JPH0844216A - Wet process electrophotographic developing method and device - Google Patents

Wet process electrophotographic developing method and device

Info

Publication number
JPH0844216A
JPH0844216A JP18361294A JP18361294A JPH0844216A JP H0844216 A JPH0844216 A JP H0844216A JP 18361294 A JP18361294 A JP 18361294A JP 18361294 A JP18361294 A JP 18361294A JP H0844216 A JPH0844216 A JP H0844216A
Authority
JP
Japan
Prior art keywords
photoconductor
electrodeposition
transfer layer
transfer
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18361294A
Other languages
Japanese (ja)
Inventor
Makoto Nakada
真 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP18361294A priority Critical patent/JPH0844216A/en
Publication of JPH0844216A publication Critical patent/JPH0844216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a wet process electrophotographic device capable of rapidly forming a toner layer of a uniform thickness. CONSTITUTION:Developing electrodes 20 are divided along the rotating direction of a photoreceptor 11 and a low voltages is impressed to the downstream side divided electrode 20b part facing the downstream side by impressing a high voltage to the upstream side divided electrode 20a facing the upstream side of the rotating direction, by which toners 26 to be adhered onto the photoreceptor 11 are put into a satd. state and the layer thereof is formed at the time of forming the layer by interposing a developer contg. the electrostatically charged toners between the developing electrodes 20 and the photoreceptor 11 and generating a potential gradient between the developing electrodes 20 and the photoreceptor 11 to adhere the toners onto the photoreceptor. Since electrodeposition is executed under the high voltage by the upstream side electrode 20a in the beginning of the electrodeposition, the electrodeposition quantity with respect to the electrodeposition time is large and the large quantity of electrodeposition is obtd. in a short time. The electrodeposition is executed under the voltage under which the desired electrodeposition quantity by the downstream side electrode 20b is satd, near the completion of the electrodeposition and, therefore, the uniform and exact electrodeposition quantity is obtd. even if unequalness arises in the discharge speed of a developer supplying pump and the rotating speed of the photoreceptor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂を主とし
て含有する帯電したトナー粒子を電気絶縁性液体中に分
散させた湿式現像剤を用い、トナー粒子を感光体全面に
付着させるための湿式電子写真現像方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a wet type developer in which charged toner particles mainly containing a thermoplastic resin are dispersed in an electrically insulating liquid, and a wet type developer for adhering the toner particles to the entire surface of a photoreceptor is used. The present invention relates to an electrophotographic developing method and apparatus.

【0002】[0002]

【従来の技術】従来の技術として、熱可塑性樹脂を主と
して含有する帯電したトナー粒子が、電子写真感光体と
対向して設置された現像電極の間に供給され、外部電源
により印加された電位勾配に従って電気泳動して電子写
真感光体に静電的に付着又は電着して成膜することによ
り剥離可能な転写層を形成する電子写真転写方法があ
る。
2. Description of the Related Art As a conventional technique, charged toner particles mainly containing a thermoplastic resin are supplied between a developing electrode placed facing an electrophotographic photosensitive member and a potential gradient applied by an external power source. There is an electrophotographic transfer method in which a peelable transfer layer is formed by electrophoresing and electrostatically adhering or electrodepositing on an electrophotographic photosensitive member to form a film.

【0003】転写層の膜厚はトナー粒子の感光体への付
着量で決まる。この方法のうち、電着して成膜する方式
では、搬送されている感光体が対向した現像電極上を通
過する時間や、現像電極への外部電源からの印加電圧を
変えることによりトナー付着量の制御を行う。しかし、
現像電極の取付設定誤差や、供給されるトナー粒子の瞬
間的変動、感光体の搬送速度ムラなどがあると膜厚が変
化し、均一な膜厚の転写層を得られず、不均一な転写層
が形成されてしまう。不均一な転写層は、剥離性、画像
形成に悪影響を及ぼすという問題がある。
The film thickness of the transfer layer is determined by the amount of toner particles attached to the photoreceptor. Among these methods, in the method of film formation by electrodeposition, the amount of toner adhered is changed by changing the time for which the photoconductor being conveyed passes over the opposing developing electrode or the voltage applied from the external power source to the developing electrode. Control. But,
If there is an error in the setting setting of the developing electrode, a momentary fluctuation of the supplied toner particles, or uneven transport speed of the photoconductor, the film thickness will change, and it will not be possible to obtain a transfer layer with a uniform film thickness. A layer is formed. The non-uniform transfer layer has a problem that peelability and image formation are adversely affected.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、現像
電極の取付設定誤差や、供給されるトナー粒子の瞬間的
変動や、感光体の搬送速度ムラ等があっても転写層の膜
厚が変化せず、均一な膜厚の転写層を高速で形成するこ
とが可能な湿式電子写真現像方法及び装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to set the film thickness of the transfer layer even if there is an error in the setting of the mounting of the developing electrode, a momentary fluctuation of the toner particles to be supplied, an uneven transport speed of the photosensitive member, or the like. It is an object of the present invention to provide a wet electrophotographic developing method and apparatus capable of forming a transfer layer having a uniform thickness at a high speed without changing the temperature.

【0005】[0005]

【課題を解決するための手段】本発明の上記目的は下記
構成により達成される。 (1) 少なくとも電子写真感光体と、電子写真プロセ
スによって1色以上のトナー画像を感光体表面の転写層
上に設ける現像手段と、該トナー画像を転写層ごと被転
写材に熱転写する転写手段とを用いた電子写真転写法に
おいて、熱可塑性樹脂を主として含有する帯電したトナ
ー粒子を電気絶縁性液体中に分散させた湿式現像剤を現
像電極と感光体との間に介在させ、前記トナー粒子を感
光体表面に静電的に付着又は電着して成膜することによ
り剥離可能な転写層を形成する際に、静電的付着又は電
着を飽和付着状態まで行うことを特徴とする湿式電子写
真現像方法。
The above object of the present invention is achieved by the following constitution. (1) At least an electrophotographic photosensitive member, developing means for providing a toner image of one or more colors on a transfer layer on the surface of the photosensitive body by an electrophotographic process, and transfer means for thermally transferring the toner image together with the transfer layer onto a transfer material. In the electrophotographic transfer method using, a wet developer in which charged toner particles mainly containing a thermoplastic resin are dispersed in an electrically insulating liquid is interposed between a developing electrode and a photoconductor to form the toner particles. Wet electron characterized by performing electrostatic adhesion or electrodeposition to a saturated adhesion state when forming a peelable transfer layer by electrostatically adhering or electrodepositing on the surface of a photoreceptor Photo development method.

【0006】(2) 少なくとも電子写真感光体と、電
子写真プロセスによって1色以上のトナー画像を感光体
表面の転写層上に設ける現像手段と、該トナー画像を転
写層ごと被転写材に熱転写する転写手段とを有する電子
写真転写装置において、熱可塑性樹脂を主として含有す
る帯電したトナー粒子を電気絶縁性液体中に分散させた
湿式現像剤を現像電極と感光体との間に介在させ、前記
トナー粒子を感光体表面に静電的に付着又は電着して成
膜することにより剥離可能な転写層を形成する際に、現
像電極を感光体との距離は一定で、感光体の回転方向に
沿って2以上に分割し、感光体の回転方向の上流側に対
向する部分に下流側に対向する部分に比して感光体表面
と高電位差を有する電圧を印加することを特徴とする湿
式電子写真現像装置。
(2) At least an electrophotographic photosensitive member, developing means for providing a toner image of one or more colors on a transfer layer on the surface of the photosensitive member by an electrophotographic process, and the toner image together with the transfer layer are thermally transferred onto a transfer material. In an electrophotographic transfer device having a transfer means, a wet type developer in which charged toner particles mainly containing a thermoplastic resin are dispersed in an electrically insulating liquid is interposed between a developing electrode and a photoconductor to form the toner. When a peelable transfer layer is formed by electrostatically attaching or electrodepositing particles onto the surface of the photoconductor to form a peelable transfer layer, the distance between the developing electrode and the photoconductor is constant and the direction of rotation of the photoconductor is fixed. Wet electrons characterized by being divided into two or more parts along a line, and applying a voltage having a higher potential difference to the surface of the photoconductor to the part facing the upstream side in the rotational direction of the photoconductor than to the part facing the downstream side. Photo development equipment .

