JPH0843041A - Method and apparatus for measuring three-dimensional shape - Google Patents

Method and apparatus for measuring three-dimensional shape

Info

Publication number
JPH0843041A
JPH0843041A JP18325094A JP18325094A JPH0843041A JP H0843041 A JPH0843041 A JP H0843041A JP 18325094 A JP18325094 A JP 18325094A JP 18325094 A JP18325094 A JP 18325094A JP H0843041 A JPH0843041 A JP H0843041A
Authority
JP
Japan
Prior art keywords
axis
measured
inclination
dimensional shape
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18325094A
Other languages
Japanese (ja)
Inventor
Sadaaki Sakai
禎明 境
Nobuo Kitamura
信男 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18325094A priority Critical patent/JPH0843041A/en
Publication of JPH0843041A publication Critical patent/JPH0843041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To stabilize a Z-axis control system and measure at a high velocity with high accuracy when a three dimensional shape of an object to be measured is measured with the use of a non-contact displacement sensor. CONSTITUTION:At least two displacement sensors 4 and 5 are set to Z-axis 3 of a triaxial moving mechanism 10. While the sensors 4 and 5 are continuously scanned within X-Y plane on an object 20 to be measured, a distance in Z direction is measured for every measuring point set beforehand. Outputs of the displacement sensors are taken into a data-processing device 16, where an inclination of the object 20 is obtained. An optimum control condition for the Z axis is determined from the obtained inclination and a scanning speed. The height of the Z-axis is controlled to be constant under the optimum control condition. Z coordinate and, X and Y coordinates of the measuring point at the time are synchronously stored in a memory device 18, thereby, three dimensional shape of the object is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X−Y平面を構成する
定盤上に置かれた被測定物の三次元形状を非接触で連続
的に走査しながら測定する走査式の三次元形状測定方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type three-dimensional shape for measuring a three-dimensional shape of an object to be measured placed on a surface plate constituting an XY plane while continuously scanning it in a non-contact manner. The present invention relates to a measuring method and device.

【0002】[0002]

【従来の技術】従来の三次元形状測定方法には次のよう
なものがある。
2. Description of the Related Art There are the following conventional three-dimensional shape measuring methods.

【0003】第1の方法は、接触式の変位センサと3軸
移動機構を組み合わせたもので、タッチセンサをX−Y
平面内で走査しながら、タッチセンサのX,Y座標が所
定の位置にきたときに一旦X,Yの移動を停止し、その
後タッチセンサをZ方向下方に降下させ、タッチセンサ
先端が被測定物表面に接触したときの3軸移動機構の座
標値を読み取り、1計測点のX,Y,Zの三次元座標を
求める方法である。しかしこの方法は、所定の計測点で
のX,Yの移動の停止とZ方向の降下を繰り返さなけれ
ばならず、連続的な測定ができないことから測定時間が
かかる欠点がある。
The first method is a combination of a contact type displacement sensor and a three-axis moving mechanism.
While scanning in the plane, when the X and Y coordinates of the touch sensor reach a predetermined position, the X and Y movements are temporarily stopped, then the touch sensor is lowered in the Z direction, and the tip of the touch sensor is measured. This is a method of reading the coordinate values of the three-axis moving mechanism when it comes into contact with the surface and obtaining the three-dimensional coordinates of X, Y, Z of one measurement point. However, this method has a drawback that it takes a long time to measure because it is necessary to stop the movement of X and Y at a predetermined measurement point and repeat the descent in the Z direction, and continuous measurement cannot be performed.

【0004】第2の方法は、非接触式の変位センサと
X,Y2軸の移動機構を組み合わせたもので、変位セン
サをX−Y平面内で連続的に走査しながら、所定のX,
Y座標での変位センサの出力を読み取り、被測定物の
X,Y,Z座標を求める方法である。この方法は非接触
かつ連続的な測定のため、測定時間の短縮を図ることは
できるものの、変位センサの測定範囲を越える高低差を
もつ被測定物への適用はできない問題がある。
The second method is a combination of a non-contact type displacement sensor and an X, Y bi-axial moving mechanism. While the displacement sensor continuously scans in the XY plane, a predetermined X,
This is a method of reading the output of the displacement sensor at the Y coordinate and obtaining the X, Y, Z coordinates of the object to be measured. Since this method is non-contact and continuous measurement, the measurement time can be shortened, but there is a problem that it cannot be applied to an object to be measured having a height difference exceeding the measurement range of the displacement sensor.

