JPH0845555A - Charging method - Google Patents

Charging method

Info

Publication number
JPH0845555A
JPH0845555A JP6177958A JP17795894A JPH0845555A JP H0845555 A JPH0845555 A JP H0845555A JP 6177958 A JP6177958 A JP 6177958A JP 17795894 A JP17795894 A JP 17795894A JP H0845555 A JPH0845555 A JP H0845555A
Authority
JP
Japan
Prior art keywords
charging
value
coefficient
time
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6177958A
Other languages
Japanese (ja)
Inventor
Katsuro Ohora
勝朗 大洞
Yoshinori Mizuhata
義則 水畑
Kazuya Yokomaku
和也 横幕
Masaaki Utsunomiya
正章 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Komatsu Forklift KK
Original Assignee
Sanyo Electric Co Ltd
Komatsu Forklift KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Komatsu Forklift KK filed Critical Sanyo Electric Co Ltd
Priority to JP6177958A priority Critical patent/JPH0845555A/en
Publication of JPH0845555A publication Critical patent/JPH0845555A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To correctly determine whether to do uniform charging or to do normal charging. CONSTITUTION:A charging characteristic curve between a starting point and the point of inflection is divided into four steps, namely a first step up to a voltage value V1 equivalent to one half of the quantity of electricity charged, a second step up to the point of inflection, and a third and a fourth step representing each one half of charging from the point of inflection to the completion of charging. Based on these steps and charging time, a charging factor is determined, where the greater it is the closer each charging step comes to its end, and every time when charging is over, the charging factor applicable to its charging is added to a charging factor accumulated value accumulated so far. In the following charging, normal charging is performed if the accumulated value is found to have been less than a specified value, and uniform charging is performed if the accumulated value is found to have been in excess of the specified value. And when uniform charging is suspended halfway, the value shall be one from which the accumulated value accumulated so far is deducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばバッテリーフ
ォクリフト等の電気自動車の蓄電池を充電する場合に適
応され、特に普通充電か均等充電かの判定を自動的に行
わせる充電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to charging a storage battery of an electric vehicle such as a battery fox lift, and more particularly to a charging method for automatically determining whether normal charging or equal charging.

【0002】[0002]

【従来の技術】蓄電池を充電する場合に、いわゆる普通
充電を繰り返し行っていると、蓄電池を構成している複
数のセルの間に多少の性能の差があるため、その充電状
態にばらつきが生じる。このため適当な回数充電する
と、いわゆる均等充電といって過充電ぎみに充電して各
セルの性能を均等化することが行われている。
2. Description of the Related Art When a storage battery is charged, if so-called normal charging is repeatedly performed, there is a slight difference in performance among a plurality of cells constituting the storage battery, so that the charging state varies. . For this reason, when charging is performed a proper number of times, so-called uniform charging is performed so that the performance of each cell is equalized by overcharging.

【0003】従来において普通充電をするか、均等充電
をするかは使用者が経験と勘によってその選択するため
のスイッチを操作して行っていた。また、普通充電の行
った回数を計数して、その回数が所定値になると自動的
に均等充電をすることが提案されている(特開昭62−
123927号公報)。普通充電は充電開始から蓄電池
の端子電圧が所定値に達するまでの時間、いわゆる、初
期充電時間を計測し、その計測時間に応じて前記所定電
圧に達したのちの充電時間(終期充電時間)を設定し
て、その設定時間が経過すると充電を完了する。一方、
均等充電は普通充電の終期充電期間に対して一定の時間
だけ多く充電をするものである。
Conventionally, a user operates a switch for selecting whether to perform normal charging or uniform charging based on experience and intuition. Further, it has been proposed to count the number of times of normal charging and automatically perform uniform charging when the number of times reaches a predetermined value (Japanese Patent Laid-Open No. 62-62).
No. 123927). Normal charging is the time from the start of charging until the terminal voltage of the storage battery reaches a predetermined value, the so-called initial charging time, and the charging time after reaching the predetermined voltage according to the measured time (the final charging time) After setting, the charging is completed when the set time elapses. on the other hand,
Equal charging is to charge a fixed amount of time more than the end charging period of normal charging.

