JPH0843190A - Impact sensor - Google Patents

Impact sensor

Info

Publication number
JPH0843190A
JPH0843190A JP20014894A JP20014894A JPH0843190A JP H0843190 A JPH0843190 A JP H0843190A JP 20014894 A JP20014894 A JP 20014894A JP 20014894 A JP20014894 A JP 20014894A JP H0843190 A JPH0843190 A JP H0843190A
Authority
JP
Japan
Prior art keywords
piezoelectric body
pedestal
resonance system
piezoelectric
specific mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20014894A
Other languages
Japanese (ja)
Inventor
Kiyoshi Oshima
清 大嶋
Michio Munekata
陸夫 宗片
Yutaka Inada
豊 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP20014894A priority Critical patent/JPH0843190A/en
Publication of JPH0843190A publication Critical patent/JPH0843190A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a very weak signal with a sufficient S/N and excellent sensitivity by adhering a piezoelectric element to a member having a specific mechanical resonance system, and bonding it to a material to be vibrated. CONSTITUTION:A piezoelectric element 6 is adhered to a member 2 having a specific mechanical resonance system to constitute an impact sensor 1. The element 6 is composed of an electrode part 7 having an upper partial electrode 7a and a lower partial electrode 7b, and a pedestal 8 provided under an electrodeless part 9. The pedestal 8 is adhered to a piezoelectric element bonding part 4, and bonded to the member 2. The vibration from the element 6 is propagated from the part 4 to the element 6 via the pedestal 8, and the element 6 is vibrated only at the part 7. Since the part 7 is floated via the pedestal 8, it can be independently vibrated, and not affected by the influence of damping due to bonding and the shift of a resonance point. Accordingly, the element 6 becomes one having a resonance frequency as designed and the vibration can be detected with high sensitivity by making it coincide with the resonance frequency of the member 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電体を用いて衝撃を
検出する衝撃センサに関するものである。特に、機械共
振系を有する部材に圧電体を貼り付けて、優れた感度を
有する、圧電体を用いた衝撃センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impact sensor that detects an impact using a piezoelectric body. In particular, the present invention relates to an impact sensor using a piezoelectric body, which has excellent sensitivity by attaching a piezoelectric body to a member having a mechanical resonance system.

【0002】[0002]

【従来の技術】圧電体を用いた衝撃センサにおいては、
特定の周波数に鋭いピーク感度を持つ共振型や広帯域で
平坦な感度特性を持つ広帯域型がある。微弱な信号を高
感度で検出するためには、圧電体の共振点を利用した共
振型が用いられており、共振点は圧電体の形状寸法で決
まるため、検出信号の周波数と圧電体の共振点を一致さ
せることにより、高感度検出を行っている。
2. Description of the Related Art In a shock sensor using a piezoelectric material,
There are a resonance type having a sharp peak sensitivity at a specific frequency and a wide band type having a wide and flat sensitivity characteristic. In order to detect weak signals with high sensitivity, a resonance type that uses the resonance point of the piezoelectric body is used.Since the resonance point is determined by the shape and size of the piezoelectric body, the frequency of the detection signal and the resonance of the piezoelectric body High-sensitivity detection is performed by matching the points.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、圧電体
の共振現象は、被振動体との接着によりダンピングや共
振点のシフトを受けるため、微弱な信号の検出において
は十分なS/N比(信号対雑音比)が得られず、効果的
な検出が難しいといった問題があり、接着においてダン
ピングや共振点のシフトが生じない圧電体を用いた衝撃
センサが強く要望されている。
However, since the resonance phenomenon of the piezoelectric body undergoes damping or shift of the resonance point due to adhesion with the vibrating body, a sufficient S / N ratio (signal There is a problem that the noise-to-noise ratio cannot be obtained and effective detection is difficult, and there is a strong demand for a shock sensor using a piezoelectric body that does not cause damping or resonance point shift during bonding.

【0004】本発明は上記した従来の実状に鑑み、微弱
な信号を十分なS/N比で感度良く検出し得る衝撃セン
サを提供することを目的とするものである。
The present invention has been made in view of the above conventional circumstances, and an object thereof is to provide an impact sensor capable of detecting a weak signal with a sufficient S / N ratio with high sensitivity.