【0005】第3の方法は、X,Y,Zの3軸移動機構
のZ軸に非接触式変位センサを取り付け、この変位セン
サの出力が一定となるようにZ軸を制御し、このZ軸の
位置をエンコーダ等により検出することによって、所定
のX,Y座標でのZ座標を求め、被測定物のX,Y,Z
座標を求めるものである。しかしこの方法は、X,Y軸
の移動速度が速い場合や、被測定物の形状が複雑で、凹
凸の激しいような場合にはいわゆるサーボ遅れが生じ、
Z軸の制御がうまく追従せず、変位センサの出力を一定
にすることが困難となり、正確なZ座標を得ることがで
きない問題がある。
In the third method, a non-contact displacement sensor is attached to the Z axis of the X, Y, Z triaxial moving mechanism, and the Z axis is controlled so that the output of this displacement sensor becomes constant. By detecting the position of the axis with an encoder or the like, the Z coordinate at a predetermined X, Y coordinate is obtained, and the X, Y, Z of the object to be measured is obtained.
It is to find the coordinates. However, this method causes a so-called servo delay when the moving speed of the X and Y axes is high, or when the shape of the object to be measured is complicated and the unevenness is severe.
The control of the Z axis does not follow well, it becomes difficult to make the output of the displacement sensor constant, and there is a problem that an accurate Z coordinate cannot be obtained.

【0006】第4の方法は、特開平2−311705号
公報に示すように、第2の方法と第3の方法を組み合わ
せたもので、非接触式変位センサの出力を一定に保つよ
うにZ軸を制御し、この時のZ軸の位置をエンコーダ等
で検出し、かつ変位センサの出力も同時に検出して、両
者の値を加算することによって、サーボ遅れによる誤差
を解消しようとするものである。しかしこの方法によっ
ても、被測定物の形状がZ軸の正方向あるいは負方向
に、同一の向きに変化する場合にはサーボ遅れが累積
し、やがて変位センサの測定範囲を越えてしまう。また
これを避けるために、Z軸の軸方向の移動速度を上げる
と制御が過敏になり、Z軸制御系の振動や発振が発生す
る不具合が起こる。
The fourth method is a combination of the second method and the third method, as shown in Japanese Patent Laid-Open No. 2-311705, in which Z is used to keep the output of the non-contact displacement sensor constant. The axis is controlled, the position of the Z axis at this time is detected by an encoder, etc., and the output of the displacement sensor is also detected at the same time, and the values of both are added to eliminate the error due to the servo delay. is there. However, even with this method, when the shape of the object to be measured changes in the positive direction or the negative direction of the Z axis in the same direction, the servo delay accumulates and eventually exceeds the measurement range of the displacement sensor. Further, in order to avoid this, if the moving speed of the Z-axis in the axial direction is increased, the control becomes too sensitive, causing a problem that vibration or oscillation of the Z-axis control system occurs.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述した諸
問題を解決するためになされたもので、非接触式変位セ
ンサをX−Y平面内で連続的に走査しながら、かつ、Z
軸の制御遅れやZ軸制御系の振動、発振などを引き起こ
すことなく、被測定物の三次元形状を高速かつ高精度に
測定することができる三次元形状測定方法及び装置を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and the non-contact displacement sensor is continuously scanned in the XY plane, and Z
An object of the present invention is to provide a three-dimensional shape measuring method and apparatus capable of measuring the three-dimensional shape of an object to be measured at high speed and with high accuracy without causing control delay of the axis and vibration and oscillation of the Z-axis control system. I am trying.

【0008】[0008]

【課題を解決するための手段】本発明に係る三次元形状
測定方法は、以下の(1)〜(5)の工程を有すること
を特徴とするものである。 (1)3軸移動機構のZ軸に取り付けられた少なくとも
2個の非接触式の変位センサをX−Y平面内で連続的に
走査しながら、予め設定された計測点に1つの前記変位
センサが一致するたびごとに、前記変位センサにより被
測定物までのZ方向の距離をそれぞれ測定する工程、
(2)前記工程において測定した2つのZ方向の距離か
ら被測定物の傾斜を求める工程、(3)予め設定された
走査速度と前記工程において求めた被測定物の傾斜から
前記Z軸の最適な制御条件を決定する工程、(4)前記
工程において決定した最適制御条件により前記Z軸を被
測定物からの高さが一定となるよう制御する工程、
(5)前記工程において前記Z軸の高さを一定に制御し
たときのZ座標と前記計測点のX,Y座標から被測定物
の三次元形状を算出する工程。
The three-dimensional shape measuring method according to the present invention is characterized by including the following steps (1) to (5). (1) At least two non-contact displacement sensors attached to the Z-axis of the three-axis moving mechanism are continuously scanned in the XY plane, and one displacement sensor is set at a preset measurement point. Each time when the two match, measuring the distance in the Z direction to the object to be measured by the displacement sensor,
(2) A step of obtaining the inclination of the object to be measured from the two distances in the Z direction measured in the step, (3) Optimizing the Z axis from the preset scanning speed and the inclination of the object to be measured obtained in the step. Different control conditions, (4) controlling the Z axis by the optimum control conditions determined in the process so that the height from the object to be measured is constant,
(5) A step of calculating a three-dimensional shape of the object to be measured from the Z coordinate and the X and Y coordinates of the measurement point when the height of the Z axis is controlled to be constant in the step.