【0004】[0004]

【発明が解決しようとする課題】普通充電か均等充電か
を使用者が判断する場合は必ずしも最適な充電が選択さ
れるとは限らない。早めに均等充電を行うと電解液の減
少が早くなり、蓄電池の寿命が短くなってしまう。ま
た、逆に均等充電をするのが遅れると蓄電池の電気容量
を十分に使用できなくなり、これによって蓄電池の寿命
を短くすることになる。従って、蓄電池の寿命を十分長
くし、かつ、十分な電気容量を得るためには普通充電と
均等充電との選択を適切に行う必要がある。しかし、こ
れを使用者が経験と勘で行うことは困難である。
When the user determines whether the charging is normal charging or even charging, the optimum charging is not always selected. If the equal charge is performed earlier, the electrolyte will decrease more quickly, and the life of the storage battery will be shortened. On the contrary, if the uniform charging is delayed, the electric capacity of the storage battery cannot be used sufficiently, which shortens the life of the storage battery. Therefore, in order to sufficiently extend the life of the storage battery and obtain a sufficient electric capacity, it is necessary to appropriately select normal charging and uniform charging. However, it is difficult for the user to do this with experience and intuition.

【0005】蓄電池の放電量はその都度異なり、例え
ば、一日中蓄電池を稼働させた場合や、半日だけ稼働し
た場合や、1時間しか稼働しなかった場合によって、そ
の放電量は様々であり、従って、その作業を終えて翌日
に満充電とさせておく場合の充電量も様々である。この
ため従来のように充電回数だけで均等充電を行うか、普
通充電を行うかの判断をすると必ずしも適切な充電モー
ドの選択とはならない。
The amount of discharge of the storage battery is different each time, and the amount of discharge varies depending on, for example, whether the storage battery is operated all day, only half a day, or only one hour. There are various charge amounts when the battery is fully charged the next day after the work is completed. Therefore, it is not always possible to select an appropriate charging mode when determining whether to perform uniform charging or normal charging only by the number of times of charging as in the conventional case.

【0006】また、充電が完了する前に充電を終了した
場合においても、充電完了の直前で中止した場合と、わ
ずか充電しただけで中止した場合等によって、その蓄電
池の各セルに与える充電のばらつきの差は様々となり、
従って充電回数のみを計数して充電モードを判断するこ
とは必ずしも適切な判断は行われない。
Even when the charging is completed before the completion of the charging, there are variations in the charging given to each cell of the storage battery depending on whether the charging is stopped immediately before the completion of the charging or when the charging is stopped after only a slight charge. The difference between
Therefore, it is not always appropriate to judge the charging mode by counting only the number of times of charging.

【0007】[0007]

【課題を解決するための手段】この発明によれば、充電
終止状態から満充電までの充電過程を複数の充電過程に
分け、その各充電過程に対して終わりの充電過程になる
ほど大きな充電係数を予め設定し、充電が終了したとき
に、その終了時の充電過程と対応した充電係数をそれま
での充電係数に累積加算し、その累積加算値が所定値以
下で普通充電と、所定値以上で均等充電と判定し、均等
充電を行うと累積加算値を0とする。
According to the present invention, the charging process from the end-of-charging state to the full charge is divided into a plurality of charging processes, and a larger charging coefficient is given to each charging process, which is the final charging process. When the charging is set in advance and the charging is completed, the charging coefficient corresponding to the charging process at the end is cumulatively added to the charging coefficient up to that point, and the cumulative addition value is equal to or less than a predetermined value If it is determined that the charging is equal, and the charging is performed, the cumulative addition value is set to 0.

【0008】先の充電係数の設定は充電段階だけではな
く、充電時間、つまり充電量(放電量)が多いほど大き
くする。更に、均等充電の途中で充電を終了とした場合
は累積加算値を減少する。また、累積加算値により判定
された結果の充電を自動的に実行するようにする。
The above-mentioned setting of the charging coefficient is made larger not only at the charging stage but also as the charging time, that is, the charging amount (discharging amount) increases. Furthermore, if the charging is terminated during the uniform charging, the cumulative addition value is decreased. Further, the charging of the result determined by the cumulative addition value is automatically executed.

【0009】[0009]

