Gas inlet, 212 ... Buffer chamber, 213 ... Cooling mechanism, 214 ... Heater, 215 ... Exhaust pump, 216 ... Discharge part, 217 ... Microwave generator, RF bias, 218 ... Waveguide 219 ... Solenoid coil, 220 ... Gas flow.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 組橋 孝生 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 小林 淳一 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 臼井 建人 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 三瀬 信行 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takao Kumihashi, Inventor Takao Kumihashi 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Junichi Kobayashi 4-6, Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. (72) Kento Usui, Kenjicho, Tsuchiura City, Ibaraki Prefecture, 502, Hiritsu Seisakusho Co., Ltd. (72) Inventor, Nobuyuki Mise, 502, Jinmachicho, Tsuchiura City, Ibaraki, Hirate Seisakusho Co., Ltd.

Claims (74)

【特許請求の範囲】[Claims] 【請求項1】プラズマ放電する機構、ガス導入口、ガス
排気口を有し、被処理物を真空処理室内のECRポジシ
ョン以外の場所に保持する手段、ガス導入口から真空処
理室内にガスを導入する手段、該ガスにより放電部にガ
スプラズマを発生させるために、電磁波を導入する手
段、該ガスプラズマ及びこれより発生するガスをガス排
気口を通して真空処理室から、実効排気速度500 l
/sec以上で排気する手段を有する、被処理物を処理
するプラズマ処理装置。
1. A mechanism for plasma discharge, a gas inlet, a gas outlet, a means for holding an object to be processed at a position other than the ECR position in the vacuum processing chamber, and a gas being introduced into the vacuum processing chamber from the gas inlet. Means for introducing an electromagnetic wave in order to generate a gas plasma in the discharge part by the gas, the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port, and an effective evacuation speed of 500 l.
A plasma processing apparatus for processing an object to be processed, which has a means for exhausting the gas at a rate of not less than / sec.
【請求項2】上記電磁波導入手段は、マイクロ波導入手
段であることを特徴とする請求項1に記載のプラズマ処
理装置。
2. The plasma processing apparatus according to claim 1, wherein the electromagnetic wave introducing unit is a microwave introducing unit.
【請求項3】上記エッチング用ガスを導入する手段は、
エッチング用ガス配管とエッチング用ガス配管の先端ガ
ス導入口と、該エッチング用ガスの流量調整器と該エッ
チング用ガスが該真空処理室内へ導入される時の流速を
制御する手段とを有することを特徴とする請求項1に記
載のプラズマ処理装置。
3. The means for introducing the etching gas comprises:
An etching gas pipe, a tip gas introduction port of the etching gas pipe, a flow rate regulator of the etching gas, and means for controlling a flow rate when the etching gas is introduced into the vacuum processing chamber. The plasma processing apparatus of claim 1, wherein the plasma processing apparatus is a plasma processing apparatus.
【請求項4】上記流速を制御する手段は、ガス導入口部
に設けられた緩衝部であることを特徴とする請求項1に
記載のプラズマ処理装置。
4. The plasma processing apparatus according to claim 1, wherein the means for controlling the flow velocity is a buffer portion provided at the gas inlet.
【請求項5】上記ガス導入口は、複数の孔を有すること
を特徴とする請求項1に記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein the gas inlet has a plurality of holes.
【請求項6】上記エッチング用ガス配管は複数であり、
上記真空処理室の中心軸に対して実質的に対称に配置さ
れていることを特徴とする請求項1に記載のプラズマ処
理装置。
6. The etching gas pipe is plural,
The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is arranged substantially symmetrically with respect to a central axis of the vacuum processing chamber.
【請求項7】上記ガス導入口は、実質的に上記真空処理
室の中心軸に向けて配置することを特徴とする請求項1
に記載のプラズマ処理装置。
7. The gas introduction port is arranged substantially toward the central axis of the vacuum processing chamber.
The plasma processing apparatus according to.
【請求項8】上記真空処理室内を排気する手段は、排気
速度が2000 l/sec以上の性能を有する排気ポ
ンプであることを特徴とする請求項1に記載のプラズマ
処理装置。
8. The plasma processing apparatus according to claim 1, wherein the means for exhausting the inside of the vacuum processing chamber is an exhaust pump having an exhaust speed of 2000 l / sec or more.