【0007】(3) 少なくとも電子写真感光体と、電
子写真プロセスによって1色以上のトナー画像を感光体
表面の転写層上に設ける現像手段と、該トナー画像を転
写層ごと被転写材に熱転写する転写手段とを有する電子
写真転写装置において、熱可塑性樹脂を主として含有す
る帯電したトナー粒子を電気絶縁性液体中に分散させた
湿式現像剤を現像電極と感光体との間に介在させ、前記
トナー粒子を感光体表面に静電的に付着又は電着して成
膜することにより剥離可能な転写層を形成する際に、現
像電極を感光体との距離は一定で、感光体の回転方向に
沿って2分割し、回転方向の下流側に対向する部分は上
流側部分より感光体表面と低電位差を有する電圧を印加
し、上流側に対向する部分は高電位差から下流側に対向
する部分の電位差まで連続的にリニア又は指数関数的に
徐々に電位差が小さくなるように電圧を印加することを
特徴とする湿式電子写真現像装置。
(3) At least an electrophotographic photosensitive member, developing means for providing a toner image of one or more colors on a transfer layer on the surface of the photosensitive member by an electrophotographic process, and the toner image together with the transfer layer are thermally transferred to a transfer material. In an electrophotographic transfer device having a transfer means, a wet type developer in which charged toner particles mainly containing a thermoplastic resin are dispersed in an electrically insulating liquid is interposed between a developing electrode and a photoconductor to form the toner. When a peelable transfer layer is formed by electrostatically attaching or electrodepositing particles onto the surface of the photoconductor to form a peelable transfer layer, the distance between the developing electrode and the photoconductor is constant and the direction of rotation of the photoconductor is fixed. Along the rotation direction, the portion facing the downstream side in the rotational direction is applied with a voltage having a lower potential difference from the surface of the photoreceptor than the upstream portion, and the portion facing the upstream side is a portion facing the downstream side from the higher potential difference. Potential difference In the wet electrophotographic developing device, a voltage is continuously applied in a linear or exponential manner so that the potential difference gradually decreases.

【0008】[0008]

【作用】上記(1)の構成によれば、感光体上へトナー
粒子が静電的に付着又は電着する時間を十分とることに
より、感光体上に静電的にトナー粒子を付着させる際に
は、感光体を帯電させた際の感光体上の表面電位、感光
体の静電容量、湿式現像剤の物性値で決まるトナー粒子
の飽和付着量で転写層膜厚が決まる。また、感光体上に
電着してトナー粒子を付着させる際には、現像電極への
印加電圧、感光体の静電容量、湿式現像剤の物性値で決
まるトナー粒子の飽和付着量で転写層膜厚が決まる。そ
のため、現像電極の取付設定誤差や、供給されるトナー
粒子の瞬間的変動、感光体の搬送速度ムラなどがあって
も、均一な膜厚の転写層を形成することが可能である。
According to the above configuration (1), when the toner particles are electrostatically adhered or electrodeposited on the photoconductor, the toner particles can be electrostatically adhered on the photoconductor by sufficient time. In addition, the transfer layer film thickness is determined by the surface potential on the photoconductor when the photoconductor is charged, the electrostatic capacitance of the photoconductor, and the saturated adhesion amount of toner particles determined by the physical property value of the wet developer. When the toner particles are deposited on the photoconductor by electrodeposition, the transfer layer is determined by the saturated adhesion amount of the toner particles, which is determined by the voltage applied to the developing electrode, the electrostatic capacity of the photoconductor, and the physical properties of the wet developer. The film thickness is determined. Therefore, it is possible to form a transfer layer having a uniform film thickness, even if there is an error in setting the developing electrode, a momentary fluctuation of the toner particles to be supplied, or a non-uniform conveyance speed of the photoconductor.

【0009】上記(2)の構成によれば、分割する電極
の分割比、分割した電極に印加する電圧を適切に設定す
ることにより、感光体表面と回転方向下流側の電極の電
位差、感光体の静電容量、湿式現像剤の物性値で決まる
トナー粒子の飽和付着量の膜厚に転写層膜厚が決定す
る。上流側の電極は下流側に比して高電位差を有する電
圧を印加することにより、短時間で飽和付着量よりわず
かに少ない量のトナー粒子を感光体上に付着させ、下流
側の電極で更に飽和付着量までトナー粒子を付着させ
る。これにより、短時間でトナー粒子の飽和付着量によ
り転写層を形成でき、現像電極の取付設定誤差や、供給
されるトナー粒子の瞬間的変動、感光体の搬送速度ムラ
などがあっても、その影響を受けづらく、均一な膜厚の
転写層を形成することが可能である。
According to the above configuration (2), by appropriately setting the division ratio of the divided electrodes and the voltage applied to the divided electrodes, the potential difference between the surface of the photoconductor and the electrode on the downstream side in the rotation direction, the photoconductor. The film thickness of the transfer layer is determined by the film thickness of the saturated adhesion amount of the toner particles, which is determined by the electrostatic capacity and the physical property value of the wet developer. The electrode on the upstream side applies a voltage having a higher potential difference than the electrode on the downstream side to adhere toner particles on the photoconductor in an amount slightly smaller than the saturated adhesion amount in a short time. Toner particles are deposited to a saturated deposit amount. As a result, the transfer layer can be formed by the saturated adhesion amount of the toner particles in a short time, and even if there is a setting error of the developing electrode, a momentary fluctuation of the supplied toner particles, or an uneven conveyance speed of the photoconductor, It is possible to form a transfer layer having a uniform film thickness, which is hardly affected.

【0010】上記(3)の構成によれば、電極極を2分
割する分割比と、分割した回転方向上流側に印加する電
位差の減少の方法を適切に設定することにより、感光体
表面と回転方向下流側の電極の電位差、感光体の静電容
量、湿式現像剤の物性値で決まるトナー粒子の飽和付着
量の膜厚に転写層膜厚が決定する。上流側の電極は高電
位差から下流側の低電位差までリニアに又は指数関数的
に連続的に徐々に減少させて印加することにより、短時
間で飽和付着量よりわずかに少ないトナー粒子を感光体
上に付着させ、下流側の電極で更に飽和付着量まで付着
させる。これにより、短時間でトナー粒子の飽和付着量
により転写層を形成でき、現像電極の取付設定誤差や、
供給されるトナー粒子の瞬間的変動、感光体の搬送速度
ムラなどがあっても、その影響を受けづらく、均一な膜
厚の転写層を形成することが可能である。
According to the above configuration (3), by appropriately setting the division ratio for dividing the electrode pole into two and the method of reducing the potential difference applied to the divided upstream side in the rotation direction, the rotation of the surface of the photoconductor is prevented. The transfer layer film thickness is determined by the film thickness of the saturated adhesion amount of the toner particles, which is determined by the potential difference of the electrode on the downstream side in the direction, the electrostatic capacity of the photoconductor, and the physical property value of the wet developer. The electrode on the upstream side gradually and linearly or exponentially gradually reduces and applies from a high potential difference to a low potential difference on the downstream side, so that toner particles slightly less than the saturated adhesion amount on the photoconductor in a short time. To the saturated amount by the downstream electrode. As a result, the transfer layer can be formed by the saturated adhesion amount of the toner particles in a short time, the setting error of the developing electrode and the
Even if there are momentary fluctuations in the supplied toner particles, uneven transport speed of the photoconductor, and the like, it is possible to form a transfer layer having a uniform film thickness, which is hardly affected by the influence.

