JPH0842360A - Method for controlling gas turbine exhaust gas temperature - Google Patents

Method for controlling gas turbine exhaust gas temperature

Info

Publication number
JPH0842360A
JPH0842360A JP18003494A JP18003494A JPH0842360A JP H0842360 A JPH0842360 A JP H0842360A JP 18003494 A JP18003494 A JP 18003494A JP 18003494 A JP18003494 A JP 18003494A JP H0842360 A JPH0842360 A JP H0842360A
Authority
JP
Japan
Prior art keywords
temperature
exhaust gas
control
gas turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18003494A
Other languages
Japanese (ja)
Inventor
Tokio Kawasaki
時雄 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18003494A priority Critical patent/JPH0842360A/en
Publication of JPH0842360A publication Critical patent/JPH0842360A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable the exhaust gas temperature rise to be restrained even if a combustor casing pressure is dropped in the exhaust gas temperature control of a gas turbine. CONSTITUTION:When inlet gas pressure of a gas turbine, namely, combustor casing pressure is dropped, the exhaust gas temperature adjusting temperature 1, blade pass temperature adjusting temperature 2, and exhaust gas and blade pass deviation large trip temperatures 3, 4 obtained by adding the overshoot amount of 45 deg.C to them are raised. When the casing pressure becomes the set pressure 20 or less to be set by the high temperature strength of the exhaust duct, the temperature adjusting control temperatures 11, 12 and control deviation temperatures 13, 14 are maintained to the constant value, thereby the exhaust gas temperature is not raised to higher than this constant value, and burning of an exhaust duct by high temperature can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンバインドプラントを
構成するガスタービンの排ガス温度制御に係り、燃焼器
車室圧力が低下した際に排ガスの温度上昇を制限するガ
スタービン排ガス温度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas temperature control of a gas turbine constituting a combined plant, and more particularly to a gas turbine exhaust gas temperature control method for limiting an increase in exhaust gas temperature when a pressure in a combustor casing decreases.

【0002】[0002]

【従来の技術】ガスタービンの排ガス温度はタービン最
終段直後とその後流の排気ダクトとで計測され、それぞ
れの計測された温度信号はガスタービン発電機制御盤へ
送られて、燃料の制御や警報及びトリップ動作に供され
ている。
2. Description of the Related Art Exhaust gas temperature of a gas turbine is measured immediately after the last stage of the turbine and in an exhaust duct downstream of the turbine, and the measured temperature signals are sent to a gas turbine generator control panel for fuel control and alarms. It is also used for trip operations.

【0003】タービン最終段直後で計測された温度は、
「ブレードパス温度」、後流の排気ダクトで計測された
温度は、「排ガス温度」と呼ばれている。負荷運転中の
排ガス温調制御線は、図2の温度特性図に示すように、
例えば、タービン入口ガス温度を1350℃に制限するよう
に、燃焼器車室圧力(タービン入口ガス圧力に相当す
る)の関数として平均ガス温度の上限値が設定されてい
る。
The temperature measured immediately after the last stage of the turbine is
The "blade path temperature" and the temperature measured in the wake exhaust duct are called the "exhaust gas temperature". The exhaust gas temperature control line during load operation is as shown in the temperature characteristic diagram of FIG.
For example, the upper limit of the average gas temperature is set as a function of the combustor casing pressure (corresponding to the turbine inlet gas pressure) so as to limit the turbine inlet gas temperature to 1350 ° C.

【0004】即ち、この関係を式で示すと次の(1)式
となる。
That is, if this relationship is expressed by an equation, the following equation (1) is obtained.

【0005】[0005]

【数1】 [Equation 1]

【0006】排ガス圧力P2 は大気圧力に相当するた
め、タービン入口ガス温度T1 を設定すると排ガス温度
の設定値はタービン入口ガス圧力P1 の関数となる。排
ガス温度は複数箇所じ計測され、その平均値が使われ
る。
Since the exhaust gas pressure P 2 corresponds to the atmospheric pressure, when the turbine inlet gas temperature T 1 is set, the set value of the exhaust gas temperature becomes a function of the turbine inlet gas pressure P 1 . The exhaust gas temperature is measured at multiple points and the average value is used.