【請求項9】上記排気ポンプは、タ−ボ分子ポンプであ
ることを特徴とする請求項1に記載のプラズマ処理装
置。
9. The plasma processing apparatus according to claim 1, wherein the exhaust pump is a turbo molecular pump.
【請求項10】上記排気コンダクタンスを可変として実
効排気速度を変える手段は、排気部に設けたコンダクタ
ンスバルブであることを特徴とする請求項1に記載のプ
ラズマ処理装置。
10. The plasma processing apparatus according to claim 1, wherein the means for changing the effective pumping speed by changing the pumping conductance is a conductance valve provided in a pumping section.
【請求項11】上記排気手段は、ガスの排気速度を変え
る可変制御バルブを有することを特徴とする請求項1に
記載のプラズマ処理装置。
11. The plasma processing apparatus according to claim 1, wherein the exhaust means has a variable control valve that changes the exhaust speed of gas.
【請求項12】被処理物を真空処理室内に設置し、真空
処理室にガスを導入し、該ガスをプラズマ放電し、該ガ
スプラズマで被処理物を処理し、該ガスを総実効排気速
度800 l/sec以上の排気手段で、排気すること
を特徴とするプラズマ処理方法。
12. An object to be processed is installed in a vacuum processing chamber, a gas is introduced into the vacuum processing chamber, the gas is plasma-discharged, the object to be processed is treated with the gas plasma, and a total effective exhaust rate of the gas is obtained. A plasma processing method, characterized in that the gas is exhausted by an exhaust means of 800 l / sec or more.
【請求項13】上記排気の際に実効排気速度を変化させ
ることを特徴とする請求項12に記載のプラズマ処理方
法。
13. The plasma processing method according to claim 12, wherein the effective pumping speed is changed during the pumping.
【請求項14】上記処理は、少なくとも15nm/mi
n以上のエッチ速度でエッチングをおこなう処理で、ガ
スの排気を実効排気速度500 l/sec以上、処理
室内のガス滞在時間を300msec以内にする請求項
12に記載のプラズマ処理方法。
14. The above-mentioned processing is at least 15 nm / mi.
13. The plasma processing method according to claim 12, wherein the gas is exhausted at an effective exhaust speed of 500 l / sec or more and the gas residence time in the processing chamber is set to 300 msec or less in the process of performing etching at an etching rate of n or more.
【請求項15】上記ガス供給は、処理室内ガス圧力5m
Torr以下で行なわれることを特徴とする請求項12
に記載のプラズマ処理方法。
15. A gas pressure of the processing chamber is 5 m for supplying the gas.
13. The method according to claim 12, wherein the operation is performed at less than Torr.
The plasma processing method described in 1.
【請求項16】上記ガス供給は、処理室内ガス圧力が1
mTorr以下で行なわれることを特徴とする請求項1
2に記載のプラズマ処理方法。
16. The gas pressure in the processing chamber is 1 when the gas is supplied.
The method according to claim 1, wherein the operation is performed at mTorr or less.
2. The plasma processing method described in 2.
【請求項17】上記ガス排気は、処理室内ガス滞在時間
が100msec以下で行なわれることを特徴とする請
求項12に記載のプラズマ処理方法。
17. The plasma processing method according to claim 12, wherein the gas exhaust is performed for a gas residence time in the processing chamber of 100 msec or less.
【請求項18】上記ガス導入は、処理室内ガス流速が音
速の1/3以下で行なわれることを特徴とする請求項1
2に記載のプラズマ処理方法。
18. The gas introduction is performed at a gas flow velocity in the processing chamber of 1/3 or less of a sound velocity.
2. The plasma processing method described in 2.
【請求項19】上記ガス供給は、処理室内ガス圧力が
0.5mTorr以下で行なわれることを特徴とする請
求項12に記載のプラズマ処理方法。
19. The plasma processing method according to claim 12, wherein the gas supply is performed at a gas pressure in the processing chamber of 0.5 mTorr or less.
【請求項20】上記ガス排気は、処理室内ガス滞在時間
が50msec以下で行なわれることを特徴とする請求
項12に記載のプラズマ処理方法。
20. The plasma processing method according to claim 12, wherein the gas exhaust is performed for a gas residence time in the processing chamber of 50 msec or less.
【請求項21】上記ガス供給は、処理室内に供給される
ガス流量が40sccm以上で行なわれることを特徴と
する請求項12に記載のプラズマ処理方法。
21. The plasma processing method according to claim 12, wherein the gas is supplied at a flow rate of 40 sccm or more in the processing chamber.