【実施例】図1に充電器の一般的な構成を示す。交流電
源11、例えば商用電源に対してコンセント12により
充電器を接続するようにされており、このコンセント1
2は電磁開閉器13を通じて変圧器14に接続され、変
圧器14によって適当な電圧に通常下げられて、交流電
力が整流回路15に供給され、整流回路15で直流化さ
れた電力が蓄電池16に供給されて蓄電池16に対する
充電が行われる。この場合、コンセント12より交流電
力が入力されると、交流検出回路17で検出され、これ
が制御部18に与えられる。制御部18はマイクロコン
ピュータで構成され、その交流電力入力の検知信号が与
えられるとインターフェース19を通じで電磁開閉器1
3をオンにして充電の開始が行われる。蓄電池16の端
子電圧が電圧検出回路22で検出され、その電圧の状態
に応じて制御部18が充電を制御する。また充電状態が
インターフェース15を通じて表示器27に与えられ、
充電の経過が、例えば発光素子L1 乃至L6 の点灯で表
示される。更に、普通充電しているか均等充電している
かの表示も行われる。制御部18に対しては充電開始ス
イッチ23によってその充電の開始の制御を行い、ま
た、蓄電池16よりの電力が電源回路21を通じて各部
に対する動作電源電圧として供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a general structure of a charger. The charger is connected to an AC power source 11, for example, a commercial power source, by an outlet 12.
2 is connected to a transformer 14 through an electromagnetic switch 13, is normally lowered to an appropriate voltage by the transformer 14, AC power is supplied to the rectifier circuit 15, and power converted to DC by the rectifier circuit 15 is supplied to the storage battery 16. The battery 16 is supplied and the storage battery 16 is charged. In this case, when AC power is input from the outlet 12, it is detected by the AC detection circuit 17, and this is given to the control unit 18. The controller 18 is composed of a microcomputer, and when a detection signal of its AC power input is given, the electromagnetic switch 1 is connected through the interface 19.
3 is turned on to start charging. The terminal voltage of the storage battery 16 is detected by the voltage detection circuit 22, and the control unit 18 controls charging according to the state of the voltage. In addition, the state of charge is given to the display 27 through the interface 15,
The progress of charging is displayed, for example, by lighting the light emitting elements L 1 to L 6 . Further, it is also displayed whether the battery is normally charged or evenly charged. The charging start switch 23 controls the control unit 18 to start charging, and the power from the storage battery 16 is supplied as an operating power supply voltage to each unit through the power supply circuit 21.

【0010】この発明においては、充電過程が複数の充
電段階に分けられる。すなわち、図2Aに示すように放
電終止状態、つまり、その蓄電池に許される最大放電状
態、それより多く放電させると蓄電池が不良となった
り、寿命が短くなったりするような許容されている最大
放電限界、その状態から満充電するまでの蓄電池の端子
電圧は曲線29のように変化する。これはいわゆる充電
特性曲線とも言われている。この曲線29に示すよう
に、放電終止状態の端子電圧V0 から充電が進むにした
がって端子電圧はほぼ直線的に徐々に上昇していき、あ
る点に達すると端子電圧が急に上昇し、再び極わずかず
つ上昇する状態となる。急に上昇する点、いわゆる変曲
点となる電圧V2 は予め知られており、通常、充電開始
から変曲点電圧V2 になるまでの時間を計って、この時
間の例えば70パーセント程度の時間だけ、変曲点にな
ってからさらに充電を継続して充電完了としている。
In the present invention, the charging process is divided into a plurality of charging stages. That is, as shown in FIG. 2A, the discharge end state, that is, the maximum discharge state allowed for the storage battery, and the maximum discharge allowed for which the storage battery becomes defective or the life is shortened by discharging more than that. The limit, the terminal voltage of the storage battery from that state to full charge changes like the curve 29. This is also called a so-called charge characteristic curve. As shown by the curve 29, the terminal voltage gradually increases almost linearly as the charging proceeds from the terminal voltage V 0 in the discharge termination state, and when reaching a certain point, the terminal voltage rapidly increases and then again. It will be in a state of rising very little. The voltage V 2 at which the voltage suddenly rises, which is a so-called inflection point, is known in advance. Normally, the time from the start of charging to the inflection point voltage V 2 is measured, and for example, about 70% of this time is measured. After the inflection point, the charging is continued for a certain time, and the charging is completed.

【0011】この放電終止状態の電圧V0 における充電
量を0とし、充電完了時の充電量を100とすると、変
曲点まで充電すると、ほぼ80パーセント乃至90パー
セント充電される。残りの20パーセント乃至10パー
セントが終期充電で行われる。この例では、充電過程を
4つの充電段階に分けた場合であって、先ず変曲点の前
か後かで分け、さらにその変曲点までの充電量の半分に
なった点、つまり、40乃至45パーセント充電された
状態の端子電圧V1 になるまでと、そのV1 からV2
なる迄の2つの充電段階に分ける。この端子電圧がV0
からV1 になるまでを充電段階1とし、V1 からV2
なるまでを充電段階2とし、さらに変曲点から満充電ま
での期間を半分ずつに分けて、前者を充電段階3、後者
を充電段階4とする。例えば、電圧V0 が48Vで、V
1 が55V、V2 が60Vであり、充電満了で64Vで
ある。
When the amount of charge at the voltage V 0 in the discharge termination state is 0 and the amount of charge at the time of completion of charge is 100, when the charge is reached to the inflection point, the charge is approximately 80% to 90%. The remaining 20% to 10% is done with end-of-life charging. In this example, when the charging process is divided into four charging stages, it is first divided according to whether it is before or after the inflection point, and half the amount of charge up to the inflection point, that is, 40 It is divided into two charging stages from the terminal voltage V 1 in a state of being charged by 45% to the terminal voltage V 1 and from V 1 to V 2 . This terminal voltage is V 0
From V 1 to V 1 is the charging stage 1, from V 1 to V 2 is the charging stage 2, and the period from the inflection point to full charge is divided into halves, the former being the charging stage 3 and the latter being the latter. Is the charging stage 4. For example, if the voltage V 0 is 48V, V
1 is 55V, V 2 is 60V, and it is 64V when the charge is completed.