【0011】現像電極の分割比は、目的とするトナー付
着量、トナーの物性、現像液の供給流速、感光体との距
離、印加電圧等に応じて適当に設定される。上流側電極
と下流側電極のそれぞれに印加する電圧比は、目的とす
るトナー付着量、トナーの物性、現像液の供給流速、感
光体との距離、現像電極の分割数等に応じて適当に設定
される。例えば、現像電極を2分割した場合、上流側電
極の長さは現像電極全長の1/10〜1/2が好まし
く、特に1/5が好ましい。また例えば、現像電極を2
分割した場合、上流側電極に印加する電圧は、下流側電
圧に印加する電圧の1.2倍〜10倍が好ましく、特に
1.5倍〜5倍が好ましい。また現像液を供給する流速
は、1mm/秒〜200mm/秒が好ましく、特に10
mm/秒〜100mm/秒が好ましい。また感光体の回
転速度は、周速で1mm/秒〜200mm/秒が好まし
く、特に10mm/秒〜100mm/秒が好ましい。
The division ratio of the developing electrode is appropriately set according to the target toner adhesion amount, toner physical properties, developer supply flow rate, distance from the photosensitive member, applied voltage, and the like. The voltage ratio applied to each of the upstream side electrode and the downstream side electrode is appropriately determined according to the target toner adhesion amount, toner physical properties, developer supply flow rate, distance from the photoconductor, number of divisions of the developing electrode, etc. Is set. For example, when the developing electrode is divided into two, the length of the upstream electrode is preferably 1/10 to 1/2 of the total length of the developing electrode, and particularly preferably 1/5. Also, for example, if the developing electrode is 2
When divided, the voltage applied to the upstream electrode is preferably 1.2 times to 10 times the voltage applied to the downstream voltage, and particularly preferably 1.5 times to 5 times. The flow rate for supplying the developing solution is preferably 1 mm / sec to 200 mm / sec, particularly 10 mm / sec.
mm / sec to 100 mm / sec is preferable. The peripheral speed of the photosensitive member is preferably 1 mm / sec to 200 mm / sec, and particularly preferably 10 mm / sec to 100 mm / sec.

【0012】本発明におけるトナーは、正電荷又は負電
荷のいずれかを有している必要があるが、その電荷の極
性は組み合わせる電子写真感光体の帯電時の極性によっ
て任意に決定される。本発明に供される被転写材として
は、特に限定されるものではなく、上質紙、コート紙、
アート紙の天然紙、合成紙の支持体、アルミ、鉄、SU
S等の金属支持体等の反射型の材料、ポリエステル、ポ
リオレフィン、ポリ塩化ビニル、ポリアセテート等の樹
脂フィルム(プラスチックフィルム)等の透過型の材
料、直書刷版(ストレートマスターなど)等いずれでも
よい。
The toner in the present invention is required to have either a positive charge or a negative charge, and the polarity of the charge is arbitrarily determined by the polarity of the electrophotographic photosensitive member with which it is charged. The material to be transferred used in the present invention is not particularly limited, and includes fine paper, coated paper,
Art paper, natural paper, synthetic paper support, aluminum, iron, SU
Any of reflective materials such as metal supports such as S, transmissive materials such as resin films (plastic films) such as polyester, polyolefin, polyvinyl chloride and polyacetate, direct writing plates (straight master etc.), etc. Good.

【0013】[0013]

【実施例】以下、添付図面を参照して本発明の実施例を
説明する。図1は湿式電子写真装置の概略構成図であ
る。この湿式電子写真装置は、記録ごとに感光体11の
上に転写層12を形成し、この転写層12に画像を形成
して、形成した画像を転写層ごと普通紙等の被転写材料
に転写してハードコピーを得る構成である。感光体11
の周囲には、感光体11を一様帯電させるコロナ帯電装
置18と、帯電した感光体11に潜像を形成する露光ユ
ニット19と、熱可塑性樹脂粒子(透明トナー)の分散
液により転写層12を形成するとともに、潜像を現像す
るための湿式現像ユニットセット14と、分散液により
濡れた感光体11の表面を乾かすための乾燥装置15
と、熱可塑性樹脂粒子を溶融させて皮膜化するための加
熱装置17aと、転写層12に被転写材料16を圧接さ
せるための加熱転写装置17とが配設されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a wet electrophotographic apparatus. This wet electrophotographic apparatus forms a transfer layer 12 on a photoreceptor 11 for each recording, forms an image on the transfer layer 12, and transfers the formed image together with the transfer layer to a transfer material such as plain paper. Then, a hard copy is obtained. Photoconductor 11
Around the periphery of the transfer layer 12, a corona charging device 18 for uniformly charging the photoconductor 11, an exposure unit 19 for forming a latent image on the charged photoconductor 11, and a transfer layer 12 made of a dispersion liquid of thermoplastic resin particles (transparent toner). Wet developing unit set 14 for forming a latent image and developing a latent image, and a drying device 15 for drying the surface of the photoreceptor 11 wetted by the dispersion liquid.
A heating device 17a for melting the thermoplastic resin particles to form a film, and a heating transfer device 17 for bringing the transfer material 16 into pressure contact with the transfer layer 12.

【0014】露光ユニット19としては、ハロゲンラン
プ等を光源とするスリット走査露光ユニットや、Ar,
He−Ne半導体レーザ等を光源とするレーザ光走査露
光ユニットが用いられる。湿式現像ユニットセット14
は、熱可塑性樹脂粒子を感光体11に電着する電着ユニ
ット14Tと、C(シアン),M(マゼンタ),Y(イ
エロー),BK(ブラック)の各色の湿式トナーを含有
する湿式現像剤により潜像を現像するための、現像ユニ
ット14C,14M,14Y,14BKとを備えてお
り、各ユニット14T,14C,14M,14Y,14
BKが感光体11に対して離接できるように可動式にな
っている。各現像ユニット14C,14M,14Y,1
4BKには、非画像部の汚れを防止する意味でもプレバ
ス、リンス、スクイズ手段を備えある。プレバス及びリ
ンス液には、通常湿式現像剤のキャリヤー液を用いる。
As the exposure unit 19, a slit scanning exposure unit using a halogen lamp or the like as a light source, Ar,
A laser beam scanning exposure unit having a He-Ne semiconductor laser or the like as a light source is used. Wet development unit set 14
Is a wet developer containing an electrodeposition unit 14T for electrodepositing thermoplastic resin particles on the photoreceptor 11 and a wet toner of each color of C (cyan), M (magenta), Y (yellow), and BK (black). And developing units 14C, 14M, 14Y, and 14BK for developing the latent image by means of the respective units 14T, 14C, 14M, 14Y, and 14Y.
The BK is movable so that it can be brought into and out of contact with the photoconductor 11. Each developing unit 14C, 14M, 14Y, 1
The 4BK is provided with pre-bath, rinse and squeeze means also for preventing stains on the non-image area. As the pre-bath and rinse liquid, a carrier liquid of a wet developer is usually used.

【0015】乾燥装置15としては、例えば感光体11
に向けて温風を吹きつける温風送風ファン15aと吹き
つけた温風を吸引する排気ファン15bや、ランプヒー
タと送風ファンを組み合わせた装置等が用いられる。転
写層12を被転写材料16へ熱転写するための加熱転写
装置17は、加熱ローラ17bと冷却ローラ17cと、
これらのローラを感光体11に離接させる駆動手段とを
備えている。被転写材料16は加熱ローラ17bと冷却
ローラ17cに張設された状態で感光体11に圧接され
る。
As the drying device 15, for example, the photoconductor 11 is used.
A warm air blower fan 15a that blows warm air toward the fan, an exhaust fan 15b that sucks the blown warm air, a device that combines a lamp heater and a blower fan, and the like are used. The heat transfer device 17 for thermally transferring the transfer layer 12 to the transfer material 16 includes a heating roller 17b, a cooling roller 17c, and
A driving means for bringing the rollers into and out of contact with the photoconductor 11 is provided. The transferred material 16 is pressed against the photoconductor 11 while being stretched between the heating roller 17b and the cooling roller 17c.