【0007】ブレードパス温度はタービン最終段直後の
環状通路で燃焼器と同数の計器が計測され、従って各燃
焼器内燃焼状況の監視に供される。このブレードパス温
度は計測部のガス温度分布の影響により、排ガス温度よ
りも高い値を示す傾向がある。このため図2に示すよう
に、ブレードパス温調制御線(2)は排ガス温調制御線
(1)に薬15℃のバイアス値を加えて設定される。
The blade path temperature is measured by the same number of instruments as the combustor in the annular passage immediately after the last stage of the turbine, and is therefore used for monitoring the combustion condition in each combustor. This blade path temperature tends to show a value higher than the exhaust gas temperature due to the influence of the gas temperature distribution in the measuring section. Therefore, as shown in FIG. 2, the blade path temperature control line (2) is set by adding a bias value of 15 ° C. to the exhaust gas temperature control line (1).

【0008】次に、ガスタービンの運転状態が急変する
と過渡的に排ガス温度とブレードパス温度が上昇する。
このため、前記の温調制御線(1),(2)にオーバシ
ュート量を加えた制御偏差大トリップ線(3),(4)
が設定されている。オーバシュート量は図2に示すよう
に排ガス温度及びブレードパス温度共に経験的に例えば
約45℃と設定される。
Next, when the operating state of the gas turbine suddenly changes, the exhaust gas temperature and the blade path temperature transiently rise.
Therefore, a large control deviation trip line (3), (4) in which an overshoot amount is added to the temperature control lines (1), (2).
Is set. As shown in FIG. 2, the overshoot amount is empirically set to about 45 ° C. for both the exhaust gas temperature and the blade pass temperature.

【0009】即ち、排ガス及びブレードパスの温調制御
が正常であればオーバシュート量が45℃を超えること
は通常の運転状態では発生せず、オーバシュート量が4
5℃を超えることは温調制御が異常であると判断されて
ガスタービンはトリップする。
That is, if the temperature control of the exhaust gas and the blade path is normal, the overshoot amount exceeding 45 ° C. does not occur in the normal operating state, and the overshoot amount is 4
If the temperature exceeds 5 ° C, it is determined that the temperature control is abnormal, and the gas turbine trips.

【0010】[0010]

【発明が解決しようとする課題】前記従来の技術には下
記の問題点があった。
The above-mentioned conventional techniques have the following problems.

【0011】(1) ガスタービン・蒸気タービンコン
バインドプラントでは、部分負荷時にガスタービンの空
気圧縮機入口案内翼をしぼり、勝手に制御してガスター
ビン排ガス温度を上げて、プラント部分負荷時の熱効率
の向上を図る運転制御方式が採られている。
(1) In the gas turbine / steam turbine combined plant, the air compressor inlet guide vanes of the gas turbine are squeezed at the time of partial load, and the temperature of the gas turbine exhaust gas is raised by arbitrarily controlling it to improve the thermal efficiency at the time of partial load of the plant. The operation control method for improvement is adopted.

【0012】空気圧縮機の入口案内翼を閉めると排ガス
温度が上るのは、空気圧縮機の流量が減って圧縮比すな
わちガスタービンのタービン入口ガス圧力が下がり、入
口ガス温度が同一の場合には排ガス温度が上るためによ
る。
When the inlet guide vanes of the air compressor are closed, the exhaust gas temperature rises because the flow rate of the air compressor decreases and the compression ratio, that is, the turbine inlet gas pressure of the gas turbine decreases and the inlet gas temperature remains the same. This is because the exhaust gas temperature rises.

【0013】(2) 従来の温調制御及び偏差大トリッ
プはタービン入口ガス温度の制御設定によるもので、
(1)項の運転制御によってタービン入口ガス圧力、す
なわち、燃焼器車室圧力が低下すると、ブレードパス及
び排ガス温度が異常に上昇し、排気ダクトの高温強度面
から危険な運転領域へ突入する場合があった。
(2) The conventional temperature control and large deviation trip are due to the control setting of the turbine inlet gas temperature.
When the turbine inlet gas pressure, that is, the combustor casing pressure decreases due to the operation control in item (1), the blade path and exhaust gas temperature rise abnormally, and the high-temperature strength of the exhaust duct enters a dangerous operating area. was there.

【0014】[0014]

【課題を解決するための手段】本発明はこのような課題
を解決するために、ガスタービンの燃焼器車室圧力が低
下して設定圧力以下になると、それまで上昇していた排
ガス温調制御温度及びブレードパス温調制御温度を一定
値に保持させるような方法とする。又、設定圧力以下で
は、これら制御温度のオーバシュート量を設定した排ガ
ス制御偏差大トリップ温度及びブレードパス制御偏差大
トリップ温度も一定値を保持させる方法も提供する。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an exhaust gas temperature control that has risen until the combustor casing pressure of a gas turbine falls below a set pressure. The method is such that the temperature and the blade path temperature control temperature are maintained at constant values. Further, there is also provided a method in which the exhaust gas control deviation large trip temperature and the blade path control deviation large trip temperature in which the overshoot amounts of these control temperatures are set are maintained at a constant value at a set pressure or less.

【0015】即ち、本発明は、(1)空気圧縮機入口案
内翼可変ピッチ機構を有してコンバインドプラントを構
成するガスタービンの排ガス温度制御方法であって、前
記ガスタービンの燃焼器車室圧力が低下して設定圧力以
下になると、それまで前記燃焼器車室圧力の低下と共に
上昇してきた排ガス温調制御温度及びブレードパス温調
制御温度を一定値に保持させることを特徴とするガスタ
ービンの排ガス温度制御方法を提供する。
That is, the present invention is (1) a method for controlling an exhaust gas temperature of a gas turbine having an air compressor inlet guide vane variable pitch mechanism to constitute a combined plant, wherein the combustor casing pressure of the gas turbine is Of the gas turbine characterized by holding the exhaust gas temperature control temperature and the blade path temperature control temperature that have increased with the decrease of the combustor casing pressure up to that point when the pressure falls below the set pressure. An exhaust gas temperature control method is provided.

【0016】更に、(2)の発明として、(1)の発明
において、前記設定圧力以下では、前記排ガス温調制御
温度及びブレードパス温調制御温度にそれぞれ一定のオ
ーバシュート量を加えて設定される排ガス制御偏差大ト
リップ温度及びブレードパス制御偏差大トリップ温度も
一定値に保持させることを特徴とするガスタービンの排
ガス温度制御方法も提供する。
Further, as the invention of (2), in the invention of (1), below the set pressure, the exhaust gas temperature control temperature and the blade path temperature control temperature are set by adding a certain amount of overshoot. Also provided is an exhaust gas temperature control method for a gas turbine, characterized in that the exhaust gas control deviation large trip temperature and the blade path control deviation large trip temperature are also maintained at constant values.

【0017】[0017]

【作用】本発明はこのような手段により、その(1)の
発明においては、燃焼器車室圧力の低下とともに上昇し
てきた排ガス温調制御温度、ブレードパス温調制御温度
は、徐々に上昇してゆき、この燃焼器車室圧力が排気ダ
クトの高温面強度から設定された設定温度に対応する圧
力以下となると、これらの制御温度はいずれも一定に保
持されるので、ガスタービンの空気圧縮機入口案内翼を
しぼって制御しても排ガス温度の異常な上昇がなく、排
気ダクトの高温による焼損が防止される。
According to the invention (1), the exhaust gas temperature control temperature and the blade path temperature control temperature, which have increased with the decrease in the combustor casing pressure, gradually increase by such means. When the combustor casing pressure becomes equal to or lower than the pressure corresponding to the set temperature set from the high temperature surface strength of the exhaust duct, all of these control temperatures are held constant, so the air compressor of the gas turbine Even if the inlet guide vanes are squeezed and controlled, the exhaust gas temperature does not rise abnormally and burnout due to the high temperature of the exhaust duct is prevented.

【0018】(2)の発明においては、(1)の発明に
おける排ガス温調制御温度及びブレードパス温調制御温
度にオーバシュート量を加えて設定される排ガス制御偏
差大トリップ温度及びブレードパス制御偏差大トリップ
温度も設定圧力以下では一定に保持されるので、前述の
(1)の発明の作用,効果を奏すると共に、万一異常な
温度上昇が発生したとしてもガスタービンは確実にトリ
ップされ、信頼性が向上するものである。
In the invention of (2), the exhaust gas control deviation large trip temperature and the blade path control deviation set by adding the overshoot amount to the exhaust gas temperature control temperature and the blade path temperature control temperature in the invention of (1). Since the large trip temperature is also kept constant below the set pressure, the function and effect of the invention of the above (1) can be exerted, and even if an abnormal temperature rise occurs, the gas turbine is surely tripped and is reliable. It improves the sex.

【0019】[0019]

【実施例】以下、本発明の一実施例に係るガスタービン
排ガス温度制御方法について図面に基づいて具体的に説
明する。図1は1350℃級の大容量ガスタービンに関する
本発明を適用したブレードパス及び排ガス設定温度の特
性図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A gas turbine exhaust gas temperature control method according to an embodiment of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a characteristic diagram of a blade path and an exhaust gas set temperature to which the present invention is applied regarding a large capacity gas turbine of 1350 ° C. class.

【0020】ガスタービンプラントが部分負荷で運転す
るようになると、空気圧縮機入口案内翼を閉じ、勝手に
制御する方法が採用され、空気圧縮機の流量が減少し、
ガスタービン入口ガス圧力、即ち、燃焼器車室圧力が低
下して図1に(20)で示す設定圧力(11.4kg/
cm2 G)に近き、これと共に排ガスの温度も上昇して
ゆく。
When the gas turbine plant is operated at a partial load, a method of closing the air compressor inlet guide vanes and arbitrarily controlling it is adopted to reduce the flow rate of the air compressor.
The gas pressure at the gas turbine inlet, that is, the combustor casing pressure decreases, and the set pressure (11.4 kg /
cm 2 G), and the temperature of the exhaust gas rises with this.

【0021】燃焼器車室圧力が設定圧力(20)に達す
ると、それ以下では燃焼器車室圧力にかかわらず排ガス
温調制御温度(1)は(11)で示すように615℃、
ブレードパス温調制御温度(2)は(12)で示す63
0℃、排ガス制御偏差大トリップ温度(3)は(13)
で示す660℃、ブレードパス制御偏差大トリップ温度
(4)は(14)で示す675℃一定に保持される。
When the combustor casing pressure reaches the set pressure (20), the exhaust gas temperature control temperature (1) is 615 ° C. or lower as shown in (11) below that regardless of the combustor casing pressure.
The blade pass temperature control temperature (2) is 63 indicated by (12).
0 ℃, exhaust gas control deviation large trip temperature (3) is (13)
The blade path control deviation large trip temperature (4) indicated by (4) is held constant at 675 ° C (14).

【0022】なお設定圧力(20)以上は定格負荷域
(31)、以下は部分負荷域(32)と呼ばれる。また
バイアス値15℃とオーバシュート量45℃は従来と変
わらない。
The set pressure (20) and above is called the rated load range (31), and the following is called the partial load range (32). Further, the bias value of 15 ° C. and the overshoot amount of 45 ° C. are the same as in the conventional case.

【0023】このような温度を一定とする制御は実際に
はコンピュータによるDDCコントロールにて各プラン
トの機器のバルブ類を制御して行なわれる。
Such control for keeping the temperature constant is actually performed by controlling the valves of the equipment of each plant by DDC control by a computer.

【0024】この設定圧力は排気ガスにさらされる排気
ダクトの高温強度面から焼損を防止する上限の温度に対
応する圧力を設定するものである。このように、本実施
例においてはガスタービン空気圧縮機の入口案内翼を閉
じて勝手に制御しても排ガスの温度はこの設定圧力で定
まる温度以上には上昇せず、又、そのオーバシュート量
で決められた排ガス制御偏差大トリップ温度及びブレー
ドパス制御偏差大温度も一定となるので高温の排ガスに
よる排気ダクトの焼損が防止されるものである。
This set pressure sets the pressure corresponding to the upper limit temperature for preventing burnout from the high temperature strength side of the exhaust duct exposed to the exhaust gas. As described above, in this embodiment, even if the inlet guide vanes of the gas turbine air compressor are closed and controlled arbitrarily, the temperature of the exhaust gas does not rise above the temperature determined by this set pressure, and the overshoot amount thereof Since the exhaust gas control deviation large trip temperature and the blade path control deviation large temperature determined in step 1 are also constant, burning of the exhaust duct due to high temperature exhaust gas is prevented.

【0025】[0025]

【発明の効果】以上、具体的に説明したように、本発明
の方法によれば、空気圧縮機入口案内翼可変ピッチ機構
を有してコンバインドプラントを構成するガスタービン
において、燃焼器車室圧力が設定圧力以下に低下しても
排ガス温調制御温度及びブレードパス温調制御温度の上
昇を抑えて一定値になるように保持するので、ガスター
ビン・蒸気タービンコンバインドプラントの部分負荷運
転時、プラント部分負荷効率を向上させるためにガスタ
ービン空気圧縮機の入口案内翼を閉り勝手に制御しても
排ガス温度が異常に上昇せず、排ガスダクトの焼損が防
止されて、この種ガスタービンの信頼性が向上するもの
である。
As described above in detail, according to the method of the present invention, in the gas turbine which has the air compressor inlet guide vane variable pitch mechanism and constitutes the combined plant, the combustor casing pressure Is maintained below a set pressure, the exhaust gas temperature control temperature and the blade path temperature control temperature are kept at a constant value by suppressing the increase.Therefore, during partial load operation of the gas turbine / steam turbine combined plant, the plant Even if the inlet guide vanes of the gas turbine air compressor are closed and controlled arbitrarily to improve the partial load efficiency, the temperature of the exhaust gas does not rise abnormally and burnout of the exhaust gas duct is prevented. It improves the sex.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るガスタービン排ガス温
度制御方法における排ガス設定温度の特性図である。
FIG. 1 is a characteristic diagram of an exhaust gas set temperature in a gas turbine exhaust gas temperature control method according to an embodiment of the present invention.

【図2】従来のガスタービン排ガス温度の特性図であ
る。
FIG. 2 is a characteristic diagram of a conventional gas turbine exhaust gas temperature.

【符号の説明】 11 排ガス温調制御温度 12 ブレードパス温調制御温度 13 排ガス制御偏差大トリップ温度 14 ブレードパス制御偏差大トリップ温度 20 設定圧力 31 定格負荷域 32 部分負荷域[Explanation of symbols] 11 Exhaust gas temperature control temperature 12 Blade path temperature control temperature 13 Exhaust gas control deviation large trip temperature 14 Blade path control deviation large trip temperature 20 Set pressure 31 Rated load range 32 Partial load range

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空気圧縮機入口案内翼可変ピッチ機構を
有してコンバインドプラントを構成するガスタービン排
ガス温度制御方法であって、前記ガスタービンの燃焼器
車室圧力が低下して設定圧力以下になると、それまで前
記燃焼器車室圧力の低下と共に上昇してきた排ガス温調
制御温度及びブレードパス温調制御温度を一定値に保持
させることを特徴とするガスタービン排ガス温度制御方
法。
1. A method for controlling a gas turbine exhaust gas temperature, comprising a combined plant having an air compressor inlet guide vane variable pitch mechanism, wherein a combustor casing pressure of the gas turbine decreases to a set pressure or less. Then, the gas turbine exhaust gas temperature control method is characterized in that the exhaust gas temperature control temperature and the blade path temperature control temperature, which have risen with the decrease in the combustor casing pressure, are held at constant values.
【請求項2】 前記設定圧力以下では、前記排ガス温調
制御温度及びブレードパス温調制御温度にそれぞれ一定
のオーバシュート量を加えて設定される排ガス制御偏差
大トリップ温度及びブレードパス制御偏差大トリップ温
度も一定値に保持させることを特徴とする請求項1記載
のガスタービン排ガス温度制御方法。
2. The exhaust gas control deviation large trip temperature and the blade path control deviation large trip, which are set by adding a certain amount of overshoot to the exhaust gas temperature control temperature and the blade path temperature control temperature, respectively, below the set pressure. The gas turbine exhaust gas temperature control method according to claim 1, wherein the temperature is also maintained at a constant value.
JP18003494A 1994-08-01 1994-08-01 Method for controlling gas turbine exhaust gas temperature Withdrawn JPH0842360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18003494A JPH0842360A (en) 1994-08-01 1994-08-01 Method for controlling gas turbine exhaust gas temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18003494A JPH0842360A (en) 1994-08-01 1994-08-01 Method for controlling gas turbine exhaust gas temperature

Publications (1)

Publication Number Publication Date
JPH0842360A true JPH0842360A (en) 1996-02-13

Family

ID=16076325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18003494A Withdrawn JPH0842360A (en) 1994-08-01 1994-08-01 Method for controlling gas turbine exhaust gas temperature

Country Status (1)

Country Link
JP (1) JPH0842360A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309279A (en) * 2006-05-22 2007-11-29 Mitsubishi Heavy Ind Ltd Gas turbine output learning circuit and combustion control device for gas turbine equipped with the circuit
US8069646B2 (en) 2006-09-07 2011-12-06 Hitachi, Ltd. Gas turbine system having an air intake bypass system and an air discharge bypass system
JP2012002126A (en) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd Exhaust gas temperature estimating device, exhaust gas temperature estimating method, and gas turbine plant
WO2015033769A1 (en) * 2013-09-06 2015-03-12 三菱日立パワーシステムズ株式会社 Gas turbine plant, control device thereof, and gas turbine operation method
WO2016035416A1 (en) * 2014-09-02 2016-03-10 三菱日立パワーシステムズ株式会社 Control device, system, and control method, and power control device, gas turbine, and power control method
JP2016050571A (en) * 2014-09-02 2016-04-11 三菱日立パワーシステムズ株式会社 Control device, system, and control method
JP2016061242A (en) * 2014-09-18 2016-04-25 三菱日立パワーシステムズ株式会社 Power control device, gas turbine and power control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309279A (en) * 2006-05-22 2007-11-29 Mitsubishi Heavy Ind Ltd Gas turbine output learning circuit and combustion control device for gas turbine equipped with the circuit
US8069646B2 (en) 2006-09-07 2011-12-06 Hitachi, Ltd. Gas turbine system having an air intake bypass system and an air discharge bypass system
JP2012002126A (en) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd Exhaust gas temperature estimating device, exhaust gas temperature estimating method, and gas turbine plant
CN105492740A (en) * 2013-09-06 2016-04-13 三菱日立电力系统株式会社 Gas turbine plant, control device thereof, and gas turbine operation method
WO2015033769A1 (en) * 2013-09-06 2015-03-12 三菱日立パワーシステムズ株式会社 Gas turbine plant, control device thereof, and gas turbine operation method
JP2015052288A (en) * 2013-09-06 2015-03-19 三菱重工業株式会社 Gas turbine plant, control device for the same and gas turbine operation method
KR20160027073A (en) 2013-09-06 2016-03-09 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Gas turbine plant, control device thereof, and gas turbine operation method
CN105492740B (en) * 2013-09-06 2017-07-21 三菱日立电力系统株式会社 The operation method of gas turbine equipment and its control device and gas turbine
WO2016035416A1 (en) * 2014-09-02 2016-03-10 三菱日立パワーシステムズ株式会社 Control device, system, and control method, and power control device, gas turbine, and power control method
CN106574557A (en) * 2014-09-02 2017-04-19 三菱日立电力系统株式会社 Control device, system, and control method, power control device, gas turbine, and power control method
JP2016050571A (en) * 2014-09-02 2016-04-11 三菱日立パワーシステムズ株式会社 Control device, system, and control method
CN106574557B (en) * 2014-09-02 2018-09-25 三菱日立电力系统株式会社 Control device, system and control method and power control unit, gas turbine and power-control method
US10669959B2 (en) 2014-09-02 2020-06-02 Mitsubishi Hitachi Power Systems, Ltd. Control device, system, control method, power control device, gas turbine, and power control method
JP2016061242A (en) * 2014-09-18 2016-04-25 三菱日立パワーシステムズ株式会社 Power control device, gas turbine and power control method

Similar Documents

Publication Publication Date Title
JP3783442B2 (en) Control method of gas turbine
EP2292910B1 (en) Method for the control of gas turbine engines
JP4571273B2 (en) How to operate an industrial gas turbine for optimum performance.
KR101775861B1 (en) Combustion control device and combustion control method for gas turbine, and program
US4967552A (en) Method and apparatus for controlling temperatures of turbine casing and turbine rotor
JPH11324727A (en) Controlling method for combustion dynamics of combustor of turbine
WO2012132062A1 (en) Method for operating gas compressor, and gas turbine provided with gas compressor
JP2010025069A (en) Control device of two-shaft type gas turbine system
US20180058334A1 (en) System and method to vary exhaust backpressure on gas turbine
RU2635422C2 (en) Method of operation of gas turbine in mode with partial load and gas turbine
JP3677536B2 (en) Gas turbine power generation control device
JPH0842360A (en) Method for controlling gas turbine exhaust gas temperature
CN111594321A (en) Anti-surge and anti-surge flow adjusting system and anti-surge flow adjusting method for gas turbine
JP5501870B2 (en) gas turbine
JP7478597B2 (en) Gas turbine control device and method, and gas turbine
US10221777B2 (en) Gas turbine combustion control device and combustion control method and program therefor
JP3849071B2 (en) Operation method of gas turbine equipment
US11333073B2 (en) Gas turbine and the method of controlling bleed air volume for gas turbine
JP4841497B2 (en) Co-generation power generation facility using single-shaft combined cycle power generation facility and operation method thereof
JPH05171958A (en) Gas turbine cooling air control device
RU2645184C2 (en) Method for operating gas turbine below nominal power thereof
US11203983B2 (en) Method of operating gas turbine and gas turbine
JPH0932508A (en) Combined cycle plant
JP3811033B2 (en) Control device for gas turbine equipment
JP2014040783A (en) Gas turbine control device, gas turbine control method, and power generation system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002