【請求項22】上記ガス排気は、実効排気速度1300
l/sec以上で行なわれることを特徴とする請求項
12に記載のプラズマ処理方法。
22. The gas exhaust has an effective exhaust speed of 1300.
13. The plasma processing method according to claim 12, wherein the plasma processing is performed at 1 / sec or more.
【請求項23】上記ガス排気は、実効排気速度2000
l/sec以上で行なわれることを特徴とする請求項
12に記載のプラズマ処理方法。
23. The gas exhaust has an effective exhaust speed of 2000.
13. The plasma processing method according to claim 12, wherein the plasma processing is performed at 1 / sec or more.
【請求項24】上記ガス供給は、処理室内に供給される
ガス流量が100sccm以上で行なわれることを特徴
とする請求項12に記載のプラズマ処理方法。
24. The plasma processing method according to claim 12, wherein the gas supply is performed at a flow rate of the gas supplied into the processing chamber of 100 sccm or more.
【請求項25】ガスプラズマの解離を促進する磁場印加
手段を有する請求項1に記載のプラズマ処理装置。
25. The plasma processing apparatus according to claim 1, further comprising magnetic field applying means for promoting dissociation of gas plasma.
【請求項26】電磁波導入手段が、高周波導入手段であ
ることを特徴とする請求項1に記載のプラズマ処理装
置。
26. The plasma processing apparatus according to claim 1, wherein the electromagnetic wave introducing unit is a high frequency introducing unit.
【請求項27】プラズマ放電する機構、ガス導入口、ガ
ス排気口を有し、被処理物を真空処理室内に保持する手
段、ガス導入口から真空処理室内にガスを導入する手
段、該ガスにより放電部にガスプラズマを発生させるた
めに、電磁波を導入する手段、該ガスプラズマ及びこれ
より発生するガスをガス排気口を通して真空処理室か
ら、実効排気速度800 l/sec以上で排気する手
段を有する、被処理物を処理するプラズマ処理装置。
27. A mechanism for plasma discharge, a gas introduction port, a gas exhaust port, means for holding an object to be processed in the vacuum processing chamber, means for introducing gas from the gas introduction port into the vacuum processing chamber, and the gas. In order to generate a gas plasma in the discharge part, it has a means for introducing an electromagnetic wave and a means for exhausting the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port at an effective exhaust speed of 800 l / sec or more. , A plasma processing apparatus for processing an object to be processed.
【請求項28】上記電磁波導入手段は、マイクロ波導入
手段であることを特徴とする請求項27に記載のプラズ
マ処理装置。
28. The plasma processing apparatus according to claim 27, wherein the electromagnetic wave introducing unit is a microwave introducing unit.
【請求項29】上記エッチング用ガスを導入する手段
は、エッチング用ガス配管とエッチング用ガス配管の先
端ガス導入口と、該エッチング用ガスの流量調整器と該
エッチング用ガスが該真空処理室内へ導入される時の流
速を制御する手段とを有することを特徴とする請求項2
7に記載のプラズマ処理装置。
29. The means for introducing the etching gas includes an etching gas pipe, a tip gas introduction port of the etching gas pipe, a flow rate regulator of the etching gas, and the etching gas into the vacuum processing chamber. And means for controlling the flow velocity when it is introduced.
7. The plasma processing apparatus according to 7.
【請求項30】上記流速を制御する手段は、ガス導入口
部に設けられた緩衝部であることを特徴とする請求項2
7に記載のプラズマ処理装置。
30. The means for controlling the flow velocity is a buffer portion provided at the gas inlet port.
7. The plasma processing apparatus according to 7.
【請求項31】上記ガス導入口は、複数の孔を有するこ
とを特徴とする請求項27に記載のプラズマ処理装置。
31. The plasma processing apparatus according to claim 27, wherein the gas inlet has a plurality of holes.
【請求項32】上記エッチング用ガス配管は複数であ
り、上記真空処理室の中心軸に対して実質的に対称に配
置されていることを特徴とする請求項27に記載のプラ
ズマ処理装置。
32. The plasma processing apparatus according to claim 27, wherein the etching gas pipes are plural and are arranged substantially symmetrically with respect to a central axis of the vacuum processing chamber.
【請求項33】上記ガス導入口は、実質的に上記真空処
理室の中心軸に向けて配置することを特徴とする請求項
27に記載のプラズマ処理装置。
33. The plasma processing apparatus according to claim 27, wherein the gas introduction port is disposed substantially toward a central axis of the vacuum processing chamber.