【0009】また、本発明の測定方法に使用する三次元
形状測定装置は、3軸移動機構のZ軸に取り付けられ、
被測定物までのZ方向の距離を測定する少なくとも2個
の非接触式の変位センサと、前記3軸移動機構の位置決
め制御装置と、前記変位センサの出力から被測定物の傾
斜を求める傾斜演算手段、求めた被測定物の傾斜と予め
設定された走査速度から前記Z軸の最適な制御条件を決
定する制御条件決定手段、及び決定した最適制御条件に
より前記Z軸を被測定物からの高さが一定となるよう制
御する制御手段を有するデータ処理装置と、前記Z軸の
高さを一定に制御したときの前記変位センサ及び前記位
置決め制御装置のX,Y,Z座標を記憶する記憶装置と
を備えたことを特徴とする。
The three-dimensional shape measuring device used in the measuring method of the present invention is attached to the Z-axis of a three-axis moving mechanism,
At least two non-contact type displacement sensors for measuring the distance in the Z direction to the object to be measured, a positioning control device for the three-axis moving mechanism, and an inclination calculation for obtaining the inclination of the object to be measured from the output of the displacement sensor. Means, a control condition determining means for determining the optimum control condition of the Z axis from the determined inclination of the measured object and a preset scanning speed, and the Z axis from the measured object according to the determined optimum control condition. Data processing device having control means for controlling the X-axis to be constant, and a storage device for storing the X, Y and Z coordinates of the displacement sensor and the positioning control device when the height of the Z-axis is controlled to be constant. It is characterized by having and.

【0010】[0010]

【作用】本発明においては、少なくとも2個の非接触式
の変位センサが走査進行方向に一定に距離だけ離してZ
軸に取り付けられているので、これらの変位センサをX
−Y平面内で連続的に走査しながら、その一方の変位セ
ンサが予め設定された計測点に一致したときに、これら
の変位センサにより被測定物までのZ方向の距離を測定
することによって、被測定物の傾斜の大きさと向きが分
かる。この被測定物の傾斜状態(傾斜の大きさと向き)
を計測点ごとに検知し予測することによって、Z軸の被
測定物からの高さを一定に保つことが可能となる。すな
わち、被測定物の傾斜と予め設定された走査速度からZ
軸の最適な制御条件を決定し、その最適な制御条件でZ
軸の高さを一定に制御する。被測定物の傾斜状態は、例
えば制御パラメータで表わすことができ、この制御パラ
メータの最適条件を求めることによって被測定物の傾斜
状態に応じてZ軸の軸方向の加速度または速度を制御
し、Z軸の高さを一定に保つ。このため、Z軸の制御系
が安定し、制御遅れや振動、発振などは生じない。した
がって、Z軸を被測定物の表面状態に的確に追従させる
ことができ、変位センサの出力を一定に保つことができ
る。被測定物の三次元形状は、Z軸の高さを一定に制御
したときのZ座標と、計測点のX,Y座標を求めること
により、算出することができる。
According to the present invention, at least two non-contact type displacement sensors are arranged at a constant distance in the scanning direction Z.
These displacement sensors are attached to the X
-While continuously scanning in the Y plane, when one of the displacement sensors coincides with a preset measurement point, by measuring the distance in the Z direction to the object to be measured by these displacement sensors, The size and direction of the inclination of the DUT can be known. Inclination of this object (size and direction of inclination)
By detecting and predicting for each measurement point, the height of the Z axis from the object to be measured can be kept constant. That is, from the inclination of the object to be measured and the preset scanning speed, Z
Determine the optimum control condition for the axis, and use the optimum control condition for Z
The height of the shaft is controlled to be constant. The tilted state of the object to be measured can be represented by, for example, a control parameter. By obtaining the optimum condition of this control parameter, the acceleration or velocity in the axial direction of the Z axis is controlled according to the tilted state of the object to be measured, and Z Keep the shaft height constant. Therefore, the Z-axis control system is stable, and control delay, vibration, oscillation, etc. do not occur. Therefore, the Z axis can be made to accurately follow the surface state of the object to be measured, and the output of the displacement sensor can be kept constant. The three-dimensional shape of the measured object can be calculated by obtaining the Z coordinate when the height of the Z axis is controlled to be constant and the X and Y coordinates of the measurement point.