【0016】加熱ローラ17bは金属ローラを発熱体内
蔵のゴムで被覆して構成されている。冷却ローラー17
cは例えばアルミニウム、銅等の熱良伝導体金属にシリ
コーンゴム被覆を施して構成され、ローラ内部もしくは
転写紙に接しない外周部に冷却手段を用いて放熱する事
が望ましい。冷却手段としてはクーリングファン、冷却
循環もしくは電子冷却素子などを用い、温度コントロー
ラーと組合せて所定の温度範囲に保つことが好ましい。
これらの加熱ローラ17b及び冷却ローラ17cのニッ
プ圧力は0.2〜20kgf/cm2 、より好ましくは
0.5〜15kgf/cm2 であり、図示しないがロー
ラ加圧手段としてはローラ軸の両端に、スプリングもし
くは圧縮空気を用いるエアーシリンダーを備えることが
できる。
The heating roller 17b is formed by coating a metal roller with rubber containing a heating element. Cooling roller 17
c is made of, for example, a heat conductive metal such as aluminum or copper and coated with silicone rubber, and it is desirable that heat is radiated to the inside of the roller or the outer peripheral portion not in contact with the transfer paper by using a cooling means. A cooling fan, a cooling circuit, an electronic cooling element, or the like is used as the cooling means, and it is preferable to maintain it in a predetermined temperature range in combination with a temperature controller.
Nip pressure of the heating roller 17b and the cooling roller 17c is 0.2~20kgf / cm 2, more preferably 0.5~15kgf / cm 2, at both ends of the not shown roller axis as roller pressing means An air cylinder using springs or compressed air can be provided.

【0017】転写層12を形成するための熱可塑性樹脂
粒子の分散液12aは湿式現像ユニット14内にある電
着ユニット14T内に充填されている。転写層12を形
成するには、まず電着ユニット14Tを感光体表面11
に接近させ、電着ユニット14Tの現像電極との距離が
一定値になるように固定する。この距離は好ましくは
0.3mm〜5mmであり、より好ましくは0.5mm
〜3mmである。図2に電着ユニット14Tの要部を拡
大して示す。現像電極20と感光体11とのギャップ間
に粒子分散液12aを供給し図示していない外部電源か
ら両者に電圧を印加しながら回転させ、感光体11の表
面の画像形成領域全面に粒子が電着するようにする。
The liquid dispersion 12a of thermoplastic resin particles for forming the transfer layer 12 is filled in the electrodeposition unit 14T in the wet developing unit 14. To form the transfer layer 12, first, the electrodeposition unit 14T is mounted on the surface 11 of the photoconductor.
And is fixed so that the distance between the electrodeposition unit 14T and the developing electrode is a constant value. This distance is preferably 0.3 mm to 5 mm, more preferably 0.5 mm
~ 3 mm. FIG. 2 shows an enlarged main part of the electrodeposition unit 14T. The particle dispersion liquid 12a is supplied between the developing electrode 20 and the photoconductor 11 and rotated while applying a voltage to both of them from an external power source (not shown), and the particles are charged on the entire image forming area on the surface of the photoconductor 11. Try to wear it.

【0018】所定量の粒子が感光体11の表面に電着し
た後、電着ユニット14Tに内蔵してあるスクイズ装
置、例えばスクイズローラ、エアーナイフ、バキューム
手段等で感光体11の表面に付着している余分な粒子分
散液12aを除き、次いで乾燥手段15下を通過させ感
光体11の表面に電着した熱可塑性樹脂粒子を乾燥す
る。そして、加熱手段17aにより熱可塑性樹脂粒子を
熱溶融させて皮膜化し、熱可塑性樹脂からなる転写層1
2を得る。その後、必要に応じて図示しない冷風ファン
や排気ファンからなる冷却装置にて感光体外側からか、
もしくは感光体内部から、所定の温度まで冷却する。感
光体11の表面に、転写層12としての熱可塑性樹脂の
皮膜が形成されると、電着ユニット14Tが感光体11
から離間される。
After a predetermined amount of particles are electrodeposited on the surface of the photoconductor 11, they are attached to the surface of the photoconductor 11 by a squeeze device such as a squeeze roller, an air knife, a vacuum means, etc. built in the electrodeposition unit 14T. Excessive particle dispersion 12a is removed, and the thermoplastic resin particles electrodeposited on the surface of the photoconductor 11 are dried by passing under the drying means 15. Then, the transfer layer 1 made of the thermoplastic resin is formed by melting the thermoplastic resin particles by the heating means 17a to form a film.
Get 2. After that, if necessary, from the outside of the photoconductor with a cooling device composed of a cold air fan or an exhaust fan (not shown),
Alternatively, the inside of the photoconductor is cooled to a predetermined temperature. When a film of a thermoplastic resin as the transfer layer 12 is formed on the surface of the photoconductor 11, the electrodeposition unit 14T becomes
Away from.

【0019】次いで電子写真プロセスに入る。熱可塑性
樹脂からなる転写層12が形成された感光体11は、コ
ロナ帯電装置19で、プラス又はマイナスに一様帯電さ
れる。その後、半導体レーザー20によりイエローの画
像情報に基づき感光体11が画像露光されると、露光部
の電位が低減され、未露光部との間に電位コントラスト
が得られる。この後、湿式トナーにより現像が行われる
が、現像方式には、帯電時の極性と同極性のトナーを用
いて現像を行う反転現像方式と、帯電時の極性と異極性
のトナーを用いて現像を行う正現像方式とがある。本発
明の電子写真プロセスにはどちらの方式でも用いること
ができる。以下では、反転現像を例にとり説明する。
Next, the electrophotographic process is started. The photoreceptor 11 on which the transfer layer 12 made of a thermoplastic resin is formed is uniformly charged positively or negatively by the corona charging device 19. After that, when the photoconductor 11 is image-exposed by the semiconductor laser 20 based on the yellow image information, the potential of the exposed portion is reduced, and a potential contrast is obtained between the exposed portion and the unexposed portion. After that, development is performed with a wet toner. The development method includes a reversal development method in which development is performed using a toner having the same polarity as that when charging, and a development using a toner having a polarity different from that in charging There is a positive development method. Either method can be used in the electrophotographic process of the present invention. In the following, reversal development will be described as an example.

【0020】イエロー現像ユニット14Yが感光体11
に接近され、現像電極20と感光体11との間に適当な
ギャップが形成される。イエロー現像ユニット14Yに
は、帯電時の極性と同じ極性の電荷を有するイエローの
顔料が電気絶縁性分散媒中に分散している湿式現像剤を
充填されている。感光体11はまず、イエロー現像ユニ
ット14Yに具備されたプレバス手段によりプレバスさ
れる。次いで、図示されていないバイアス電源及び電気
結線により、感光体11と現像電極との間に現像バイア
ス電圧を印加しながら、イエローの湿式現像剤を感光体
11の表面に供給する。このときのバイアス電圧は感光
体側をアースに現像電極側をトナーと同極性になるよう
に接続し、印加電圧は未露光部の表面電位よりもやや低
くする。これは印加電圧が低すぎると画像で充分なトナ
ー濃度が得られず、また同等以上の印加電圧では非画像
部のカブリが大きくなるからである。
The yellow developing unit 14Y is the photosensitive member 11.
And an appropriate gap is formed between the developing electrode 20 and the photoconductor 11. The yellow developing unit 14Y is filled with a wet type developer in which a yellow pigment having a charge having the same polarity as that at the time of charging is dispersed in an electrically insulating dispersion medium. First, the photoconductor 11 is pre-bused by the pre-bus means included in the yellow developing unit 14Y. Then, while a developing bias voltage is applied between the photoconductor 11 and the developing electrode by a bias power supply and electrical connection (not shown), the yellow wet developer is supplied to the surface of the photoconductor 11. At this time, the bias voltage is connected such that the photoconductor side is grounded and the development electrode side is the same polarity as the toner, and the applied voltage is slightly lower than the surface potential of the unexposed portion. This is because if the applied voltage is too low, a sufficient toner density cannot be obtained in the image, and if the applied voltage is equal or higher, the fog in the non-image area becomes large.