【請求項34】上記真空処理室内を排気する手段は、排
気速度が2000l/sec以上の性能を有する排気ポ
ンプであることを特徴とする請求項27に記載のプラズ
マ処理装置。
34. The plasma processing apparatus according to claim 27, wherein the means for exhausting the inside of the vacuum processing chamber is an exhaust pump having an exhaust speed of 2000 l / sec or more.
【請求項35】上記排気ポンプは、タ−ボ分子ポンプで
あることを特徴とする請求項27に記載のプラズマ処理
装置。
35. The plasma processing apparatus according to claim 27, wherein the exhaust pump is a turbo molecular pump.
【請求項36】上記排気コンダクタンスを可変として実
効排気速度を変える手段は、排気部に設けたコンダクタ
ンスバルブであることを特徴とする請求項27に記載の
プラズマ処理装置。
36. The plasma processing apparatus according to claim 27, wherein the means for changing the effective pumping speed by varying the pumping conductance is a conductance valve provided in a pumping section.
【請求項37】上記排気手段は、ガスの排気速度を変え
る可変制御バルブを有することを特徴とする請求項27
に記載のプラズマ処理装置。
37. The exhaust means has a variable control valve for changing the exhaust speed of gas.
The plasma processing apparatus according to.
【請求項38】プラズマ放電する機構、ガス導入口、ガ
ス排気口を有し、被処理物を真空処理室内に保持する手
段、ガス導入口から真空処理室内にガスを導入する手
段、該ガスにより放電部にガスプラズマを発生させるた
めに、電磁波を導入する手段、該ガスプラズマ及びこれ
より発生するガスをガス排気口を通して真空処理室か
ら、実効排気速度500 l/sec以上で排気する手
段を有し、ガス滞在時間を300msec以下にする、
被処理物を処理するプラズマ処理装置。
38. A mechanism for plasma discharge, a gas introduction port, a gas exhaust port, means for holding an object to be processed in the vacuum processing chamber, means for introducing gas into the vacuum processing chamber from the gas introduction port, In order to generate gas plasma in the discharge part, there are provided means for introducing electromagnetic waves, and means for exhausting the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port at an effective evacuation speed of 500 l / sec or more. The gas residence time to 300 msec or less,
A plasma processing apparatus for processing an object to be processed.
【請求項39】プラズマ放電する機構、ガス導入口、ガ
ス排気口を有し、被処理物を真空処理室内に保持する手
段、ガス導入口から真空処理室内にガスを導入する手
段、該ガスにより放電部にガスプラズマを発生させるた
めに、電磁波を導入する手段、該ガスプラズマ及びこれ
より発生するガスをガス排気口を通して真空処理室か
ら、実効排気速度800 l/sec以上で排気する手
段を有し、ガス圧力を5mTorr以下にする、被処理
物を処理するプラズマ処理装置。
39. A mechanism for plasma discharge, a gas inlet, a gas outlet, a means for holding an object to be processed in a vacuum processing chamber, a means for introducing a gas from the gas inlet into the vacuum processing chamber, and the gas. In order to generate gas plasma in the discharge part, there are provided means for introducing electromagnetic waves and means for exhausting the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port at an effective exhaust speed of 800 l / sec or more. And a gas pressure of 5 mTorr or less, a plasma processing apparatus for processing an object to be processed.
【請求項40】プラズマ放電する機構、ガス導入口、ガ
ス排気口を有し、被処理物を真空処理室内のECRポジ
ション以外の場所に保持する手段、ガス導入口から真空
処理室内にガスを導入する手段、該ガスにより放電部に
ガスプラズマを発生させるために、電磁波を導入する手
段、該ガスプラズマ及びこれより発生するガスをガス排
気口を通して真空処理室から、実効排気速度500 l
/sec以上で排気する手段を有する、被処理物を処理
するプラズマ処理方法。
40. A means for holding a target object at a position other than the ECR position in the vacuum processing chamber, which has a mechanism for plasma discharge, a gas inlet port, and a gas exhaust port, and introduces gas into the vacuum processing chamber from the gas inlet port. Means for introducing an electromagnetic wave in order to generate a gas plasma in the discharge part by the gas, the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port, and an effective evacuation speed of 500 l.
/ Sec or more, a plasma treatment method for treating an object to be treated, which has a means for exhausting.
【請求項41】上記排気の際に実効排気速度を変化させ
ることを特徴とする請求項40に記載のプラズマ処理方
法。
41. The plasma processing method according to claim 40, wherein the effective pumping speed is changed during the pumping.