【0011】[0011]

【実施例】図1は本発明の測定方法に使用する三次元形
状測定装置の概要図である。本実施例は、X軸レール1
に沿ってX方向に移動する門型の移動体2にY方向及び
Z方向に移動可能なZ軸3を設けることによって、3軸
移動機構10を構成するとともに、このZ軸3の下端部
に、被測定物20までのZ方向の距離を測定する2個の
非接触式変位センサ4,5を互いに接近させて取り付け
たものである。3軸移動機構10は、常用の手段で構成
されたX,Y,Z軸の移動機構からなるものである。被
測定物20は2本のX軸レール1間に設置された定盤
(図示せず)の上に載置される。この定盤は非接触式変
位センサ4,5を走査するためのX−Y平面を構成す
る。
1 is a schematic diagram of a three-dimensional shape measuring apparatus used in the measuring method of the present invention. In this embodiment, the X-axis rail 1
The triaxial moving mechanism 10 is configured by providing the Z-axis 3 movable in the Y-direction and the Z-direction on the gate-shaped moving body 2 that moves in the X-direction along the Z-axis, and at the lower end of the Z-axis 3. The two non-contact type displacement sensors 4 and 5 for measuring the distance in the Z direction to the object to be measured 20 are mounted close to each other. The triaxial movement mechanism 10 is composed of X, Y, and Z axis movement mechanisms that are configured by conventional means. The DUT 20 is placed on a surface plate (not shown) installed between the two X-axis rails 1. This surface plate constitutes an XY plane for scanning the non-contact type displacement sensors 4 and 5.

【0012】本実施例では、3軸移動機構10の最大移
動量はX方向に10,000mm、Y方向に4,000mm 、Z方向に
2,000mm としており、各軸の最大移動速度は500mm/秒、
位置決め精度は0.1mm としている。
In this embodiment, the maximum movement amount of the triaxial moving mechanism 10 is 10,000 mm in the X direction, 4,000 mm in the Y direction, and in the Z direction.
2,000 mm, maximum movement speed of each axis is 500 mm / sec,
The positioning accuracy is 0.1mm.

【0013】また、非接触式変位センサの種類としては
いくつかあるが、ヘリウム・ネオンガスレーザとCCD
素子を用いたものや、半導体レーザとCCD素子を用い
たもの、あるいは超音波を用いたものなどが代表的であ
る。
There are several types of non-contact displacement sensors, such as a helium / neon gas laser and a CCD.
The one using an element, the one using a semiconductor laser and a CCD element, or the one using an ultrasonic wave is typical.

【0014】図2は上記測定装置を用いた測定システム
の構成を示すブロック図である。上記2個の非接触式変
位センサ4,5を装着したZ軸3を含むZ軸移動機構1
2は、さらにその変位センサ4,5をZ軸3と共にX−
Y平面内で連続的に移動させるX,Y軸移動機構による
X,Y走査移動機構11に搭載されている。変位センサ
4,5の出力はそれぞれアンプ13,14によって増幅
され、アンプ13,14の出力はインターフェース15
を通じてデータ処理装置16に取り込まれる。データ処
理装置16は、X,Y,Z軸移動機構の位置決め装置1
7に接続されており、3軸移動機構10の運転を制御す
るとともに、図示しない傾斜演算部、比較演算部、制御
条件決定部、速度制御部及び被測定物20の三次元形状
演算部を有するCPUとしての機能を有するものであ
る。各軸の移動機構にはエンコーダ等の位置検出器(図
示せず)が設けられており、これらの位置検出器の出力
をフィードバックすることにより、位置決め装置17に
より各軸の位置決めを行う。また、データ処理装置16
には、後述するように、3軸移動機構10の制御条件、
特にZ軸の走査速度、制御パラメータと加速度または移
動速度の関係や、変位センサ4,5の出力とX,Y走査
移動機構11の位置情報とを同期して記憶するための記
憶装置18が接続されている。
FIG. 2 is a block diagram showing the configuration of a measuring system using the above measuring apparatus. Z-axis movement mechanism 1 including Z-axis 3 equipped with the two non-contact displacement sensors 4 and 5
2 further includes the displacement sensors 4 and 5 together with the Z axis 3 in the X-
It is mounted on an X, Y scanning moving mechanism 11 which is an X, Y axis moving mechanism that moves continuously in the Y plane. The outputs of the displacement sensors 4 and 5 are amplified by the amplifiers 13 and 14, respectively, and the outputs of the amplifiers 13 and 14 are the interface 15
Is taken into the data processing device 16 through. The data processing device 16 is a positioning device 1 for an X, Y, Z axis moving mechanism.
7, which controls the operation of the three-axis moving mechanism 10, and has an inclination calculation unit, a comparison calculation unit, a control condition determination unit, a speed control unit, and a three-dimensional shape calculation unit for the object to be measured 20, which are not shown. It has a function as a CPU. A position detector (not shown) such as an encoder is provided in the moving mechanism of each axis, and the positioning device 17 positions each axis by feeding back the outputs of these position detectors. In addition, the data processing device 16
As will be described later, the control conditions of the three-axis moving mechanism 10,
In particular, a storage device 18 for storing the relationship between the scanning speed of the Z axis, the control parameter and the acceleration or the moving speed, and the output of the displacement sensors 4 and 5 and the position information of the X and Y scanning moving mechanism 11 is connected. Has been done.

【0015】データ処理装置16は以下のような処理を
行う。まず、図3に、2個の変位センサ4,5の出力か
ら、被測定物20の傾斜を求める方法を示す。2個の変
位センサ4,5の間の距離をΔLとし、センサA
(4)、センサB(5)と被測定物20との距離をそれ
ぞれZ1 ,Z2 とする。このとき、被測定物20の高低
差Hは H=Z1 −Z2 …(1) また、被測定物20の絶対平面(定盤表面)30に対す
る傾斜角θは θ=tan -1{(Z1 −Z2 )/ΔL} …(2) によって求められる。すなわち、(1)式、(2)式よ
り、その計測点における被測定物20の傾斜の大きさと
向きが分かる。
The data processing device 16 performs the following processing. First, FIG. 3 shows a method of obtaining the inclination of the DUT 20 from the outputs of the two displacement sensors 4 and 5. The distance between the two displacement sensors 4 and 5 is ΔL, and the sensor A
(4) The distance between the sensor B (5) and the object to be measured 20 is Z1 and Z2, respectively. At this time, the height difference H of the object to be measured 20 is H = Z1 −Z2 (1) Further, the inclination angle θ of the object to be measured 20 with respect to the absolute plane (surface plate surface) 30 is θ = tan −1 {(Z1 − Z2) / ΔL} (2) That is, from the equations (1) and (2), the size and direction of the inclination of the DUT 20 at the measurement point can be known.

【0016】さらに、Z軸3のX−Y平面における走査
速度をVとすると、 C1 =V/H (θ≠0) …(3) C2 =V/θ (θ≠0) …(4) で与えられるパラメータC1 ,C2 は、走査速度Vに対
する被測定物の傾斜の程度を表わすパラメータと定義で
きる。
Further, if the scanning speed of the Z-axis 3 in the XY plane is V, C1 = V / H (θ ≠ 0) (3) C2 = V / θ (θ ≠ 0) (4) The given parameters C1 and C2 can be defined as parameters indicating the degree of inclination of the object to be measured with respect to the scanning speed V.

【0017】データ処理装置16において、上記(1)
式から(4)式の計算を行い、位置決め制御装置17に
より計測点ごとにZ軸3の被測定物20からの高さを一
定に制御する。図4は上記パラメータC1 またはC2 に
よってZ軸3の高さを一定に制御するアルゴリズムを示
したもので、2個の変位センサ4,5の出力を常時参照
し、最適な制御条件でZ軸3の高さを一定に制御するこ
とにしている。まず、ステップS1 において、予め設定
された1計測点に一方の変位センサ、例えばセンサAが
一致したときに、センサA,Bの出力を取り込む。計測
点のX,Y座標は予め一定ピッチごとに設定されてお
り、例えば格子状の点として設定されている。次に、デ
ータ処理装置16の傾斜演算部により、上記(1)式、
(2)式より、その時の被測定物20の傾斜を計算する
(ステップS2 )。さらに、比較演算部により、上記
(3)式、(4)式より、パラメータC1 ,C2 を計算
し、それらの計算値でもって走査速度Vと被測定物20
の傾斜の程度を比較する(ステップS3 )。そして、制
御条件決定部により、Z軸3の制御パラメータC1 また
はC2 の最適条件を決定し(ステップS4 )、決定され
た最適条件の制御パラメータC1 またはC2 を制御部が
Z軸3の位置決め制御装置17に送り、Z軸3の高さを
制御する(ステップS5 )。これによって、Z軸3は被
測定物20の表面状態に追従して常に一定の高さに保持
される。この時のセンサAの出力であるZ座標と、計測
点ごとのX,Y座標を同期して記憶装置18に格納して
おき、後にこれらのX,Y,Z座標を取り出して、デー
タ処理装置16の三次元形状演算部または別に設けた演
算装置(図示せず)により被測定物20の三次元形状を
算出する。
In the data processor 16, the above (1)
The equation (4) is calculated from the equation, and the positioning control device 17 controls the height of the Z-axis 3 from the measured object 20 to be constant for each measurement point. FIG. 4 shows an algorithm for controlling the height of the Z-axis 3 to be constant by the above-mentioned parameter C1 or C2. The outputs of the two displacement sensors 4 and 5 are constantly referred to and the Z-axis 3 is controlled under optimum control conditions. It is decided to control the height of the constant. First, in step S1, when one displacement sensor, for example, the sensor A, coincides with one preset measurement point, the outputs of the sensors A and B are fetched. The X- and Y-coordinates of the measurement points are set in advance at constant pitches, and are set as grid points, for example. Next, the inclination calculation unit of the data processing device 16 causes the above equation (1) to
From the equation (2), the inclination of the DUT 20 at that time is calculated (step S2). Further, the comparison calculation unit calculates the parameters C1 and C2 from the above formulas (3) and (4), and the scanning speed V and the object to be measured 20 are calculated with the calculated values.
The degrees of inclination of the two are compared (step S3). Then, the control condition determining unit determines the optimum condition of the control parameter C1 or C2 of the Z axis 3 (step S4), and the control unit determines the control parameter C1 or C2 of the determined optimum condition for the positioning control device of the Z axis 3. Then, the height of the Z-axis 3 is controlled (step S5). As a result, the Z-axis 3 follows the surface condition of the object to be measured 20 and is always held at a constant height. The Z coordinate which is the output of the sensor A at this time and the X and Y coordinates of each measurement point are synchronously stored in the storage device 18, and these X, Y and Z coordinates are later taken out to obtain the data processing device. The three-dimensional shape of the DUT 20 is calculated by 16 three-dimensional shape calculation units or a separately provided calculation device (not shown).

【0018】上記の制御パラメータC1 またはC2 の最
適条件の決定方法は、例えば次のようにする。図5は制
御条件を最適化するための制御パラメータの与え方の一
例を示すもので、同図の(a),(b)に示すように、
Z軸3の軸方向の加速度αz 及び移動速度Vz をC1 ま
たはC2 の関数として、 αz =F1(C1)、または、αz =F2(C2) …(5) Vz =G1(C1)、または、Vz =G2(C2) …(6) のように定義するものである。(5)式、(6)式に従
って、例えば制御パラメータC1 またはC2 が大きいと
きはZ軸3の加速度αz または移動速度Vz を小さく
し、逆にC1 またはC2が小さいときはαz ,Vz を大
きくして、被測定物20の傾斜の程度に応じてZ軸3の
移動速度を制御する。このため、センサA,Bの出力を
一定に保つことができるとともに、Z軸3の制御遅れや
制御系の振動、発振などを生じることなく制御系を安定
させることができる。したがって、高速かつ高精度に被
測定物20の三次元形状を測定することができる。
A method of determining the optimum condition of the control parameter C1 or C2 is, for example, as follows. FIG. 5 shows an example of how to give control parameters for optimizing the control conditions. As shown in (a) and (b) of FIG.
Assuming the axial acceleration αz and the moving speed Vz of the Z-axis 3 as a function of C1 or C2, αz = F1 (C1) or αz = F2 (C2) (5) Vz = G1 (C1) or Vz = G2 (C2) (6) According to the equations (5) and (6), for example, when the control parameter C1 or C2 is large, the acceleration αz or moving speed Vz of the Z-axis 3 is decreased, and conversely, when C1 or C2 is small, αz and Vz are increased. Then, the moving speed of the Z-axis 3 is controlled according to the degree of inclination of the DUT 20. Therefore, the outputs of the sensors A and B can be kept constant, and the control system can be stabilized without causing control delay of the Z-axis 3, vibration of the control system, oscillation, and the like. Therefore, the three-dimensional shape of the DUT 20 can be measured at high speed and with high accuracy.

【0019】上記の実施例では、非接触式の変位センサ
が2個の場合について説明したが、3個以上でもよく、
この場合、変位センサを一直線上に配置するよりも三角
形の頂点に配置するほうが平面的に走査でき、都合がよ
い。
In the above embodiment, the case where the number of non-contact type displacement sensors is two has been described, but the number of non-contact type displacement sensors may be three or more.
In this case, it is convenient to dispose the displacement sensor at the apex of a triangle rather than to arrange it in a straight line because scanning can be performed in a plane.