【0021】その後、イエロー現像ユニット14Yに内
蔵してあるリンス手段により現像液を洗い落とし、続い
てスクイズ手段により感光体表面に付着したリンスを除
いてから乾燥装置15下を通過させることにより感光体
表面を乾燥する。イエローの現像が終了した後、同じ工
程でマゼンタ、シアン、ブラックについても潜像を形成
して現像する。この間、加熱装置17は感光体表面から
離間させておく。
After that, the developing solution is washed off by the rinsing means built in the yellow developing unit 14Y, and then the rinsing adhering to the surface of the photosensitive body is removed by the squeeze means, and the surface of the photosensitive body is passed under the drying device 15. To dry. After the development of yellow is completed, latent images are formed and developed for magenta, cyan and black in the same process. During this time, the heating device 17 is kept away from the surface of the photoconductor.

【0022】4色の画像を感光体の転写層12上に形成
した後、熱転写のための加熱装置17aにより転写層1
2に所定の予熱を施す。加熱装置17aとしては、非接
触の例えば赤外線ランプヒータもしくはフラッシュラン
プヒータ等を用い、加熱ローラ17bによって得られる
感光層表面温度以上にならない範囲で予備加熱する。次
いで、温度制御手段を有した発熱体を内蔵する加熱ロー
ラ17bと、冷却ローラ17cとを被転写材料16を介
して転写層12に圧接し、加熱ローラ17bにより転写
層12を加熱して感光体表面トナーを転写層ごと転写紙
へ熱転写した後、冷却ローラ17cにより冷却して一連
の工程を終了する。加熱ローラー17bによる感光層の
加熱表面温度は好ましくは50〜150℃、より好まし
くは80〜120℃である。
After a four-color image is formed on the transfer layer 12 of the photoreceptor, the transfer layer 1 is heated by the heating device 17a for thermal transfer.
2 is given a predetermined preheat. As the heating device 17a, for example, an infrared lamp heater or a flash lamp heater that is non-contact is used, and preheating is performed within a range not exceeding the surface temperature of the photosensitive layer obtained by the heating roller 17b. Next, a heating roller 17b containing a heating element having a temperature control means and a cooling roller 17c are pressed against the transfer layer 12 via the material 16 to be transferred, and the transfer layer 12 is heated by the heating roller 17b to heat the photoconductor. After the surface toner, together with the transfer layer, is thermally transferred onto the transfer paper, it is cooled by the cooling roller 17c and the series of steps is completed. The heating surface temperature of the photosensitive layer by the heating roller 17b is preferably 50 to 150 ° C, more preferably 80 to 120 ° C.

【0023】感光体11の回転速度は、周速で1〜20
0mm/秒、より好ましくは30〜100mm/秒の範
囲であり、電子写真工程と熱転写工程で異なっていても
よい。また、転写層を形成した状態で装置を停止するこ
とにより、次の装置稼働時にはすぐ電子写真プロセスか
らスタートでき、更に感光体11の表面を転写層が保護
し外的環境からの影響による特性劣化を防止することも
できる。以上の条件設定は、使用している感光体、すな
わち転写層、感光体及び支持体、更に被転写材料の物
性、等により最適化することは当然である。特に熱転写
工程における予熱、ローラによる加熱、冷却条件は転写
層のガラス転移点、軟化温度、流動性、粘着性、皮膜
性、膜厚などの要因を加味して決定することが必要であ
る。
The rotation speed of the photoconductor 11 is 1 to 20 at the peripheral speed.
It is 0 mm / sec, more preferably in the range of 30 to 100 mm / sec, and may be different in the electrophotographic process and the thermal transfer process. In addition, by stopping the device with the transfer layer formed, the electrophotographic process can be started immediately when the next device is in operation, and the transfer layer protects the surface of the photoconductor 11 to deteriorate the characteristics due to the influence from the external environment. Can also be prevented. Naturally, the above condition settings should be optimized depending on the photoconductor used, that is, the transfer layer, the photoconductor and the support, and the physical properties of the material to be transferred. In particular, the preheating, heating by the roller, and cooling conditions in the thermal transfer step must be determined in consideration of factors such as the glass transition point of the transfer layer, the softening temperature, the fluidity, the tackiness, the film property, and the film thickness.

【0024】例えば、予熱である程度軟化した転写層が
加熱ローラー下を通過することにより、転写層は粘着性
が増し被転写材料に密着するが、冷却ローラー下を通過
した後では温度が下がり、流動性や粘着性が低減して被
転写材料への密着性が低下するので、転写層12がトナ
ーごと感光体11の表面から剥離するように条件を設定
すべきである。
For example, when the transfer layer that has been softened to some extent by preheating passes under the heating roller, the transfer layer becomes more sticky and adheres to the material to be transferred, but after passing under the cooling roller, the temperature decreases and the fluidization occurs. Since the adhesiveness and the adhesiveness are reduced and the adhesion to the material to be transferred is lowered, the conditions should be set so that the transfer layer 12 together with the toner is separated from the surface of the photoconductor 11.

【0025】次に、図2〜図4を参照して、転写層12
を形成するための電着ユニット14Tにおける現像電極
20について説明する。図2に示すように、電着ユニッ
ト14Tはタンク22内に充填した熱可塑性樹脂粒子分
散液12aをポンプ24により感光体11の表面に供給
しながら、現像電極20と感光体11との間に電圧を印
加して電位勾配を生じさせ、熱可塑性樹脂粒子を感光体
11に電着するようになっている。分散液12aは図2
に矢印で示すように循環移動し、繰り返し使用される。
Next, referring to FIGS. 2 to 4, the transfer layer 12
The developing electrode 20 in the electrodeposition unit 14T for forming the will be described. As shown in FIG. 2, the electrodeposition unit 14T supplies the thermoplastic resin particle dispersion liquid 12a filled in the tank 22 to the surface of the photoconductor 11 by the pump 24, and between the developing electrode 20 and the photoconductor 11. A voltage is applied to generate a potential gradient, and the thermoplastic resin particles are electrodeposited on the photoconductor 11. The dispersion liquid 12a is shown in FIG.
It moves cyclically as shown by the arrow and is repeatedly used.

【0026】現像電極20は図3にその斜視図を示すよ
うに、感光体11の回転方向に沿って2分割された構成
である。図4は電着の原理図であり、各分割電極20
a,20bにそれぞれ異なる電圧V1,V2が印加され
ている。ここで、印加電圧はV1>V2の関係にあり、
感光体11の回転方向上流側に位置する分割電極(以
下、上流側分割電極という)20aに高い電圧が印加さ
れ、回転方向下流側に位置する分割電極(以下、下流側
分割電極という)20bに低い電圧が印加されるように
なっている。
As shown in the perspective view of FIG. 3, the developing electrode 20 is divided into two along the rotation direction of the photoconductor 11. FIG. 4 is a principle diagram of electrodeposition, in which each split electrode 20
Different voltages V1 and V2 are applied to a and 20b, respectively. Here, the applied voltage has a relationship of V1> V2,
A high voltage is applied to a split electrode (hereinafter, referred to as an upstream split electrode) 20a located on the upstream side in the rotation direction of the photoreceptor 11, and a high voltage is applied to a split electrode (hereinafter, referred to as the downstream split electrode) 20b located at the downstream side in the rotation direction. A low voltage is applied.

【0027】感光体11と現像電極20との間に分散液
を供給し、感光体11を回転させながら、各分割電極2
0a,20bに各電圧V1,V2を印加すると、分散液
中の印加電圧と同極性の電荷を有する熱可塑性樹脂粒子
26が感光体11に付着して行く。上流側分割電極20
aに高電圧を印加することにより、電着の開始当初は粒
子の付着速度が速くなり、付着量が急増する。したがっ
て、感光体11が上流側分割電極20aと対向する長さ
L1を移動する間の短時間の電着で、粒子層を目的厚さ
に近づけることができる。
Dispersion liquid is supplied between the photoconductor 11 and the developing electrode 20, and while the photoconductor 11 is rotated, each divided electrode 2 is rotated.
When the respective voltages V1 and V2 are applied to 0a and 20b, the thermoplastic resin particles 26 having a charge of the same polarity as the applied voltage in the dispersion liquid adheres to the photoconductor 11. Upstream split electrode 20
By applying a high voltage to a, the deposition rate of particles is increased at the beginning of electrodeposition, and the deposition amount is rapidly increased. Therefore, the particle layer can be brought closer to the target thickness by electrodeposition for a short time while the photoconductor 11 moves the length L1 facing the upstream split electrode 20a.

【0028】感光体11が上流側分割電極20aを通過
したきは、まだ粒子層26aは目的厚さまで達していな
いが、感光体11が下流側分割電極20bと対向し始め
ると、粒子は更に付着し続ける。そして、粒子の付着量
が飽和するまで粒子が付着し続けるように、下流側分割
電極20bへの印加電圧は、粒子層26aの目的厚さを
飽和電着量とする電圧に設定されている。
Although the particle layer 26a has not yet reached the target thickness when the photoconductor 11 has passed through the upstream split electrode 20a, when the photoconductor 11 starts to face the downstream split electrode 20b, particles are further attached. Keep doing Then, the voltage applied to the downstream side divided electrode 20b is set to a voltage that sets the target thickness of the particle layer 26a as the saturated electrodeposition amount so that the particles continue to adhere until the amount of adhesion of the particles becomes saturated.

【0029】図5は電着時間に対する電着の増加を示す
グラフである。図5(a)に示すように、電着時間が同
じであれば、印加電圧がV2であると飽和電着量はw1
と多く、印加電極がV1であると飽和電着量はw2と少
ない。したがって、印加電圧が高いほど電着量の増加率
が大きいことがわかる。そこで、上記のように上流側分
割電極20aに高電圧V1を印加し、下流側分割電極2
0bに低電圧V2を印加すると、図5(b)に示すよう
に、高電圧V1を印加した上流側分割電極20aにより
電着している間は、電着増加率が大きく短時間T1で目
的電着量に近づく。また、低電圧V2を印加した下流側
分割電極20bにより電着している間は、電着増加率は
低いが徐々に飽和電着量に近づき、安定した電着量が得
られる。したがって、従来のように常に目的電着量を得
るための電圧V2を印加した場合に比べて、本発明によ
れば飽和電着時間を短縮することができ、しかも安定し
た電着量が得られる。
FIG. 5 is a graph showing the increase of electrodeposition with respect to the electrodeposition time. As shown in FIG. 5A, when the electrodeposition time is the same, the saturated electrodeposition amount is w1 when the applied voltage is V2.
When the applied electrode is V1, the saturated electrodeposition amount is as small as w2. Therefore, it can be seen that the higher the applied voltage, the greater the rate of increase in the electrodeposition amount. Therefore, as described above, the high voltage V1 is applied to the upstream divided electrode 20a, and the downstream divided electrode 2 is
When a low voltage V2 is applied to 0b, as shown in FIG. 5 (b), while electrodeposition is performed by the upstream split electrode 20a to which a high voltage V1 is applied, the increase rate of electrodeposition is large and the purpose is short time T1. It approaches the amount of electrodeposition. Further, while electrodeposition is performed by the downstream divided electrode 20b to which the low voltage V2 is applied, the electrodeposition increase rate is low, but gradually approaches the saturated electrodeposition amount, and a stable electrodeposition amount is obtained. Therefore, according to the present invention, the saturation electrodeposition time can be shortened and a stable electrodeposition amount can be obtained, as compared with the conventional case where the voltage V2 for always obtaining the target electrodeposition amount is applied. .

【0030】上記現像電極20は、感光体11の回転方
向に沿って2分割された構成であるが、分割数はこれに
限定されず、3以上に分割してもよい。その際、感光体
11の回転方向上流側にある分割電極ほど印加電圧を高
く設定される。また、現像電極を2分割し、下流側分割
電極には低電圧を印加し、上流側分割電極には高電圧か
ら下流側分割電極の低電圧までの電圧をリニア又は指数
関数的に徐々に小さくなるように印加する構成でもよ
い。また、現像電極は、分割された構成でなくてもよ
く、感光体11の回転方向上流側で感光体11に対向す
る部分ほど抵抗が小さいように構成し、回転方向下流側
で感光体11に対向する部分ほど抵抗が大きいように構
成してもよい。このように構成することにより、現像電
極に均一に電圧を印加しても、回転方向上流側で感光体
11に対向する部分ほど、感光体との電位差がリニアに
大きくなり、回転方向下流側で感光体11に対向する部
分ほど、感光体との電位差がリニアに小さくなり、上流
側と下流側で印加電圧を変えたのと同じ状態になる。
The developing electrode 20 is divided into two along the rotation direction of the photoconductor 11, but the number of divisions is not limited to this and may be divided into three or more. At that time, the applied voltage is set to be higher for the divided electrodes on the upstream side in the rotation direction of the photoconductor 11. Further, the developing electrode is divided into two, a low voltage is applied to the downstream divided electrode, and the voltage from the high voltage to the low voltage of the downstream divided electrode is gradually reduced linearly or exponentially to the upstream divided electrode. The voltage may be applied so that Further, the developing electrode does not have to have a divided structure, and the resistance is smaller in a portion facing the photoconductor 11 on the upstream side in the rotation direction of the photoconductor 11, and the resistance is smaller on the downstream side in the rotation direction. You may comprise so that resistance may become large so that it may oppose. With this configuration, even if a voltage is uniformly applied to the developing electrode, the potential difference with the photoconductor becomes linearly larger in the portion facing the photoconductor 11 on the upstream side in the rotation direction, and the potential difference on the downstream side in the rotation direction is increased. The potential difference from the photosensitive member linearly decreases toward the portion facing the photosensitive member 11, which is the same as when the applied voltage is changed between the upstream side and the downstream side.

【0031】実施例1 直径200mm、長さ400mmの導電性ドラム表面に
フタロシアニンを含む光導電層を有する感光体上に転写
層を2g/m2 で均一に付着させるため、次のような方
法で行った。現像電極は感光体の回転方向に沿った長さ
が30mmであり、感光体の回転方向に沿って2分割し
て、図4に示すように、L1=6mm、L2=24mm
とした。そして、分割した現像電極のそれぞれにV1=
500V、V2=200Vの直流電圧を印加し電着を行
った。なお、感光体と現像電極との距離は1mm、感光
体の回転速度は線速度で30mm/秒である。トナーと
しては、下記のものを用いた。この実験は暗室で行っ
た。
Example 1 In order to uniformly deposit a transfer layer at 2 g / m 2 on a photoconductor having a photoconductive layer containing phthalocyanine on the surface of a conductive drum having a diameter of 200 mm and a length of 400 mm, the following method was used. went. The developing electrode has a length of 30 mm along the rotation direction of the photoconductor, and is divided into two along the rotation direction of the photoconductor, and as shown in FIG. 4, L1 = 6 mm and L2 = 24 mm.
And Then, V1 = is applied to each of the divided developing electrodes.
DC voltage of 500V and V2 = 200V was applied to carry out electrodeposition. The distance between the photoconductor and the developing electrode is 1 mm, and the rotation speed of the photoconductor is 30 mm / sec in linear velocity. The following toner was used as the toner. This experiment was conducted in a dark room.