【請求項42】上記処理は、少なくとも15nm/mi
n以上のエッチ速度でエッチングをおこなう処理で、ガ
スの排気を実効排気速度500 l/sec以上、処理
室内のガス滞在時間を300msec以内にする請求項
40に記載のプラズマ処理方法。
42. The treatment is at least 15 nm / mi.
The plasma processing method according to claim 40, wherein the gas is exhausted at an effective evacuation speed of 500 l / sec or more and the gas residence time in the processing chamber is 300 msec or less in the process of performing etching at an etching rate of n or more.
【請求項43】上記ガス供給は、処理室内ガス圧力5m
Torr以下で行なわれることを特徴とする請求項40
に記載のプラズマ処理方法。
43. A gas pressure of the processing chamber is 5 m.
41. The method according to claim 40, wherein the operation is performed at less than Torr.
The plasma processing method described in 1.
【請求項44】上記ガス供給は、処理室内ガス圧力が1
mTorr以下で行なわれることを特徴とする請求項4
0に記載のプラズマ処理方法。
44. The gas supply has a gas pressure of 1 in the processing chamber.
5. The process according to claim 4, wherein the process is performed at mTorr or less.
0. The plasma processing method described in 0.
【請求項45】上記ガス排気は、処理室内ガス滞在時間
が100msec以下で行なわれることを特徴とする請
求項40に記載のプラズマ処理方法。
45. The plasma processing method according to claim 40, wherein the gas exhaust is performed for a gas residence time in the processing chamber of 100 msec or less.
【請求項46】上記ガス導入は、処理室内ガス流速が音
速の1/3以下で行なわれることを特徴とする請求項4
0に記載のプラズマ処理方法。
46. The gas introduction is performed at a gas flow velocity in the processing chamber of 1/3 or less of a sound velocity.
0. The plasma processing method described in 0.
【請求項47】上記ガス供給は、処理室内ガス圧力が
0.5mTorr以下で行なわれることを特徴とする請
求項40に記載のプラズマ処理方法。
47. The plasma processing method according to claim 40, wherein the gas supply is performed at a gas pressure in the processing chamber of 0.5 mTorr or less.
【請求項48】上記ガス排気は、処理室内ガス滞在時間
が50msec以下で行なわれることを特徴とする請求
項40に記載のプラズマ処理方法。
48. The plasma processing method according to claim 40, wherein the gas exhaust is performed for a gas residence time in the processing chamber of 50 msec or less.
【請求項49】上記ガス供給は、処理室内に供給される
ガス流量が40sccm以上で行なわれることを特徴と
する請求項40に記載のプラズマ処理方法。
49. The plasma processing method according to claim 40, wherein the gas supply is performed at a gas flow rate of 40 sccm or more supplied into the processing chamber.
【請求項50】上記ガス排気は、実効排気速度1300
l/sec以上で行なわれることを特徴とする請求項
40に記載のプラズマ処理方法。
50. The gas exhaust has an effective exhaust speed of 1300.
The plasma processing method according to claim 40, wherein the plasma processing method is performed at 1 / sec or more.
【請求項51】上記ガス排気は、実効排気速度2000
l/sec以上で行なわれることを特徴とする請求項
40に記載のプラズマ処理方法。
51. The gas exhaust has an effective exhaust speed of 2000.
The plasma processing method according to claim 40, wherein the plasma processing method is performed at 1 / sec or more.
【請求項52】上記ガス供給は、処理室内に供給される
ガス流量が100sccm以上で行なわれることを特徴
とする請求項40に記載のプラズマ処理方法。
52. The plasma processing method according to claim 40, wherein the gas supply is performed at a flow rate of the gas supplied into the processing chamber of 100 sccm or more.
【請求項53】プラズマ放電する機構、ガス導入口、ガ
ス排気口を有し、被処理物を真空処理室内に保持する手
段、ガス導入口から真空処理室内にガスを導入する手
段、該ガスにより放電部にガスプラズマを発生させるた
めに、電磁波を導入する手段、該ガスプラズマ及びこれ
より発生するガスをガス排気口を通して真空処理室か
ら、実効排気速度800 l/sec以上で排気する手
段を有し、エッチ速度が50nm/min以上で被処理
物を処理するプラズマ処理方法。
53. A mechanism for plasma discharge, a gas introduction port, a gas exhaust port, means for holding an object to be processed in the vacuum processing chamber, means for introducing gas from the gas introduction port into the vacuum processing chamber, and the gas. In order to generate gas plasma in the discharge part, there are provided means for introducing electromagnetic waves and means for exhausting the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port at an effective exhaust speed of 800 l / sec or more. And a plasma processing method for processing an object to be processed at an etching rate of 50 nm / min or more.