【0005】[0005]

【課題を解決するための手段】本発明の衝撃センサは、
上記した目的を達成するため、特定の機械共振系を有す
る部材に圧電体を貼り付け、それを被振動体に接着する
ことを特徴とする。
The impact sensor of the present invention comprises:
In order to achieve the above object, a piezoelectric body is attached to a member having a specific mechanical resonance system, and the piezoelectric body is adhered to a vibrated body.

【0006】[0006]

【作用】被振動体に直接圧電体を接着してしまうと、ダ
ンピング及び共振点のシフトが生じ、被振動体の共振周
波数と圧電体の共振周波数を一致することができず、十
分なS/N比が得られないが、被振動体の共振周波数と
接着の影響を受けない構造を持つ機械共振系を有する部
材の共振周波数を一致させ、その部材に圧電体を接着す
ることにより感度良く検出することができる。また、部
材に接着する圧電体に部分電極を施し、無電極部に台座
を設け接着させることにより、被振動体と機械共振系と
圧電体の3つの共振周波数を一致させることが可能とな
り、さらに感度良く検出することができる。
If the piezoelectric body is directly adhered to the vibrating body, damping and shift of the resonance point occur, the resonance frequency of the vibrating body and the resonance frequency of the piezoelectric body cannot match, and sufficient S / Although the N ratio cannot be obtained, the resonance frequency of the vibrated body and the resonance frequency of the member having the mechanical resonance system having a structure that is not affected by the adhesion are matched, and the piezoelectric body is adhered to the member to detect with high sensitivity. can do. Further, by providing a partial electrode on the piezoelectric body to be adhered to the member and providing a pedestal on the electrodeless portion for adhesion, it becomes possible to match the three resonance frequencies of the vibrating body, the mechanical resonance system and the piezoelectric body. It can be detected with high sensitivity.

【0007】[0007]

【実施例】以下図面に基いて本発明の実施例を説明す
る。図1はこの発明の衝撃センサである。衝撃センサ1
は特定の機械共振系を有する部材2と該部材2に貼付し
た圧電体6から主として構成される。機械共振系を有す
る部材2は、機械的な振動を生じる材料で、例えば機械
的品質係数Qの大きなエリンバなどが好適に用いられ
る。前記部材2の共振周波数は、部材の材質・形状等に
より定まり、被振動体の共振周波数によって設計するも
のであり、例えば、被振動体の共振周波数をあらかじめ
測定し、この共振周波数を一致するように部材2を定め
る。図1に示す前記部材2は、被振動体接着部3と圧電
体接着部4とがヒンジ部5により連結される両持ち梁で
構成される例を示すが、前記部材2は前記接着部3のい
ずれか一方を省略し、片持ち梁とするように構成しても
良い。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an impact sensor of the present invention. Impact sensor 1
Is mainly composed of a member 2 having a specific mechanical resonance system and a piezoelectric body 6 attached to the member 2. The member 2 having a mechanical resonance system is a material that causes mechanical vibration, and for example, an elinvar with a large mechanical quality factor Q is preferably used. The resonance frequency of the member 2 is determined by the material and shape of the member, and is designed according to the resonance frequency of the vibrating body. For example, the resonance frequency of the vibrating body is measured in advance so that the resonance frequencies match. The member 2 is defined. The member 2 shown in FIG. 1 is an example in which the vibrating body bonding portion 3 and the piezoelectric body bonding portion 4 are constituted by a doubly supported beam connected by a hinge portion 5. Either one of the above may be omitted, and a cantilever may be used.

【0008】図示しない被振動体との接着を前記接着部
3のみで行うことにより、被振動体から受ける振動は前
記接着部3から、ヒンジ部5を介して圧電体接着部4へ
伝搬される。圧電体の出力電圧は、振動振幅の大きさに
比例するため、圧電体接着部4の振動振幅を大きくすれ
ば、感度は大きくなる。従って図1の衝撃センサは、圧
電体接着部4が接着の影響を受けることなく独立に振動
することができるため、感度良い検出が可能となる。
By virtue of the fact that the vibrating body (not shown) is adhered only by the adhering section 3, the vibration received from the vibrating section is propagated from the adhering section 3 to the piezoelectric adhering section 4 via the hinge section 5. . Since the output voltage of the piezoelectric body is proportional to the magnitude of the vibration amplitude, increasing the vibration amplitude of the piezoelectric body bonding portion 4 increases the sensitivity. Therefore, in the shock sensor shown in FIG. 1, the piezoelectric bonding portion 4 can independently vibrate without being affected by the bonding, and thus the detection can be performed with high sensitivity.

【0009】圧電体接着部4の中央部に設けられる圧電
体6を図2に示す。圧電体6は、上部部分電極7a、下
部部分電極7bからなる電極部7と無電極部9の下方に
設けられた台座8から構成され、圧電体6を機械共振系
を有する部材2に貼付するに当たっては、前記台座8を
前記圧電体接着部4上に接着することによって行われ
る。被振動体からの振動は圧電体接着部4から台座8を
介して圧電体6へ伝搬し、圧電体6は電極部7を設けた
部分のみ振動する。これは電極部7を設けた部分のみ分
極処理を施しているため、その部分のみ圧電体としての
機能を持つためである。また、電極部7は台座8により
中に浮いていることにより、独立に振動できるため、接
着によるダンピングなどの影響がない。したがって、設
計どうりの共振周波数をもった圧電体6の作製が可能と
なり、前記部材2の共振周波数と一致させることによ
り、更に感度良い検出が可能となる。
FIG. 2 shows the piezoelectric body 6 provided in the central portion of the piezoelectric body bonding portion 4. The piezoelectric body 6 is composed of an electrode portion 7 including an upper partial electrode 7a and a lower partial electrode 7b, and a pedestal 8 provided below the electrodeless portion 9, and the piezoelectric body 6 is attached to a member 2 having a mechanical resonance system. This is performed by adhering the pedestal 8 on the piezoelectric bonding portion 4. The vibration from the vibrating body propagates from the piezoelectric body bonding portion 4 to the piezoelectric body 6 via the pedestal 8, and the piezoelectric body 6 vibrates only in the portion where the electrode portion 7 is provided. This is because only the portion where the electrode portion 7 is provided is subjected to the polarization treatment and only that portion has a function as a piezoelectric body. In addition, since the electrode portion 7 floats in the pedestal 8 and can vibrate independently, there is no influence such as damping due to adhesion. Therefore, it is possible to manufacture the piezoelectric body 6 having a resonance frequency according to the design, and by matching the resonance frequency of the member 2, it is possible to perform detection with higher sensitivity.

【0010】次に衝撃センサ1を、磁気ディスク装置に
おける、ディスクとヘッドの衝突検出に用いた応用例に
ついて説明する。図3は本発明の衝撃センサ1を用いた
ディスクとヘッドの衝突検出機構の概略図である。コア
スライダ11は、高速回転するディスク10上をサブミ
クロンの間隔をもって浮上させ記録再生を行っている
が、ディスク10の媒体面に突起や塵埃の混入等によっ
て接触が起こると、ディスク10とコアスライダ11は
クラッシュして記録再生が不能となり致命的な障害が発
生する。
Next, an application example in which the impact sensor 1 is used for detecting a collision between a disk and a head in a magnetic disk device will be described. FIG. 3 is a schematic view of a collision detection mechanism for a disk and a head using the impact sensor 1 of the present invention. The core slider 11 floats on the disk 10 rotating at a high speed at submicron intervals for recording and reproduction. When contact occurs on the medium surface of the disk 10 due to mixing of protrusions or dust, the disk 10 and the core slider 11 are contacted with each other. No. 11 crashes, recording / reproducing becomes impossible, and a fatal failure occurs.

【0011】従来、このようなディスクとヘッドの衝突
検出用センサとしては、検出信号が微弱な振幅かつ高い
周波数成分であるため、コアスライダ11に点線で示す
ようにAEセンサ14を搭載し、信号発生源の近傍で検
出を行っていた。しかしながら、ディスク10の高密度
化により、コアスライダ11の形状は小さくなり、コア
スライダ11上にAEセンサ14を載せることは困難と
なる。したがって、信号発生源の近傍でなくても感度良
く検出できるセンサが要望されている。
Conventionally, as a sensor for detecting the collision between the disk and the head, since the detection signal has a weak amplitude and a high frequency component, the core slider 11 is equipped with the AE sensor 14 as shown by the dotted line, and Detection was performed near the source. However, due to the higher density of the disk 10, the shape of the core slider 11 becomes smaller, and it becomes difficult to mount the AE sensor 14 on the core slider 11. Therefore, there is a demand for a sensor that can detect with high sensitivity even in the vicinity of the signal generation source.

【0012】本発明の衝撃センサ1は、コアスライダ1
1とアーム13を連結するジンバル12上に衝撃センサ
1の被振動体接着部3を接着することにより、高感度な
ディスクとへッドの衝突検出が可能であり、コアスライ
ダ11の材質及び形状寸法で決まる固有のスペクトラム
パターンのピークレベル周波数と衝撃センサ1の前記部
材2、圧電体6の共振周波数をすべて一致させることに
より、さらに感度の良い検出を行うことが可能となる。
The impact sensor 1 of the present invention comprises a core slider 1
By bonding the vibrating body bonding portion 3 of the shock sensor 1 onto the gimbal 12 that connects the arm 1 and the arm 13, it is possible to detect a highly sensitive collision between the disk and the head, and the material and shape of the core slider 11. By making the peak level frequency of the unique spectrum pattern determined by the dimensions and the resonance frequency of the member 2 and the piezoelectric body 6 of the impact sensor 1 all coincide with each other, detection with higher sensitivity can be performed.

【0013】[0013]

【発明の効果】以上の説明より理解されるように本発明
によると、接着によるダンピングや共振周波数のシフト
に影響を受けることなく、十分なS/N比で、感度良く
検出することができる優れた衝撃センサの提供ができ
る。また、微弱な信号の検出を行うディスクとヘッドの
衝突検出用のセンサとして適用すれば、極めて効果的で
ある。
As can be understood from the above description, according to the present invention, it is possible to detect with a sufficient S / N ratio and with high sensitivity without being affected by damping due to adhesion or shift of resonance frequency. It is possible to provide an impact sensor. Further, it is extremely effective when applied as a sensor for detecting a collision between a disk and a head for detecting a weak signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝撃センサの構造を説明する図。FIG. 1 is a diagram illustrating a structure of an impact sensor of the present invention.

【図2】本発明の圧電体の構造を説明する図である。FIG. 2 is a diagram illustrating a structure of a piezoelectric body of the present invention.

【図3】本発明の衝撃センサ応用例を説明する、ディス
クとヘッドの衝突検出機構の概略図である。
FIG. 3 is a schematic diagram of a collision detection mechanism between a disk and a head, for explaining an application example of the impact sensor of the present invention.

【符号の説明】[Explanation of symbols]

1 衝撃センサ 2 機械共振系を有する部材 3 被振動体接着部 4 圧電体接着部 5 ヒンジ部 6 圧電体 7 電極部 8 台座 9 圧電体の無電極部 10 ディスク 11 コアスライダ 12 ジンバル 13 アーム 14 AEセンサ DESCRIPTION OF SYMBOLS 1 Impact sensor 2 Member having a mechanical resonance system 3 Vibrating body adhesive portion 4 Piezoelectric body adhesive portion 5 Hinge portion 6 Piezoelectric body 7 Electrode portion 8 Pedestal 9 Piezoelectric electrodeless portion 10 Disk 11 Core slider 12 Gimbal 13 Arm 14 AE Sensor

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 特定の機械共振系を有する部材と、該部
材に貼付した圧電体とを備えることを特徴とする衝撃セ
ンサ。
1. A shock sensor comprising a member having a specific mechanical resonance system and a piezoelectric body attached to the member.
【請求項2】 特定の機械共振系を有する部材が、ヒン
ジ部を介して連結された圧電体接着部と被振動体接着部
とを備えることを特徴とする請求項1記載の衝撃セン
サ。
2. The shock sensor according to claim 1, wherein the member having a specific mechanical resonance system includes a piezoelectric body bonding portion and a vibrating body bonding portion which are connected via a hinge portion.
【請求項3】 前記特定の機械共振系を有する部材の被
振動体接着部が被振動体と接着されることを特徴とする
請求項2記載の衝撃センサ。
3. The shock sensor according to claim 2, wherein the vibrating body bonding portion of the member having the specific mechanical resonance system is bonded to the vibrating body.
【請求項4】 前記特定の機械共振系を有する部材が被
振動体の共振周波数と一致するものであることを特徴と
する請求項3記載の衝撃センサ。
4. The impact sensor according to claim 3, wherein the member having the specific mechanical resonance system matches the resonance frequency of the vibrated body.
【請求項5】 圧電体は部分電極を施した電極部と、無
電極部に設けた台座からなり、該台座と前記特定の機械
共振系を有する部材を接着することにより圧電体が貼付
されることを特徴とする請求項1〜4いずれか記載の衝
撃センサ。
5. The piezoelectric body comprises an electrode portion provided with a partial electrode and a pedestal provided on the electrodeless portion, and the piezoelectric body is attached by adhering the pedestal and a member having the specific mechanical resonance system. The shock sensor according to any one of claims 1 to 4, wherein the shock sensor is a shock sensor.
【請求項6】 前記台座と前記特定の機械共振系を有す
る部材の圧電体接着部を接着すること請求項5記載の衝
撃センサ。
6. The shock sensor according to claim 5, wherein the pedestal and the piezoelectric bonding portion of the member having the specific mechanical resonance system are bonded together.
【請求項7】 前記圧電体が被振動体の共振周波数と一
致するものであることを特徴とする請求項3〜6いずれ
か記載の衝撃センサ。
7. The shock sensor according to claim 3, wherein the piezoelectric body has a resonance frequency of a vibrated body.
【請求項8】 被振動体が、磁気ディスク媒体上に浮上
するヘッドスライダであることを特徴とする請求項3〜
7いずれか記載の衝撃センサ。
8. The vibrating body is a head slider that floats above a magnetic disk medium.
7. The impact sensor according to any one of 7.
JP20014894A 1994-08-02 1994-08-02 Impact sensor Pending JPH0843190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20014894A JPH0843190A (en) 1994-08-02 1994-08-02 Impact sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20014894A JPH0843190A (en) 1994-08-02 1994-08-02 Impact sensor

Publications (1)

Publication Number Publication Date
JPH0843190A true JPH0843190A (en) 1996-02-16

Family

ID=16419593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20014894A Pending JPH0843190A (en) 1994-08-02 1994-08-02 Impact sensor

Country Status (1)

Country Link
JP (1) JPH0843190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167277A (en) * 2017-07-26 2017-09-15 中国工程物理研究院总体工程研究所 The universal triggering impact fuze sensing device of single piezoelectric patches piezoelectric energy-conversion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167277A (en) * 2017-07-26 2017-09-15 中国工程物理研究院总体工程研究所 The universal triggering impact fuze sensing device of single piezoelectric patches piezoelectric energy-conversion

Similar Documents

Publication Publication Date Title
US6016692A (en) Glide test slider having electrically isolated piezoelectric crystal for improved noise suppression
US6026690A (en) Vibration sensor using the capacitance between a substrate and a flexible diaphragm
US5757107A (en) Tuning-fork vibratory gyro and sensor system using the same
JPH03501529A (en) Electrostatically excited dual vibrating beam force transducer
US5396024A (en) Electric percussion instrument equipped with vibration sensor supported by retainer of vibration-transmissive substance
JPH0843190A (en) Impact sensor
JPH11248465A (en) Oscillator and oscillation type gyroscope and method for measuring rotational angular velocity
US5463506A (en) Head drum apparatus
US5159510A (en) Video tape recorder head ultrasonically vibrated transverse to a track traced by the head
JPS62217477A (en) Slider for head current detection
JPH1096742A (en) Acceleration sensor, manufacture thereof, and impact detecting device utilizing the acceleration sensor
JP3318085B2 (en) Cantilever tip holder
JP2002107374A (en) Acceleration sensor, acceleration detecting device, and positioning device
JPH06249874A (en) Acceleration sensor
US5488778A (en) Electronic magnetometer and compass
JPH11118823A (en) Mechanical and electric converting element, its manufacture, and acceleration sensor
JPH07301536A (en) Angular velocity sensor
JPH04265585A (en) Floating head slider sensor
JPS61178786A (en) Floating head for magnetic disk
JPH04178920A (en) Protrusion detection head assembly
JPH0664013B2 (en) Material vibrating device
JPH06139737A (en) Magnetic head abnormality detecting device for opto-magnetic recorder
JPH1137748A (en) Method for detecting projection of magnetic disk
JPH08201067A (en) Angular speed sensor
Takeuchi Semiconductor acceleration sensor including off axis acceleration cancellation