【0032】熱可塑性樹脂粒子の製造例:TL−1 下記構造の分散安定用樹脂〔Q−1〕10g、酢酸ビニ
ルステアリルメタクリレート2g及びアイソパーHを3
84gの混合溶液を窒素気流下で攪拌しながら温度70
℃に加温した。重合開始剤として2,2´−アゾビス
(イソバレロニトリル)(略称A.I.V.N.)を
0.8g加え、3時間反応した。開始剤を添加して20
分後に白濁を生じ、反応温度は88℃まで上昇した。更
に、開始剤を0.5g加え、2時間反応した後、温度を
100℃に上げ2時間攪拌し未反応の酢酸ビニルを留去
した。冷却後200メッシュのナイロン布を通し、得ら
れた白色分散物は重合率90%で平均粒径0.23μm
の単分散層ファックスであった。粒径はCAPA−50
0(堀場製作所(株)製)で測定した。
Production Example of Thermoplastic Resin Particles: TL-1 10 g of dispersion stabilizing resin [Q-1] having the following structure, 2 g of vinyl stearyl methacrylate and 3 parts of Isopar H.
While stirring 84 g of the mixed solution under a nitrogen stream, a temperature of 70
Warmed to ° C. 0.8 g of 2,2'-azobis (isovaleronitrile) (abbreviation AIVN) was added as a polymerization initiator, and the reaction was carried out for 3 hours. 20 by adding initiator
White turbidity occurred after a minute and the reaction temperature rose to 88 ° C. Further, 0.5 g of an initiator was added and after reacting for 2 hours, the temperature was raised to 100 ° C. and stirred for 2 hours to distill off unreacted vinyl acetate. After cooling, it was passed through a nylon cloth of 200 mesh, and the obtained white dispersion had a polymerization rate of 90% and an average particle size of 0.23 μm.
It was a mono-dispersed layer fax machine. Particle size is CAPA-50
0 (manufactured by HORIBA, Ltd.).

【0033】[0033]

【化1】 Embedded image

【0034】実施例1による結果を、図6に符号Aで示
す。平均電着量は2.02g/m2であり、進行方向に
沿った電着量の変動幅は1.995〜2.045g/m
2 であり、均一な剥離層が得られた。
The result according to the first embodiment is indicated by reference character A in FIG. The average electrodeposition amount is 2.02 g / m 2 , and the fluctuation range of the electrodeposition amount along the traveling direction is 1.995 to 2.045 g / m 2.
2 , a uniform release layer was obtained.

【0035】比較例 電極を分割しない従来の方式で電着を行った。電極は3
00Vの直流電圧を印加した以外の条件は実施例1と同
じである。比較例による結果を、図6に符号Bで示す。
平均電着量は2.07g/m2 であったが、進行方向に
沿った電着量の変動幅は1.970〜2.170g/m
2であり、均一な剥離層を得られなかった。感光体の回
転速度ムラを測定したところ、感光体の1回転中の速度
変動幅が最大で1mm/秒であった。これが電着量のバ
ラツキの原因と考えられる。
Comparative Example Electrodeposition was performed by a conventional method in which the electrodes were not divided. 3 electrodes
The conditions are the same as in Example 1 except that the direct current voltage of 00V was applied. The result of the comparative example is indicated by reference character B in FIG.
The average electrodeposition amount was 2.07 g / m 2 , but the fluctuation range of the electrodeposition amount along the traveling direction was 1.970 to 2.170 g / m 2.
2 , it was not possible to obtain a uniform release layer. When the rotation speed unevenness of the photoconductor was measured, the speed fluctuation width during one rotation of the photoconductor was 1 mm / sec at the maximum. This is considered to be the cause of the variation in the amount of electrodeposition.

【0036】図6のグラフに示すように、本発明の方式
による結果Aと従来の方式による結果Bでは、電着時間
に対する電着量の変化が異なっている。このため、回転
速度ムラが生じても本発明では安定して均一な剥離層を
得ることができる。
As shown in the graph of FIG. 6, the result A according to the method of the present invention and the result B according to the conventional method have different changes in the electrodeposition amount with respect to the electrodeposition time. Therefore, in the present invention, a stable and uniform release layer can be obtained even if the rotation speed becomes uneven.

【0037】[0037]

【発明の効果】本発明によれば、電着開始当初は、上流
側電極による高電圧で電着が行われることから、電着時
間に対する電着量が多く短時間で多量の電着量が得ら
れ、また電着完了間近では、下流側電極による目的とす
る電着量が飽和電着量である電圧で電着が行われること
から、均一かつ正確な電着量が得られる。また、現像液
供給ポンプの吐出速度や感光体の回転速度にムラが生じ
たときにも、従来の方法では電着量が変動するが、本発
明の方法によれば、電着終了時に電極に対応する飽和電
着量となるので、現像液の吐出速度や感光体の回転速度
が変動しても、常に一定の電着量が得られる。
According to the present invention, since electrodeposition is performed at a high voltage by the upstream electrode at the beginning of electrodeposition, the amount of electrodeposition with respect to the electrodeposition time is large and a large amount of electrodeposition is achieved in a short time. Further, near the completion of electrodeposition, since the target electrodeposition amount by the downstream electrode is the electrodeposition at the voltage which is the saturated electrodeposition amount, a uniform and accurate electrodeposition amount can be obtained. Further, even when the discharge speed of the developing solution supply pump or the rotation speed of the photoconductor is uneven, the electrodeposition amount varies according to the conventional method, but according to the method of the present invention, the electrodeposition is completed at the end of electrodeposition. Since the corresponding saturated electrodeposition amount is obtained, a constant electrodeposition amount can always be obtained even if the developing solution discharge speed or the photosensitive member rotation speed changes.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は湿式電子写真装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a wet electrophotographic apparatus.

【図2】図2は電着ユニットの要部を拡大図である。FIG. 2 is an enlarged view of a main part of an electrodeposition unit.

【図3】図3は現像電極の斜視図である。FIG. 3 is a perspective view of a developing electrode.

【図4】図4は電着の原理図である。FIG. 4 is a principle diagram of electrodeposition.

【図5】(a)は従来法による電着状態を示すグラフ、
(b)は本発明による電着状態を示すグラフである。
FIG. 5 (a) is a graph showing a state of electrodeposition by a conventional method,
(B) is a graph showing an electrodeposition state according to the present invention.

【図6】図6は従来法による比較例の電着状態と本発明
実施例の電着状態を示すグラフである。
FIG. 6 is a graph showing an electrodeposition state of a comparative example and an electrodeposition state of an example of the present invention by a conventional method.