【請求項54】プラズマ放電する機構、ガス導入口、ガ
ス排気口を有し、被処理物を真空処理室内に保持する手
段、ガス導入口から真空処理室内にガスを導入する手
段、該ガスにより放電部にガスプラズマを発生させるた
めに、電磁波を導入する手段、該ガスプラズマ及びこれ
より発生するガスをガス排気口を通して真空処理室か
ら、実効排気速度500 l/sec以上で排気する手
段を有し、エッチ速度が50nm/min以上で、ガス
滞在時間を300msec以下にする被処理物を処理す
るプラズマ処理方法。
54. A mechanism for plasma discharge, a gas introduction port, a gas exhaust port, means for holding an object to be processed in the vacuum processing chamber, means for introducing gas into the vacuum processing chamber from the gas introduction port, In order to generate gas plasma in the discharge part, there are provided means for introducing electromagnetic waves, and means for exhausting the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port at an effective evacuation speed of 500 l / sec or more. Then, a plasma processing method for processing an object to be processed having an etching rate of 50 nm / min or more and a gas residence time of 300 msec or less.
【請求項55】プラズマ放電する機構、ガス導入口、ガ
ス排気口を有し、被処理物を真空処理室内に保持する手
段、ガス導入口から真空処理室内にガスを導入する手
段、該ガスにより放電部にガスプラズマを発生させるた
めに、電磁波を導入する手段、該ガスプラズマ及びこれ
より発生するガスをガス排気口を通して真空処理室か
ら、実効排気速度800 l/sec以上で排気する手
段を有し、ガス圧力5mTorr以下にして被処理物を
処理するプラズマ処理方法。
55. A mechanism for plasma discharge, a gas introduction port, a gas exhaust port, means for holding an object to be processed in the vacuum processing chamber, means for introducing gas from the gas introduction port into the vacuum processing chamber, and the gas. In order to generate gas plasma in the discharge part, there are provided means for introducing electromagnetic waves and means for exhausting the gas plasma and the gas generated thereby from the vacuum processing chamber through the gas exhaust port at an effective exhaust speed of 800 l / sec or more. Then, the plasma treatment method of treating the object to be treated at a gas pressure of 5 mTorr or less.
【請求項56】上記真空処理室の高さと幅の比は0.5
以上であることを特徴とする請求項1に記載のプラズマ
処理装置。
56. The height / width ratio of the vacuum processing chamber is 0.5.
It is above, The plasma processing apparatus of Claim 1 characterized by the above-mentioned.
【請求項57】上記真空処理室の高さと幅の比は0.5
以上であることを特徴とする請求項25に記載のプラズ
マ処理装置。
57. The height-width ratio of the vacuum processing chamber is 0.5.
26. The plasma processing apparatus according to claim 25, which is the above.
【請求項58】上記ガス導入口は、上記真空処理室の上
部から1/3以内の高さに配置されていることを特徴と
する請求項1に記載のプラズマ処理装置。
58. The plasma processing apparatus according to claim 1, wherein the gas introduction port is arranged at a height within 1/3 of an upper portion of the vacuum processing chamber.
【請求項59】上記ガス導入口は、上記真空処理室の上
部から1/3以内の高さに配置されていることを特徴と
する請求項25に記載のプラズマ処理装置。
59. The plasma processing apparatus according to claim 25, wherein the gas inlet is arranged at a height within 1/3 of an upper portion of the vacuum processing chamber.
【請求項60】上記エッチング用ガスの流量調整器は、
40sccm以上の流量調整機能を有することを特徴と
する請求項1に記載のプラズマ処理装置。
60. A flow rate regulator for the etching gas,
The plasma processing apparatus according to claim 1, which has a flow rate adjusting function of 40 sccm or more.
【請求項61】上記エッチング用ガスの流量調整器は、
40sccm以上の流量調整機能を有することを特徴と
する請求項25に記載のプラズマ処理装置。
61. A flow rate regulator for the etching gas,
26. The plasma processing apparatus according to claim 25, which has a flow rate adjusting function of 40 sccm or more.
【請求項62】上記試料台は、平面上のテ−ブル型であ
り、表面積が5000cm2以上であることを特徴とす
る請求項1に記載のプラズマ処理装置。
62. The plasma processing apparatus according to claim 1, wherein the sample stage is a flat table type and has a surface area of 5000 cm 2 or more.