【0012】このように充電過程を、この例では4つの
充電段階に分け、その充電段階と、この例では充電時
間、つまり充電量とに応じて充電係数を設定する。例え
ば図2Aに示すように、充電段階1の間は充電係数をC
0 とし、充電段階2においては充電係数をC1 とし、充
電段階3においては充電係数をC2 とし、充電段階4に
おいては充電係数をC3 とし、これらの値は図2Bに示
すように、充電段階を2、3、4を横の欄にとり、縦の
欄に充電時間を、この例では3つに分け、0乃至1.5
時間と、1.5乃至4.5時間と、4.5時間以上とに
分けている。これらの時間は充電量に対応し、前記のよ
うに満充電で100パーセントとしたときの最初の1.
5時間以内は0乃至20パーセントの充電であり、1.
5乃至4.5時間は20乃至60パーセントの充電であ
って、4.5時間以上は60乃至100パーセントの充
電である。
In this way, the charging process is divided into four charging stages in this example, and the charging coefficient is set according to the charging stage and the charging time, that is, the charging amount in this example. For example, as shown in FIG. 2A, during the charging phase 1, the charging coefficient is changed to C
0 , the charging coefficient is C 1 in the charging step 2, the charging coefficient is C 2 in the charging step 3, the charging coefficient is C 3 in the charging step 4, and these values are as shown in FIG. 2B. The charging steps are 2, 3, and 4 in the horizontal columns, and the charging time in the vertical columns is divided into three in this example, 0 to 1.5.
It is divided into time, 1.5 to 4.5 hours, and 4.5 hours or more. These times correspond to the charge amount, and as described above, the first 1.
0 to 20 percent charge within 5 hours, 1.
5 to 4.5 hours are 20 to 60 percent charge, and 4.5 hours or more are 60 to 100 percent charge.

【0013】この充電区間と充電時間とに対応した充電
係数を図2Bに示すように決められており、これからも
わかるように、例えば充電時間が0乃至1.5時間であ
る場合は、充電段階が2で0.15、充電段階が3で
0.2、充電段階が4で0.3と、充電段階が終わりの
段階に近づくに従って充電係数が大となる。このこと
は、充電時間が1.5乃至4.5時間についても同様
で、充電段階が終わりに近いほど大となっている。一
方、充電段階が一定であると充電時間が長いほど充電係
数が大とされている。すなわち、充電段階2の場合は充
電時間が1.5時間以下で0.15、1.5乃至4.5
時間で0.3、4時間以上で0.7と大きくなってい
る。このことは他の充電段階3、4についても同様で充
電時間が長いほど大きな充電係数とされている。これ
は、放電が少なく、充電時間が短い場合は、或いは充電
の途中で止めたりしたり、いずれにしても充電時間が短
い場合は比較的セル間のばらつきが少ないが、深く放電
して長い時間充電するとセル間のばらつきが大きくなる
ためである。従って、その場合は充電係数を大とし、充
電時間が短い場合は充電時間を小さくしている。なお、
この表からわかるように放電終止状態から満充電になっ
たときの充電係数は1.0としている。
The charging coefficient corresponding to this charging section and charging time is determined as shown in FIG. 2B. As can be seen from this, for example, when the charging time is 0 to 1.5 hours, the charging step 2 is 0.15, the charging stage is 3 and 0.2, the charging stage is 4 and 0.3, and the charging coefficient increases as the charging stage approaches the end stage. This also applies to the charging time of 1.5 to 4.5 hours, and becomes larger as the charging stage is closer to the end. On the other hand, if the charging stage is constant, the longer the charging time, the larger the charging coefficient. That is, in the case of the charging stage 2, the charging time is less than 1.5 hours and is 0.15, 1.5 to 4.5.
It increased to 0.3 in 4 hours and 0.7 in over 4 hours. This also applies to the other charging stages 3 and 4, and the longer the charging time, the larger the charging coefficient. This is because if there is little discharge and the charging time is short, or if it is stopped during charging, or if the charging time is short in any case, there will be relatively little variation between cells, but deep discharging will take a long time. This is because the variation between cells becomes large when the battery is charged. Therefore, in that case, the charging coefficient is made large, and when the charging time is short, the charging time is made small. In addition,
As can be seen from this table, the charge coefficient when the battery is fully charged from the discharge end state is 1.0.