【符号の説明】[Explanation of symbols]

11 感光体 12 転写層 12a 熱可塑性樹脂粒子分散液 14 現像ユニットセット 14T 電着ユニットセット 14C シアン現像ユニット 14M マゼンタ現像ユニット 14Y イエロー現像ユニット 14BK ブラック現像ユニット 15 乾燥装置 15a 温風送風ファン 15b 排気ファン 16 被転写材料 17 加熱転写装置 17a 加熱装置 17b 加熱ローラ 17c 冷却ローラ 18 コロナ帯電装置 19 露光ユニット 20 現像電極 20a 上流側分割電極 20b 下流側分割電極 22 タンク 24 ポンプ 26 熱可塑性樹脂粒子(透明トナー) 26a 粒子層 11 Photoreceptor 12 Transfer Layer 12a Thermoplastic Resin Particle Dispersion Liquid 14 Development Unit Set 14T Electrodeposition Unit Set 14C Cyan Development Unit 14M Magenta Development Unit 14Y Yellow Development Unit 14BK Black Development Unit 15 Drying Device 15a Hot Air Blower Fan 15b Exhaust Fan 16 Transferred material 17 Heat transfer device 17a Heating device 17b Heating roller 17c Cooling roller 18 Corona charging device 19 Exposure unit 20 Developing electrode 20a Upstream side split electrode 20b Downstream side split electrode 22 Tank 24 Pump 26 Thermoplastic resin particles (transparent toner) 26a Particle layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも電子写真感光体と、電子写真
プロセスによって1色以上のトナー画像を感光体表面の
転写層上に設ける現像手段と、該トナー画像を転写層ご
と被転写材に熱転写する転写手段とを用いた電子写真転
写法において、 熱可塑性樹脂を主として含有する帯電したトナー粒子を
電気絶縁性液体中に分散させた湿式現像剤を現像電極と
感光体との間に介在させ、前記トナー粒子を感光体表面
に静電的に付着又は電着して成膜することにより剥離可
能な転写層を形成する際に、静電的付着又は電着を飽和
付着状態まで行うことを特徴とする湿式電子写真現像方
法。
1. At least an electrophotographic photosensitive member, a developing means for providing a toner image of one or more colors on a transfer layer on the surface of the photosensitive member by an electrophotographic process, and a transfer for thermally transferring the toner image together with the transfer layer onto a transfer target material. In the electrophotographic transfer method using the means, a wet developer in which charged toner particles mainly containing a thermoplastic resin are dispersed in an electrically insulating liquid is interposed between a developing electrode and a photoreceptor, The present invention is characterized in that when a peelable transfer layer is formed by electrostatically attaching or electrodepositing particles on the surface of a photoconductor to form a film, electrostatic attachment or electrodeposition is performed up to a saturated attachment state. Wet electrophotographic development method.
【請求項2】 少なくとも電子写真感光体と、電子写真
プロセスによって1色以上のトナー画像を感光体表面の
転写層上に設ける現像手段と、該トナー画像を転写層ご
と被転写材に熱転写する転写手段とを有する電子写真転
写装置において、 熱可塑性樹脂を主として含有する帯電したトナー粒子を
電気絶縁性液体中に分散させた湿式現像剤を現像電極と
感光体との間に介在させ、前記トナー粒子を感光体表面
に静電的に付着又は電着して成膜することにより剥離可
能な転写層を形成する際に、現像電極を感光体との距離
は一定で、感光体の回転方向に沿って2以上に分割し、
感光体の回転方向の上流側に対向する部分に下流側に対
向する部分に比して感光体表面と高電位差を有する電圧
を印加することを特徴とする湿式電子写真現像装置。
2. An electrophotographic photosensitive member, a developing means for providing a toner image of one or more colors on a transfer layer on the surface of the photosensitive member by an electrophotographic process, and a transfer for thermally transferring the toner image together with the transfer layer onto a transfer target material. In the electrophotographic transfer apparatus having the means, the toner particles mainly containing a thermoplastic resin are dispersed in an electrically insulating liquid, and a wet type developer is interposed between the developing electrode and the photosensitive member. When the peelable transfer layer is formed by electrostatically adhering or electrodepositing the film on the surface of the photoconductor, the distance between the developing electrode and the photoconductor is constant and Split into 2 or more,
A wet electrophotographic developing apparatus characterized in that a voltage having a higher potential difference with respect to the surface of the photoconductor is applied to a part facing the upstream side in the rotation direction of the photoconductor than to a part facing the downstream side.
【請求項3】 少なくとも電子写真感光体と、電子写真
プロセスによって1色以上のトナー画像を感光体表面の
転写層上に設ける現像手段と、該トナー画像を転写層ご
と被転写材に熱転写する転写手段とを有する電子写真転
写装置において、 熱可塑性樹脂を主として含有する帯電したトナー粒子を
電気絶縁性液体中に分散させた湿式現像剤を現像電極と
感光体との間に介在させ、前記トナー粒子を感光体表面
に静電的に付着又は電着して成膜することにより剥離可
能な転写層を形成する際に、現像電極を感光体との距離
は一定で、感光体の回転方向に沿って2分割し、回転方
向の下流側に対向する部分は上流側部分より感光体表面
と低電位差を有する電圧を印加し、上流側に対向する部
分は高電位差から下流側に対向する部分の電位差まで連
続的にリニア又は指数関数的に徐々に電位差が小さくな
るように電圧を印加することを特徴とする湿式電子写真
現像装置。
3. An electrophotographic photosensitive member, a developing means for providing a toner image of one or more colors on a transfer layer on the surface of the photosensitive member by an electrophotographic process, and a transfer for thermally transferring the toner image together with the transfer layer onto a transfer target material. In the electrophotographic transfer apparatus having the means, the toner particles mainly containing a thermoplastic resin are dispersed in an electrically insulating liquid, and a wet type developer is interposed between the developing electrode and the photosensitive member. When the peelable transfer layer is formed by electrostatically adhering or electrodepositing the film on the surface of the photoconductor, the distance between the developing electrode and the photoconductor is constant and The voltage is applied to the portion facing the downstream side in the rotational direction with a lower potential difference from the surface of the photoconductor than the upstream portion, and the portion facing the upstream side has a potential difference from the high potential difference to the portion facing the downstream side. Up to To liquid electrophotographic developing device and applying a voltage as a linear or exponentially progressively potential difference is reduced.
JP18361294A 1994-08-04 1994-08-04 Wet process electrophotographic developing method and device Pending JPH0844216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18361294A JPH0844216A (en) 1994-08-04 1994-08-04 Wet process electrophotographic developing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18361294A JPH0844216A (en) 1994-08-04 1994-08-04 Wet process electrophotographic developing method and device

Publications (1)

Publication Number Publication Date
JPH0844216A true JPH0844216A (en) 1996-02-16

Family

ID=16138843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18361294A Pending JPH0844216A (en) 1994-08-04 1994-08-04 Wet process electrophotographic developing method and device

Country Status (1)

Country Link
JP (1) JPH0844216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986977B2 (en) 2002-03-20 2006-01-17 Kabushiki Kaisha Toshiba Image forming apparatus and image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986977B2 (en) 2002-03-20 2006-01-17 Kabushiki Kaisha Toshiba Image forming apparatus and image forming method

Similar Documents

Publication Publication Date Title
US3801315A (en) Gravure imaging system
US5132743A (en) Intermediate transfer surface and method of color printing
US5208638A (en) Intermediate transfer surface and method of color printing
JPH11249394A (en) Device and method for developing latent image
JP2001060046A (en) Image forming method and image forming device
US6324368B1 (en) Image forming apparatus having a first squeeze roller rotated in an opposite direction to a photosensitive member
US6353721B1 (en) Color image formation apparatus using a liquid developer and color image formation method using a liquid developer
US4533611A (en) Process for preparing a planographic printing plate
US4419004A (en) Method and apparatus for making transparencies electrostatically
US5418105A (en) Simultaneous transfer and fusing of toner images
JPH04230781A (en) Apparatus and method for forming image having intermediate transfer element
JPH0844216A (en) Wet process electrophotographic developing method and device
US4967236A (en) Charge retention xeroprinting
EP0583549B1 (en) Thermo-electric transfer system for liquid toner
US4419005A (en) Imaging method and apparatus
US5001030A (en) Method and means for transferring electrostatically charged image powder
JPH1097106A (en) Electrostatic recording device and transferring roll adopted therefor
JP2002287534A (en) Image forming method and device
CA2308672C (en) Polythiophene xerographic component coatings
US6442357B2 (en) Transfer apparatus employing a transfer roller having a dielectric layer on its outer surface
US20040114963A1 (en) System and method for latent image development
JP3295998B2 (en) Image forming device
JPS6063575A (en) Fixing device
JPH08160756A (en) Color image forming device
JPS6281681A (en) Image forming device