【請求項63】上記試料台は、平面上のテ−ブル型であ
り、表面積が5000cm2以上であることを特徴とす
る請求項25に記載のプラズマ処理装置。
63. The plasma processing apparatus according to claim 25, wherein the sample stage is a flat table type and has a surface area of 5000 cm 2 or more.
【請求項64】上記真空処理室にエッチング用ガスを導
入する手段は、100sccm以上の流量調整機能を有
することを特徴とする請求項1に記載のプラズマ処理装
置。
64. The plasma processing apparatus according to claim 1, wherein the means for introducing the etching gas into the vacuum processing chamber has a flow rate adjusting function of 100 sccm or more.
【請求項65】上記真空処理室にエッチング用ガスを導
入する手段は、100sccm以上の流量調整機能を有
することを特徴とする請求項25に記載のプラズマ処理
装置。
65. The plasma processing apparatus according to claim 25, wherein the means for introducing the etching gas into the vacuum processing chamber has a flow rate adjusting function of 100 sccm or more.
【請求項66】上記ガス排気手段は、同一真空処理室に
設置された複数個のポンプからなることを特徴とし、該
ポンプと真空処理室を接続する排気口がウェハ中心軸に
対して軸対照に配置されることを特徴とするプラズマ処
理装置。
66. The gas exhausting means comprises a plurality of pumps installed in the same vacuum processing chamber, and the exhaust port connecting the pumps and the vacuum processing chamber is axially symmetrical with respect to the central axis of the wafer. A plasma processing apparatus, characterized in that the plasma processing apparatus is arranged in the.
【請求項67】上記複数個のポンプは、単体の排気速度
が500 l/sec以上の排気ポンプであり、かつ、
全てのポンプの排気速度の総和が2000 l/sec
以上となることを特徴とするプラズマ処理装置。
67. The plurality of pumps are exhaust pumps each having an exhaust speed of 500 l / sec or more, and
The total pumping speed of all pumps is 2000 l / sec
A plasma processing apparatus having the above features.
【請求項68】上記ガス排気手段は、同一真空処理室に
設置された複数個のポンプからなることを特徴とする請
求項1に記載のプラズマ処理装置。
68. The plasma processing apparatus according to claim 1, wherein the gas exhausting means comprises a plurality of pumps installed in the same vacuum processing chamber.
【請求項69】上記ガス排気手段は、同一真空処理室に
設置された複数個のポンプからなることを特徴とする請
求項27に記載のプラズマ処理装置。
69. The plasma processing apparatus according to claim 27, wherein the gas exhausting means comprises a plurality of pumps installed in the same vacuum processing chamber.
【請求項70】上記複数個のポンプは、ウェハ中心軸に
対して軸対照に配置され、該ポンプと真空処理室を接続
する排気口がウェハ中心軸に対して軸対照に配置される
ことを特徴とする請求項1に記載のプラズマ処理装置。
70. The plurality of pumps are arranged in axial symmetry with respect to the wafer central axis, and an exhaust port connecting the pump and the vacuum processing chamber is arranged in axial symmetry with respect to the wafer central axis. The plasma processing apparatus of claim 1, wherein the plasma processing apparatus is a plasma processing apparatus.
【請求項71】上記複数個のポンプは、ウェハ中心軸に
対して軸対照に配置され、該ポンプと真空処理室を接続
する排気口がウェハ中心軸に対して軸対照に配置される
ことを特徴とする請求項27に記載のプラズマ処理装
置。
71. The plurality of pumps are arranged in axial symmetry with respect to the wafer central axis, and an exhaust port connecting the pump and the vacuum processing chamber is arranged in axial symmetry with respect to the wafer central axis. 28. The plasma processing apparatus according to claim 27, wherein the plasma processing apparatus is a plasma processing apparatus.