【0014】次に、以上のような充電係数を予め決めた
状態で、その充電終了時の対応する充電係数を充電後と
に累積加算する。その処理の例を図3を参照して説明す
る。交流電源が接続されたかがチェックされ(S1 )、
交流電源が接続されると充電開始スイッチがオンとされ
たかがチェックされ(S2 )、充電開始スイッチがオン
とされると電磁開閉器13をオンとし(S3 )、タイマ
ーTM1 を起動し、かつ、充電係数Cを0にする
(S4 )。その後、交流電源の接続が断になったかどう
かをチェックし(S5 )、さらに、充電電圧、即ち蓄電
池の端子間電圧VB がV1 になったかをチェックする
(S6 )。
Next, in a state where the above-described charging coefficient is predetermined, the corresponding charging coefficient at the end of charging is cumulatively added after charging. An example of the processing will be described with reference to FIG. It is checked whether the AC power supply is connected (S 1 ),
Are checked charging start switch and the AC power is connected is turned on is (S 2), when charging start switch is turned on the electromagnetic switch 13 is turned ON (S 3), and starts the timer TM 1, and to 0 charge coefficient C (S 4). Thereafter, the connection of the AC power supply is checked whether becomes cross (S 5), further, the charging voltage, i.e., between the storage battery terminal voltage V B is checked whether becomes V 1 (S 6).

【0015】端子電圧VB がV1 になると、その時のタ
イマーTM1 を読み出し、その値TMA 、つまり充電時
間と、VB がV1 になったから充電段階が2と入ったこ
とから図2Bの充電係数C1 中の該当するものを充電係
数Cに設定する(S8 )。この状態で交流電源が断にな
ったかをチェックし(S9 )、また端子電圧VBがV2
になったかをチェックする(S10)。端子電圧がV2
なるとタイマーTM1 の値TMB を読み出し(S11)、
この充電段階3のこの充電時間TMB と対応した充電係
数C2 を読みだして充電係数Cをその値とする
(S12)。ここで、それまでの充電係数の累計値Kの値
が所定値Nよりも大か否かを判定し(S13)、そのKが
Nよりも小さければタイマーTM2 をTM3 にセット
し、つまり、いわゆる普通充電にセットする(S14)。
一方、充電係数累計値Kが所定値Nよりも大きい場合は
タイマーTM2 をTM3 +TM4 にセットし、つまり均
等充電にセットする(S15)。ここで、タイマー値TM
3 は通常、先のタイマーTM1 を読みだした値TM
B の、例えば70パーセントの値である。
When the terminal voltage V B becomes V 1 , the timer TM 1 at that time is read out, and the value TM A , that is, the charging time, and the charging stage of 2 since V B has become V 1 are entered. The corresponding one of the charging coefficients C 1 of 1 is set as the charging coefficient C (S 8 ). Checks AC power is turned disconnection in this state (S 9), also the terminal voltage V B V 2
It is checked whether or not (S 10 ). When the terminal voltage becomes V 2 , the value TM B of the timer TM 1 is read (S 11 ),
The The charging time of the charging phase 3 reads out the charging coefficient C 2 corresponding with TM B as its value the charging coefficient C (S 12). Here, it is determined whether or not the cumulative value K of the charging coefficients up to that time is larger than the predetermined value N (S 13 ), and if the K is smaller than N, the timer TM 2 is set to TM 3 , in other words, to set the so-called normal charging (S 14).
On the other hand, when the cumulative charging coefficient K is larger than the predetermined value N, the timer TM 2 is set to TM 3 + TM 4 , that is, the uniform charging is set (S 15 ). Where timer value TM
3 is usually the value TM read from the previous timer TM 1.
The value of B is, for example, 70%.

【0016】つぎに、このようにタイマーTM2 をセッ
トしてこれを起動し(S16)、交流電源が断となったか
をチェックし(S17)、さらに、タイマーTMのタイマ
ー値がTM3 /2となったかをチェックし(S18)、T
3 /2にタイマーTM2 がなった場合は充電段階が4
になったわけであって、充電係数Cを、C3 中の充電時
間、つまりTMB +TM3 /2と対応する値にセットす
る(S19)。その後また、交流電源が接続されているか
をチェックし(S20)、また、タイマーTM2がTM3
になったかをチェックし(S21)、もしTM3 になった
場合は均等充電の設定状態かをチェックし(S22)、均
等充電状態でなければ、その時の充電係数C、この場合
はC3 をそれまでの充電係数累計値Kに加えて加算して
(S23)、電磁開閉器13をオフとして充電終了とする
(S24)。
Next, the timer TM 2 is set in this way and started (S 16 ), it is checked whether the AC power supply is cut off (S 17 ), and the timer value of the timer TM is TM 3 / 2 when either check (S 18), T
M 3/2 in the charging step when the timer TM 2 becomes 4
A not become, the charging coefficient C, the charging time in C 3, and sets the corresponding value that is a TM B + TM 3/2 ( S 19). After that, it is checked again whether the AC power supply is connected (S 20 ), and the timer TM 2 sets TM 3
(S 21 ), and if TM 3 is reached, it is checked whether it is the equal charge setting state (S 22 ). If it is not the equal charge state, the charge coefficient C at that time, C in this case 3 is added in addition to the charging coefficient cumulative value K up to that (S 23), and charging termination the electromagnetic switch 13 as an off (S 24).

【0017】上述における、交流電源が接続されている
かのチェックのステップS5 、S9、S11で交流電源が
接続されていない状態と判断された場合はそれぞれステ
ップS23に移ってその時の充電係数を累計した後、電磁
開閉器をオフとして充電を終了する。ステップS22にお
いて、均等充電と判定された場合は交流電源が接続され
ているかをチェックし(S25)、接続されていればタイ
マーTM2 がTM3 +TM4 /2になったかがチェック
され、つまり均等充電による付加時間TM4 が半分終了
されたかがチェックされ(S26)、この期間が終了する
と充電係数累計値Kを1/2に書換え(S27)、交流電
源が接続されているかをチェックし(S 28)、タイマー
TM2 がTM3 +TM4 になったかをチェックし
(S29)、この値になった場合は充電係数累計値Kを0
とし(S30)、ステップS24に移り、つまり電磁開閉器
をオフとして充電終了とする。
An AC power source is connected as described above.
Check SFive, S9, S11AC power supply
If it is determined that they are not connected, the status of each
Up Stwenty threeMove to and accumulate the charge coefficient at that time, then
The switch is turned off to end charging. Step Stwenty twoTo
If it is judged to be equal charging, the AC power supply is connected.
Check if there is (Stwenty five), If connected, Thailand
Mar TM2Is TM3+ TMFourCheck if it becomes / 2
That is, the additional time TM by equal chargeFourIs half finished
It was checked whether it was done (S26), This period ends
And charge coefficient cumulative value K is rewritten to 1/2 (S27), AC power
Check if the source is connected (S 28),timer
TM2Is TM3+ TMFourCheck if it became
(S29), When this value is reached, the cumulative charging coefficient K is set to 0
Toshi (S30), Step Stwenty fourMove to the electromagnetic switch
Is turned off to end charging.

【0018】一方、ステップS25において交流電源が接
続されていない場合はステップS23に移り、ステップS
28において交流電源が接続されていない場合は直ちに電
磁開閉器をオフとするステップS24に移って終了とす
る。このように充電の進行状況や充電時間に応じて決め
られた充電係数を累積加算し、これが所定値になった場
合に均等充電するようにしているため、適正な均等充電
の時期を判定することができる。またこの例において
は、その均等充電の途中で充電が停止された場合はその
充電係数累計値が減少されて、小さくされて、この値に
対してその後の充電のモードが決定され、またこれに対
する充電係数の累積加算が行われる。この点からも均等
充電とするモードの時期を正しく決定できる。
Meanwhile, if the AC power is not connected in step S 25 proceeds to step S 23, step S
If the AC power source is not connected at 28 , the electromagnetic switch is immediately turned off to step S 24 , and the procedure is ended. In this way, the charging coefficient determined according to the progress of charging and the charging time is cumulatively added, and when the charging coefficient reaches a predetermined value, uniform charging is performed. You can Further, in this example, when the charging is stopped in the middle of the even charging, the cumulative value of the charging coefficient is reduced and reduced, and the subsequent charging mode is determined for this value, and Cumulative addition of charge coefficients is performed. From this point as well, it is possible to correctly determine the timing of the mode for uniform charging.

【0019】上述において、充電段階1と2の境を変曲
点における放電量の1/2となる点としたが、例えば1
/3乃至2/3の値の範囲内の適当な値となる電圧と対
応した値にV1 を設定してもよい。同様に終期充電にお
けるちょうど半分の時間で充電段階3と4を区切った
が、その終期充電における1/3乃至2/3の範囲内の
適当な時間で充電段階3と4を区切ってもよい。均等充
電において途中で停止された場合は、充電係数累計値K
を1/2にしたが、この値も1/3乃至2/3程度の範
囲内の適当な値に減少させてもよい。さらに上述におい
ては、充電過程を4つの段階に分けたが、少なくとも3
つの段階、つまり変曲点の前と後の段階に分ければよ
く、その分ける段階数は3つ、或いは5つ以上としても
よい。
In the above description, the boundary between the charging stages 1 and 2 is set to be a half of the discharge amount at the inflection point.
V 1 may be set to a value corresponding to a voltage having an appropriate value within the range of / 3 to 2/3. Similarly, although the charging stages 3 and 4 are separated in exactly half the time in the final charging, the charging stages 3 and 4 may be separated in an appropriate time within the range of 1/3 to 2/3 in the final charging. If the battery is stopped halfway during equal charging, the cumulative charging coefficient K
However, this value may be reduced to an appropriate value within the range of about 1/3 to 2/3. Furthermore, in the above, the charging process was divided into four stages, but at least 3
It may be divided into one stage, that is, a stage before and after the inflection point, and the number of stages may be three or five or more.

【0020】また、上述では充電段階のみならず充電時
間の両方で充電係数を決定したが、充電段階でのみ充電
係数を決定してもよい。更に表示器27に、先に述べた
ように、充電状態が表示素子L1 乃至L6 に示され、L
4 が点灯したときは変曲点に達したことを示し、そのよ
うに充電の状態を表示しているから、この表示素子の表
示状態に応じて充電段階を決定してもよく、つまり、例
えば表示素子L3 が点灯するまでは充電段階1とし、L
3 が点灯しL4 が点灯する前は充電段階2とし、L4
点灯しL5 が点灯する迄を充電段階3とし、L5 が点灯
したあとを充電段階4とするようにしてもよい。また上
述においては充電係数の累計値Kが所定値以上であるか
否かにより自動的に普通充電か、均等充電かを実行させ
たが、このようなことを実行することなく、単に充電係
数累計値KがNよりも小さければ普通充電と判定してこ
れを表示器に表示し、また大きければ均等充電と表示
し、使用者がその表示を見て普通充電モード又は均等充
電モードで充電させるように操作してもよい。またこの
発明は、漏洩磁路をもつトランスで電圧を降下させる、
いわゆる準定式充電方式のみならず、定電流定電圧充電
方式など、他の充電方式においても適応することができ
る。
In the above description, the charging coefficient is determined not only in the charging step but also in the charging time, but the charging coefficient may be determined only in the charging step. Further, as described above, the state of charge is displayed on the display device 27 by the display elements L 1 to L 6 , and
When 4 lights up, it indicates that the inflection point has been reached, and since the charging state is displayed in that way, the charging stage may be determined according to the display state of this display element, that is, for example, Until the display element L 3 lights up, the charging stage is 1 and L
Before 3 lights L 4 is lighted is the charge phase 2, the up L 5 L 4 is lighted is lighted and charge phase 3 may be the after which L 5 lit so that the charge phase 4 . Further, in the above description, the normal charge or the equal charge is automatically executed depending on whether the cumulative value K of the charge coefficient is equal to or more than a predetermined value. If the value K is smaller than N, it is judged as normal charging and displayed on the display, and if it is larger, it is displayed as equal charging, and the user looks at the display and charges in the normal charging mode or the uniform charging mode. You may operate it. Further, the present invention lowers the voltage with a transformer having a leakage magnetic path,
Not only the so-called semi-regular charging method, but also other charging methods such as a constant current and constant voltage charging method can be applied.

【0021】[0021]

【発明の効果】以上述べたように、この発明によれば充
電の進行状況や充電が終わった時の状態に応じて充電係
数を決定し、その累積値で均等充電にするかの判断をし
ているため、均等充電にするか、普通充電にするかを正
しく判定することができ、蓄電池の寿命を長くし、か
つ、電気容量も十分に引き出すことが可能である。
As described above, according to the present invention, the charging coefficient is determined according to the progress of charging and the state at the end of charging, and the cumulative value is used to determine whether to perform uniform charging. Therefore, it is possible to correctly determine whether to perform the uniform charge or the normal charge, prolong the life of the storage battery, and sufficiently draw out the electric capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】充電装置の一般的構成を示すブロック図。FIG. 1 is a block diagram showing a general configuration of a charging device.

【図2】Aは充電特性と分割された充電段階との例を示
す図、Bは充電段階と充電時間とに対応した充電係数を
示す図である。
FIG. 2A is a diagram showing an example of a charging characteristic and divided charging stages, and FIG. 2B is a diagram showing a charging coefficient corresponding to a charging stage and charging time.

【図3】この発明の実施例を示す流れ図。FIG. 3 is a flowchart showing an embodiment of the present invention.

フロントページの続き (72)発明者 宇都宮 正章 栃木県小山市横倉新田110 小松フォーク リフト株式会社内Front Page Continuation (72) Inventor Masaaki Utsunomiya 110 Yokokura Nitta, Oyama City, Tochigi Prefecture Komatsu Fork Lift Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 放電終止状態から満充電までの充電過程
を複数の段階に分け、 その各充電段階に対応し、終わりの段階になるほど大き
な充電係数をそれぞれあらかじめ設定し、 充電終了時に、その時の充電段階と対応した充電係数を
累積加算し、 その累積加算値が所定値以下で普通充電と、所定値以上
で均等充電と判定し、 均等充電と判定されると、上記累加算値をリセットする
ことを特徴とする充電方法。
1. The charging process from the discharge end state to full charge is divided into a plurality of stages, corresponding to each charging stage, a larger charging coefficient is set in advance toward the end stage, and at the end of charging, The charging coefficient corresponding to the charging stage is cumulatively added, and if the cumulative addition value is less than or equal to a predetermined value, it is determined to be normal charging, and if it is more than a predetermined value, it is determined to be equal charging, and if it is determined to be equal charging, the cumulative addition value is reset. A charging method characterized by the above.
【請求項2】 上記充電係数は上記充電段階が終わりに
なるほど大きく、かつ、充電時間が多いほど大に設定さ
れていることを特徴とする請求項1記載の充電方法。
2. The charging method according to claim 1, wherein the charging coefficient is set to be larger as the charging step ends and set to be larger as the charging time is longer.
【請求項3】 均等充電の途中で充電が終了となると、
上記累積加算値を減少することを特徴とする請求項1又
は2記載の充電方法。
3. When the charging is completed during the uniform charging,
The charging method according to claim 1, wherein the cumulative addition value is reduced.
【請求項4】 上記判定結果に応じた充電を自動的に実
行することを特徴とする請求項1乃至3のいずれかに記
載の充電方法。
4. The charging method according to claim 1, wherein charging is automatically performed according to the determination result.
JP6177958A 1994-07-29 1994-07-29 Charging method Pending JPH0845555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6177958A JPH0845555A (en) 1994-07-29 1994-07-29 Charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6177958A JPH0845555A (en) 1994-07-29 1994-07-29 Charging method

Publications (1)

Publication Number Publication Date
JPH0845555A true JPH0845555A (en) 1996-02-16

Family

ID=16040061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6177958A Pending JPH0845555A (en) 1994-07-29 1994-07-29 Charging method

Country Status (1)

Country Link
JP (1) JPH0845555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242455B1 (en) * 2012-02-29 2013-03-12 한연수 Battery charging apparatus and method of driving the same
CN108141050A (en) * 2015-09-29 2018-06-08 株式会社村田制作所 Accumulating system, mobile mechanism, carrying mechanism, vehicle and automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242455B1 (en) * 2012-02-29 2013-03-12 한연수 Battery charging apparatus and method of driving the same
CN108141050A (en) * 2015-09-29 2018-06-08 株式会社村田制作所 Accumulating system, mobile mechanism, carrying mechanism, vehicle and automobile
CN108141050B (en) * 2015-09-29 2021-03-02 株式会社村田制作所 Power storage system, moving mechanism, conveying mechanism, vehicle, and automobile

Similar Documents

Publication Publication Date Title
JP3439013B2 (en) Pulse charging method for secondary batteries
US8228042B2 (en) Battery pack charging method
KR100393436B1 (en) Method for rapid charge of battery
US5206579A (en) Battery charger and charge controller therefor
JPH1032936A (en) Control system and method for power supply
JP2006246646A (en) Equalization method and its device
JPH07240235A (en) Charging method for secondary battery
JPH0997629A (en) Plural lithium ion secondary battery charging method
US6107782A (en) Multi-staged method for recharging a lead acid battery as a function of intrinsic battery characteristics
JPH06253463A (en) Charging method for battery
JP3232912B2 (en) Charging device
JP2003288951A (en) Charging method for lead storage battery
JPH0678471A (en) Charging method
JPH0845555A (en) Charging method
CN105939419A (en) Method and system for mobile terminal to adjust total capacity of battery
JPH08308123A (en) Method for charging a plurality of lithium ion batteries
JPH05199674A (en) Method for charging battery
JP2730932B2 (en) Lead-acid battery charge control circuit
JPH06237539A (en) Charging method of secondary battery
JPH08241735A (en) Method for charging secondary battery
JPH1174001A (en) Charging method for lead-acid battery
JPH1014121A (en) Charging method for battery
JP3209227B2 (en) Automatic charging device
JPH09182301A (en) Battery charging device for battery-operated industrial vehicle
JP2564829B2 (en) Charger