【0020】[0020]

【発明の効果】以上のように本発明によれば、少なくと
も2個の非接触式の変位センサの出力から被測定物の傾
斜の大きさと向きを検知することができ、その傾斜の程
度に応じてZ軸の高さを一定に保つように制御するの
で、いかなる走査速度においても被測定物の形状に応じ
た最適なZ軸の制御を行うことができ、変位センサの出
力を一定に保つことができる。しかも、低速度から高速
度までのあらゆる走査速度においても、Z軸の制御遅れ
や制御系の振動、発振などを起こすことがなく、制御系
が安定するため、高速かつ高精度に被測定物の三次元形
状を測定することができる。
As described above, according to the present invention, it is possible to detect the magnitude and direction of the inclination of the object to be measured from the outputs of at least two non-contact type displacement sensors, and it is possible to detect the inclination and the degree of inclination. The height of the Z-axis is controlled to be constant, so that the Z-axis can be controlled optimally according to the shape of the object to be measured at any scanning speed, and the output of the displacement sensor can be kept constant. You can Moreover, at any scanning speed from low speed to high speed, the control system is stable without causing Z-axis control delay, control system vibration, oscillation, etc., so that the object to be measured can be measured at high speed and with high accuracy. It is possible to measure a three-dimensional shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る三次元形状測定装置の
概要図である。
FIG. 1 is a schematic diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention.

【図2】本発明の測定システム全体を示すブロック図で
ある。
FIG. 2 is a block diagram showing the entire measuring system of the present invention.

【図3】本発明において2個の変位センサの出力から被
測定物の傾斜を求める方法を示す説明図である。
FIG. 3 is an explanatory diagram showing a method for obtaining the inclination of the object to be measured from the outputs of two displacement sensors in the present invention.

【図4】本発明におけるZ軸の制御のアルゴリズムを示
すフローチャートである。
FIG. 4 is a flowchart showing an algorithm of Z-axis control in the present invention.

【図5】本発明における制御パラメータとZ軸の加速度
または移動速度の関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a control parameter and Z-axis acceleration or moving speed in the present invention.

【符号の説明】[Explanation of symbols]

1 X軸レール 2 移動体 3 Z軸 4,5 変位センサ 10 3軸移動機構 11 X,Y走査移動機構 12 Z軸移動機構 13,14 アンプ 15 インターフェース 16 データ処理装置 17 位置決め制御装置 18 記憶装置 20 被測定物 1 X-axis rail 2 Moving body 3 Z-axis 4,5 Displacement sensor 10 3-axis moving mechanism 11 X, Y scanning moving mechanism 12 Z-axis moving mechanism 13, 14 Amplifier 15 Interface 16 Data processing device 17 Positioning control device 18 Storage device 20 DUT

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 3軸移動機構のZ軸に取り付けられた少
なくとも2個の非接触式の変位センサをX−Y平面内で
連続的に走査しながら、予め設定された計測点に1つの
前記変位センサが一致するたびごとに、前記変位センサ
により被測定物までのZ方向の距離をそれぞれ測定する
工程と、 前記工程において測定した2つのZ方向の距離から被測
定物の傾斜を求める工程と、 予め設定された走査速度と前記工程において求めた被測
定物の傾斜から前記Z軸の最適な制御条件を決定する工
程と、 前記工程において決定した最適制御条件により前記Z軸
を被測定物からの高さが一定となるよう制御する工程
と、 前記工程において前記Z軸の高さを一定に制御したとき
のZ座標と前記計測点のX,Y座標から被測定物の三次
元形状を算出する工程と、からなる三次元形状測定方
法。
1. At least two non-contact type displacement sensors attached to the Z-axis of a three-axis moving mechanism are continuously scanned in an XY plane while one at a preset measurement point. Each time the displacement sensors match each other, the step of measuring the distance in the Z direction to the object to be measured by the displacement sensor, and the step of obtaining the inclination of the object to be measured from the two distances in the Z direction measured in the step. A step of determining an optimum control condition of the Z axis from a preset scanning speed and an inclination of the object to be measured obtained in the step, and the Z axis from the object to be measured according to the optimum control condition determined in the step. Of the object to be measured is calculated from the Z coordinate and the X and Y coordinates of the measurement point when the height of the Z axis is controlled to be constant in the step. And the process Three-dimensional shape measuring method consists of.
【請求項2】 3軸移動機構のZ軸に取り付けられ、被
測定物までのZ方向の距離を測定する少なくとも2個の
非接触式の変位センサと、 前記3軸移動機構の位置決め制御装置と、 前記変位センサの出力から被測定物の傾斜を求める傾斜
演算手段、求めた被測定物の傾斜と予め設定された走査
速度から前記Z軸の最適な制御条件を決定する制御条件
決定手段、及び決定した最適制御条件により前記Z軸を
被測定物からの高さが一定となるよう制御する制御手段
を有するデータ処理装置と、 前記Z軸の高さを一定に制御したときの前記変位センサ
及び前記位置決め制御装置のX,Y,Z座標を記憶する
記憶装置と、を備えた三次元形状測定装置。
2. A non-contact type displacement sensor, which is attached to the Z-axis of a three-axis moving mechanism and measures a Z-direction distance to an object to be measured, and a positioning control device for the three-axis moving mechanism. An inclination calculating means for obtaining the inclination of the object to be measured from the output of the displacement sensor, a control condition determining means for determining the optimum control condition of the Z axis from the obtained inclination of the object to be measured and a preset scanning speed, A data processing device having a control means for controlling the Z-axis so that the height from the object to be measured becomes constant under the determined optimum control condition, the displacement sensor when the Z-axis height is controlled to be constant, and A storage device for storing the X, Y, Z coordinates of the positioning control device, and a three-dimensional shape measuring device.
JP18325094A 1994-08-04 1994-08-04 Method and apparatus for measuring three-dimensional shape Pending JPH0843041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18325094A JPH0843041A (en) 1994-08-04 1994-08-04 Method and apparatus for measuring three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18325094A JPH0843041A (en) 1994-08-04 1994-08-04 Method and apparatus for measuring three-dimensional shape

Publications (1)

Publication Number Publication Date
JPH0843041A true JPH0843041A (en) 1996-02-16

Family

ID=16132399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18325094A Pending JPH0843041A (en) 1994-08-04 1994-08-04 Method and apparatus for measuring three-dimensional shape

Country Status (1)

Country Link
JP (1) JPH0843041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582839A2 (en) * 2004-03-31 2005-10-05 Nitto Denko Corporation Apparatus and Method for Measuring the Shape of a Surface
CN105157657A (en) * 2015-05-19 2015-12-16 中国华能集团清洁能源技术研究院有限公司 Reflective mirror type detection system and method
CN111504238A (en) * 2020-04-29 2020-08-07 河南柴油机重工有限责任公司 Micro-amplitude displacement testing method and device for vibration isolation device in diesel engine running state

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582839A2 (en) * 2004-03-31 2005-10-05 Nitto Denko Corporation Apparatus and Method for Measuring the Shape of a Surface
EP1582839A3 (en) * 2004-03-31 2006-01-18 Nitto Denko Corporation Apparatus and Method for Measuring the Shape of a Surface
US7336373B2 (en) 2004-03-31 2008-02-26 Nitto Denko Corporation Surface shape measuring apparatus and surface shape measuring method
CN105157657A (en) * 2015-05-19 2015-12-16 中国华能集团清洁能源技术研究院有限公司 Reflective mirror type detection system and method
CN111504238A (en) * 2020-04-29 2020-08-07 河南柴油机重工有限责任公司 Micro-amplitude displacement testing method and device for vibration isolation device in diesel engine running state
CN111504238B (en) * 2020-04-29 2021-12-03 河南柴油机重工有限责任公司 Micro-amplitude displacement testing method and device for vibration isolation device in diesel engine running state

Similar Documents

Publication Publication Date Title
US6044569A (en) Measuring method and measuring instrument
JP3341933B2 (en) Scanning method and scanning device for workpiece surface
US6973738B2 (en) Measuring method and device, machine tool having such device, and work processing method
US6412329B1 (en) Method of and apparatus for reducing vibrations on probes carried by coordinate measuring machines
US5583443A (en) Calibration of capacitance probe
JP5069287B2 (en) Error correction method
JP3634275B2 (en) Position measuring device
US20080065341A1 (en) Surface-profile measuring instrument
US8676527B2 (en) Industrial machine
JP3396409B2 (en) Method and apparatus for measuring shape and size of work
US20080028626A1 (en) Use Of Surface Measurement Probes
JPS6398508A (en) Method of using analog measuring probe and positioning device
JP2727067B2 (en) Shape measuring instruments
JPH0843041A (en) Method and apparatus for measuring three-dimensional shape
JP2005037197A (en) Contact type surface shape measuring device and measuring method
JP2010008277A (en) Variable end measure
CN110977612A (en) CNC (computer numerical control) machining online measurement error correction method and system
JPH0123041B2 (en)
JP3961293B2 (en) Surface texture copying measuring method, program, and recording medium
JPH11190617A (en) Three-dimensional measuring apparatus
JP5064725B2 (en) Shape measurement method
JPH11320266A (en) Wire electric discharge machining method and device
JP2579726B2 (en) Contact probe
JP2679236B2 (en) Non-contact type shape measuring device
JP6564171B2 (en) Shape measuring apparatus and shape measuring method