【請求項72】上記実効排気速度S0は、複数台の排気
ポンプの排気速度S1からSn(nはポンプの台数を示
す数値)と真空処理室の排気コンダクタンスCにより次
式で表され、かつ該実効排気速度S0がポンプ排気速度
の総和の2/3以上となるようにすることを特徴とする
請求項1に記載のプラズマ処理装置。 1/S0=(1/ΣSn)+1/C
72. The effective pumping speed S0 is represented by the following formula by the pumping speeds S1 to Sn (n is a numerical value indicating the number of pumps) of a plurality of exhaust pumps and the exhaust conductance C of the vacuum processing chamber, and The plasma processing apparatus according to claim 1, wherein the effective pumping speed S0 is set to 2/3 or more of the total pumping speed. 1 / S0 = (1 / ΣSn) + 1 / C
【請求項73】上記実効排気速度S0は、複数台の排気
ポンプの排気速度S1からSn(nはポンプの台数を示
す数値)と真空処理室の排気コンダクタンスCにより次
式で表され、かつ該実効排気速度S0がポンプ排気速度
の総和の2/3以上となるようにすることを特徴とする
請求項25に記載のプラズマ処理装置。 1/S0=(1/ΣSn)+1/C
73. The effective pumping speed S0 is expressed by the following equation by the pumping speeds S1 to Sn (n is a numerical value indicating the number of pumps) of a plurality of exhaust pumps and the exhaust conductance C of the vacuum processing chamber, and 26. The plasma processing apparatus according to claim 25, wherein the effective pumping speed S0 is set to 2/3 or more of the total pumping pumping speed. 1 / S0 = (1 / ΣSn) + 1 / C
【請求項74】上記放電部の大きさは、上端と下端の直
径を変え、下端部直径が上端部直径より大きく、該下端
部はエッチング時のウェハの高さより上に位置すること
を特徴とする請求項1に記載のプラズマ処理装置。
74. The size of the discharge part is such that the diameters of the upper end and the lower end are changed, the lower end diameter is larger than the upper end diameter, and the lower end portion is located above the height of the wafer during etching. The plasma processing apparatus according to claim 1.
JP7171784A 1995-07-07 1995-07-07 Plasma treatment device and plasma treatment method Pending JPH0845917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7171784A JPH0845917A (en) 1995-07-07 1995-07-07 Plasma treatment device and plasma treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7171784A JPH0845917A (en) 1995-07-07 1995-07-07 Plasma treatment device and plasma treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06809892A Division JP3323530B2 (en) 1991-04-04 1992-03-26 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH0845917A true JPH0845917A (en) 1996-02-16

Family

ID=15929627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7171784A Pending JPH0845917A (en) 1995-07-07 1995-07-07 Plasma treatment device and plasma treatment method

Country Status (1)

Country Link
JP (1) JPH0845917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033362A1 (en) * 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
US6838388B2 (en) 2000-07-03 2005-01-04 Renesas Technology Corp. Fabrication method of semiconductor integrated circuit device
US7648610B2 (en) 1999-12-24 2010-01-19 Tokyo Electron Limited Baffle plate, apparatus for producing the same, method of producing the same, and gas processing apparatus containing baffle plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033362A1 (en) * 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
US7312415B2 (en) 1997-01-29 2007-12-25 Foundation For Advancement Of International Science Plasma method with high input power
JP2009117373A (en) * 1997-01-29 2009-05-28 Foundation For Advancement Of International Science Plasma device
US7648610B2 (en) 1999-12-24 2010-01-19 Tokyo Electron Limited Baffle plate, apparatus for producing the same, method of producing the same, and gas processing apparatus containing baffle plate
US6838388B2 (en) 2000-07-03 2005-01-04 Renesas Technology Corp. Fabrication method of semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
JP3323530B2 (en) Method for manufacturing semiconductor device
US4668338A (en) Magnetron-enhanced plasma etching process
US8932947B1 (en) Methods for forming a round bottom silicon trench recess for semiconductor applications
US6009830A (en) Independent gas feeds in a plasma reactor
US7662232B2 (en) Plasma processing apparatus
US20030155079A1 (en) Plasma processing system with dynamic gas distribution control
US5389197A (en) Method of and apparatus for plasma processing of wafer
JP2007531280A (en) Minimum scallop substrate processing method
US7223448B2 (en) Methods for providing uniformity in plasma-assisted material processes
US20040256353A1 (en) Method and system for deep trench silicon etch
KR100268114B1 (en) A dry etching machine
JP3408994B2 (en) Plasma processing apparatus and control method for plasma processing apparatus
JP3752468B2 (en) Manufacturing method of semiconductor device
JPH0845917A (en) Plasma treatment device and plasma treatment method
TWI759348B (en) Method for processing object to be processed
JP3327285B2 (en) Plasma processing method and semiconductor device manufacturing method
JP3752464B2 (en) Manufacturing method of semiconductor device
JPH11260797A (en) Plasma treatment method and manufacture of semiconductor device
JPH06163465A (en) Dry etching device
JP4865951B2 (en) Plasma etching method
JP3172340B2 (en) Plasma processing equipment
JP3192352B2 (en) Plasma processing equipment
JP4541193B2 (en) Etching method
JP3516741B2 (en) Plasma processing method
KR20020031997A (en) High density plasma oxide film etching apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees