JPH0841811A - Snow-thawing equipment of road and running method thereof - Google Patents

Snow-thawing equipment of road and running method thereof

Info

Publication number
JPH0841811A
JPH0841811A JP17546194A JP17546194A JPH0841811A JP H0841811 A JPH0841811 A JP H0841811A JP 17546194 A JP17546194 A JP 17546194A JP 17546194 A JP17546194 A JP 17546194A JP H0841811 A JPH0841811 A JP H0841811A
Authority
JP
Japan
Prior art keywords
heat generating
partial
generating unit
snow melting
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17546194A
Other languages
Japanese (ja)
Other versions
JP2825443B2 (en
Inventor
Kenichi Nemoto
憲一 根本
Yuichi Kobayashi
裕一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Original Assignee
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Hokkaido Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP17546194A priority Critical patent/JP2825443B2/en
Publication of JPH0841811A publication Critical patent/JPH0841811A/en
Application granted granted Critical
Publication of JP2825443B2 publication Critical patent/JP2825443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Road Paving Structures (AREA)

Abstract

PURPOSE:To reduce cost, by wiring electric circuits so as to change over a circuit energizing only a larger partial heating unit and a circuit energizing both larger and smaller partial heating units connected together in series, to each other. CONSTITUTION:When snowfall is detected, an electric voltage is applied on the partial heating units A1, A2 having a larger area in the heating units 1, 2 in the state that switches SW1, SW2 are closed and a switch SW3 is opened, to thaw snow within a specified range of a road, for a fast thawing operation. When the temperature of the pavement body on the road reaches a specified figure, the switches SW1, SW2 are opened and the partial heating units A1, A2 with a larger area are connected to the partial heating units B1, B2 with a smaller area in series and then, a voltage is applied to do a steady thawing operation. When necessary, the partial heating unit C is actuated to thaw snow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、道路面などの融雪箇所
を融雪する電熱式道路融雪設備とその運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric heating type snow melting facility for melting snow at a snow melting point such as a road surface and a method of operating the same.

【0002】[0002]

【従来の技術】道路融雪設備は、交通の量および安全性
を確保するために、坂道、日陰部、急カーブ、ブレーキ
ゾーン、横断歩道などに採用されている。従来の道路融
雪設備は、以下のような方法で運転されている。即ち、 1)予熱運転:急な降雪に対処するため、舗装体を融雪
温度に対して数〜10℃の低い温度まで予め温めてお
き、舗装体の温度が融雪温度まで立ち上がる時間を短縮
する運転方法。 2)優先・非優先運転:融雪箇所が複数に区分された各
融雪区画ごとに発熱ユニットを設置し、それぞれの発熱
ユニットを個別にON、OFFして融雪区画ごとに融雪
する運転方法。この場合、全ての融雪区画を同時に運転
させるときの消費電力は、発熱ユニットの数×各発熱ユ
ニットの消費電力となるため、発熱ユニットの数が多く
なると消費電力、従って電力設備容量が非常に大きくな
る。そこで、多くの融雪区画を、優先的に融雪する優先
区画と、そうでない非優先区画とに分け、通電制御によ
って生じた優先区画の通電休止時間に非優先区画に通電
し、電力設備容量を小さくする工夫がなされている。な
お、発熱ユニットの発熱密度は、一般的に次のような値
が採用されている。 寒冷地空中部(橋梁部) :250〜350W/m2 寒冷地道路部 :200〜300W/m2 その他の空中部(橋梁部):200〜300W/m2 その他の道路部 :120〜250W/m2
2. Description of the Related Art Road snow melting equipment is used in slopes, shaded areas, sharp curves, brake zones, pedestrian crossings, etc. in order to secure traffic volume and safety. Conventional road snow melting equipment is operated by the following method. 1) Preheating operation: In order to cope with sudden snowfall, the pavement is preheated to a temperature as low as several tens of degrees Celsius with respect to the snow melting temperature, and the time for the temperature of the pavement to rise to the snow melting temperature is shortened. Method. 2) Priority / non-priority operation: An operation method in which a heat-generating unit is installed in each snow-melting section in which snow-melting points are divided into multiple sections, and each heat-generating unit is individually turned on / off to melt snow in each snow-melting section. In this case, the power consumption when operating all the snow melting sections at the same time is the number of heat generating units x the power consumption of each heat generating unit, so if the number of heat generating units is large, the power consumption, and therefore the power facility capacity, is very large. Become. Therefore, many snowmelt sections are divided into priority sections that preferentially melt snow and non-priority sections, and the non-priority sections are energized during the energization suspension time of the priority sections caused by energization control, reducing the power equipment capacity. The device to do is made. The following values are generally adopted for the heat generation density of the heat generating unit. Cold region aerial part (bridge part): 250 to 350 W / m 2 Cold region road part: 200 to 300 W / m 2 Other aerial part (bridge part): 200 to 300 W / m 2 Other road part: 120 to 250 W / m 2

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
これら道路融雪設備の運転方法には、以下のような問題
があった。即ち、 1)予熱運転:寒冷地ほど消費電力が増加する運転方法
であり、予め通電しておくため、直接融雪に係わらない
無駄な電力を消費することになる。 2)優先・非優先運転:電力設備容量を小さくできる
が、急な降雪に対しては対処することができず、この方
法でも予熱が必要になり、直接融雪に係わらない無駄な
電力を消費することになる。 本発明は、道路融雪設備のランニングコストを低減し、
電力設備の利用度を向上させることを目的とするもので
ある。
However, the conventional methods for operating these road snow melting facilities have the following problems. That is, 1) Preheat operation: This is an operation method in which power consumption increases in cold regions. Since electricity is supplied in advance, useless power that is not directly related to snow melting is consumed. 2) Priority / non-priority operation: Power equipment capacity can be reduced, but sudden snowfall cannot be dealt with, and this method also requires preheating and consumes unnecessary power not directly related to snowmelt. It will be. The present invention reduces the running cost of road snow melting equipment,
The purpose is to improve the utilization of electric power equipment.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決した道路融雪設備およびその運転方法を提供するもの
で、一個または複数個の発熱ユニットを道路に埋設して
融雪する道路融雪設備において、前記発熱ユニットは面
積の大きい部分発熱ユニットAと、面積の小さい部分発
熱ユニットBとからなり、該発熱ユニットは、部分発熱
ユニットAのみに通電する回路Xと、部分発熱ユニット
Aと部分発熱ユニットBとを直列に接続して通電する回
路Yとが切替え可能に配線された給電装置により制御さ
れるように構成したことを特徴とする道路融雪設備を第
1発明とする。
DISCLOSURE OF THE INVENTION The present invention provides a road snow melting facility and a method of operating the same that solve the above-mentioned problems. In the road snow melting facility, one or more heat generating units are buried in a road to melt snow. The heat generating unit includes a partial heat generating unit A having a large area and a partial heat generating unit B having a small area, and the heat generating unit includes a circuit X for energizing only the partial heat generating unit A, the partial heat generating unit A and the partial heat generating unit. A first aspect of the present invention is a road snow melting facility, characterized in that a circuit Y for connecting B and a circuit for energizing is controlled by a power supply device that is switchably wired.

【0005】また、第1発明において、通電回路Xに通
電して部分発熱ユニットAを発熱させる急速融雪運転を
行い、次いで、通電回路Yに通電して部分発熱ユニット
AとBとを発熱させて定常融雪運転を行うことを特徴と
する道路融雪設備の運転方法を第2発明とする。
In the first aspect of the invention, a rapid snow melting operation is performed in which the energizing circuit X is energized to heat the partial heating unit A, and then the energizing circuit Y is energized to heat the partial heating units A and B. A second invention is a method of operating a road snow melting facility, which is characterized by performing a steady snow melting operation.

【0006】また、一個または複数個の発熱ユニットを
道路に埋設して融雪する道路融雪設備において、前記発
熱ユニットは部分発熱ユニットAと部分発熱ユニットB
と、部分発熱ユニットCとからなり、部分発熱ユニット
Cは、部分発熱ユニットAのみに通電したときの消費電
力と、部分発熱ユニットAと部分発熱ユニットBとを直
列に接続して通電したときの消費電力との差の消費電力
で発熱運転制御するように構成したことを特徴とする道
路融雪設備を第3発明とする。
In a road snow melting facility in which one or a plurality of heat generating units are buried in a road to melt snow, the heat generating units are a partial heat generating unit A and a partial heat generating unit B.
And the partial heat generating unit C, the partial heat generating unit C consumes power when only the partial heat generating unit A is energized, and when the partial heat generating unit A and the partial heat generating unit B are connected in series and the current is applied. A third aspect of the present invention is a road snow melting facility, which is configured to perform heat generation operation control with power consumption that is a difference from power consumption.

【0007】また、第3発明において、部分発熱ユニッ
トAを発熱させる急速融雪運転に次いで、部分発熱ユニ
ットAとBとを直列に接続して発熱させるとともに部分
発熱ユニットCをも発熱させる定常運転に切り換えるこ
とを特徴とする道路融雪設備の運転方法を第4発明とす
る。
Further, in the third aspect of the invention, after the rapid snow melting operation for heating the partial heat generating unit A, the steady operation for connecting the partial heat generating units A and B in series to generate heat and also causing the partial heat generating unit C to generate heat is also performed. A method for operating a road snow melting facility, which is characterized by switching, is a fourth invention.

【0008】さらに、第1発明または第3発明にいて、
積雪センサを部分発熱ユニットAが埋設される道路表面
下に設置したことを特徴とする道路融雪設備を第5発明
とする。
Further, in the first invention or the third invention,
A fifth aspect of the present invention is a road snow melting facility, in which a snow accumulation sensor is installed below the surface of a road in which the partial heat generating unit A is buried.

【0009】[0009]

【作用】上述のように、発熱ユニットを部分発熱ユニッ
トAと部分発熱ユニットBに分割し、部分発熱ユニット
Aのみに電源電圧を印加して発熱させた場合と、部分発
熱ユニットAと部分発熱ユニットBを直列に接続して電
源電圧を印加させた場合を比較する。発熱ユニットは一
般に発熱線が一様な配線密度(単位面積当たりの発熱線
の長さ)で配線されているので、部分発熱ユニットAと
部分発熱ユニットBの電気抵抗はそれぞれの面積に比例
する。従って、発熱ユニットの抵抗をRとし、部分発熱
ユニットAと部分発熱ユニットBの抵抗をそれぞれ
A 、RB とすると、RA =αR、RB =(1−α)R
となる。なお、αは発熱ユニット(面積S)に占める部
分発熱ユニットAの面積割合である。そうすると、部分
発熱ユニットAのみに電源電圧Vを印加した場合、部分
発熱ユニットAの発熱密度WA は WA =V2 /(RA αS)=V2 /(α2 RS) ・・・(1) となる。一方、部分発熱ユニットAと部分発熱ユニット
Bを直列に接続して電源電圧を印加すると、発熱密度W
A+B は WA+B = V2 /(RA +RB )S=V2 /(RS) ・・・(2) となる。
As described above, the heat generating unit is divided into the partial heat generating unit A and the partial heat generating unit B, and the power source voltage is applied only to the partial heat generating unit A to generate heat, and the partial heat generating unit A and the partial heat generating unit. The case where B is connected in series and a power supply voltage is applied will be compared. In the heat generating unit, generally, the heat generating wires are wired with a uniform wiring density (the length of the heat generating wires per unit area), so that the electric resistances of the partial heat generating unit A and the partial heat generating unit B are proportional to their respective areas. Therefore, if the resistance of the heat generating unit is R and the resistances of the partial heat generating unit A and the partial heat generating unit B are R A and R B , respectively, R A = αR, R B = (1−α) R
Becomes Note that α is the area ratio of the partial heat generating unit A in the heat generating unit (area S). Then, when the power supply voltage V is applied only to the partial heating unit A, the heat generation density W A of the partial heating unit A is W A = V 2 / ( RA αS) = V 2 / (α 2 RS) ( 1) On the other hand, when the partial heating unit A and the partial heating unit B are connected in series and a power supply voltage is applied, the heating density W
A + B becomes W A + B = V 2 / (R A + R B) S = V 2 / (RS) ··· (2).

【0010】従って、部分発熱ユニットAのみに電源電
圧Vを印加して急速融雪運転を行うときの発熱密度WA
と、部分発熱ユニットAと部分発熱ユニットBを直列に
接続して電源電圧を印加して定常融雪運転を行うときの
発熱密度WA+B を比較すると、急速融雪運転を行うとき
の発熱密度WA は、定常融雪運転を行うときの発熱密度
A+B の1/α2 倍になる。例えば、αを0.6とする
と2.78倍になり、αを0.9とすると1.23倍に
なる。このようにして、部分発熱ユニットAのみの発熱
密度を急速融雪に必要な大きさにすることができるの
で、速やかに路面温度を上げることができ、予熱運転が
不要になる。なお、定常融雪運転時の発熱密度WA+B
融雪効果を得るために必要な大きさ(150〜250W
/m2 )とし、かつ、発熱ユニットAの急速融雪運転時
の発熱密度WA を、発熱線の被覆絶縁体が耐える値以下
にすることを考慮して、発熱ユニットAの面積を発熱ユ
ニットの面積の半分以上(α≧0.5)にするとより効
率的である。
Therefore, the heat generation density W A when the rapid snow melting operation is performed by applying the power supply voltage V only to the partial heat generating unit A
When the partial heat generating unit A and the partial heat generating unit B are connected in series and the heat generation density W A + B when the power supply voltage is applied to perform the steady snow melting operation is compared, the heat generation density W when performing the quick snow melting operation is compared. A is 1 / α 2 times the heat generation density W A + B when the steady snow melting operation is performed. For example, if α is 0.6, it will be 2.78 times, and if α is 0.9, it will be 1.23 times. In this way, the heat generation density of only the partial heat generating unit A can be set to a magnitude necessary for rapid snow melting, so that the road surface temperature can be raised quickly and preheating operation becomes unnecessary. It should be noted that the heat generation density W A + B during the steady snow melting operation is the size required to obtain the snow melting effect (150 to 250 W
/ M 2 ), and considering that the heat generation density W A of the heat generating unit A during the rapid snow melting operation is set to be equal to or less than the value that the covering insulator of the heat generating wire withstands, the area of the heat generating unit A is It is more efficient if the area is half or more (α ≧ 0.5).

【0011】また、部分発熱ユニットAを優先区画に配
置し、急速融雪運転で安全路面を確保した後には、より
広い面積の発熱ユニット全体(部分発熱ユニットA+部
分発熱ユニットB)に通電して定常融雪運転に移行す
る。この場合、急速融雪運転で部分的に安全路面が確保
されているので、その部分からの熱拡散により雪は半融
解状態になり、さらに、車両の通過などにより積雪は崩
される。従って、定常融雪運転における発熱密度を低減
させることができる。さらに、第3、4発明のように、
発熱ユニットCを追加して定常融雪運転を行うと、定常
融雪運転時に給電設備の電力容量(急速融雪運転時の消
費電力に相当)をフルに使用して、効率良く広い面積に
ついて定常融雪運転を行うことができる。
Further, after the partial heating unit A is arranged in the priority section and the safe road surface is secured by the rapid snow melting operation, the entire heating unit having a larger area (the partial heating unit A + the partial heating unit B) is energized to be steady. Shift to snow melting operation. In this case, since the safe road surface is partially secured by the rapid snow melting operation, the snow is in a semi-melted state due to heat diffusion from the part, and the snowfall is destroyed by the passage of the vehicle. Therefore, the heat generation density in the steady snow melting operation can be reduced. Furthermore, like the third and fourth inventions,
When the steady snow melting operation is performed by adding the heat generating unit C, the power capacity of the power feeding equipment (corresponding to the power consumption during the rapid snow melting operation) is fully used during the steady snow melting operation, and the steady snow melting operation is efficiently performed over a large area. It can be carried out.

【0012】[0012]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。 (実施例1)図1は本発明にかかる道路融雪設備の一実
施例を施工した片側2車線の道路面の説明図であり、図
2はその電気接続回路図である。本実施例は交差点手前
の一車線に設けられており、電源電圧を200V、定常
融雪運転時の発熱密度を200W/m2 とし、その構造
は以下の通りである。即ち、 1)優先区画Aを歩行者横断歩道および対向車線側の一
車線のブレーキゾーンに設置する。この区画Aは、降雪
開始時に、速やかに歩行者横断歩道とその手前のブレー
キゾーンの安全性を確保するためのものである。区画A
を発熱ユニット1、2のそれぞれの面積の75%(α=
0.75)の面積を有する部分発熱ユニットA1および
A2で融雪する。そうすると、急速融雪運転時には電源
電圧200Vを印加して、356W/m2 (式(1) およ
び(2) より、200/0.752 )の発熱密度で運転す
ることができる。 2)準優先区画Bを歩道側と対向車線側の2車線幅にわ
たって設ける。定常融雪運転時に、発熱ユニット1、2
のそれぞれの面積の25%の面積を有する部分発熱ユニ
ットB1およびB2で融雪する。部分発熱ユニットB1
およびB2への印加電圧は50V(200×0.25)
であり、発熱密度は200W/m2 である。 3)準優先区画Cを一車線に設ける。この区画は、発熱
ユニットCで定常融雪を行い、その消費電力量は、部分
発熱ユニットA1およびA2のみに電源電圧を印加した
ときの急速融雪の消費電力量と、部分発熱ユニットA1
とB1、および部分発熱ユニットA2とB2を直列に接
続して電源電圧を印加したときの定常融雪の消費電力量
との差に相当するようにする。言い換えると、発熱ユニ
ットCの面積は、印加電圧が200V、発熱密度が20
0W/m2 として、定常融雪運転時の消費電力が、急速
融雪運転時の消費電力に等しくなるように定める。即
ち、その面積は、発熱ユニット1、2の33%((35
6×75−200×100)/200)になる。なお、
本実施例の構成を表1に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. (Embodiment 1) FIG. 1 is an explanatory view of a road surface of two lanes on one side on which an embodiment of a road snow melting facility according to the present invention is constructed, and FIG. 2 is an electric connection circuit diagram thereof. The present embodiment is provided in one lane before the intersection, the power supply voltage is 200 V, the heat generation density during steady snow-melting operation is 200 W / m 2 , and the structure is as follows. That is, 1) Priority section A is installed in a pedestrian crosswalk and in the brake zone of one lane on the opposite lane side. This section A is for ensuring the safety of the pedestrian crosswalk and the brake zone in front of it immediately at the start of snowfall. Section A
75% of the area of each of the heat generating units 1 and 2 (α =
The partial heat generating units A1 and A2 having an area of 0.75) melt snow. Then, at the time of rapid snow melting operation by applying a power supply voltage 200V, it can be operated at a heat generation density of 356W / m 2 (formula (1) and (2) from 200 / 0.75 2). 2) The semi-priority section B is provided over the width of two lanes, the sidewalk side and the opposite lane side. Heat generating units 1 and 2 during steady snow melting operation
The partial heat generating units B1 and B2 having an area of 25% of the respective areas melt the snow. Partial heating unit B1
And the applied voltage to B2 is 50V (200 × 0.25)
And the heat generation density is 200 W / m 2 . 3) The semi-priority section C is provided in one lane. In this section, stationary snow melting is performed by the heat generating unit C, and the power consumption thereof is the power consumption of rapid snow melting when the power supply voltage is applied only to the partial heat generating units A1 and A2 and the partial heat generating unit A1.
And B1, and the partial heat generating units A2 and B2 are connected in series so as to correspond to the difference between the power consumption of the steady snowmelt when the power supply voltage is applied. In other words, the area of the heat generating unit C has an applied voltage of 200 V and a heat generation density of 20.
The power consumption during steady snow-melting operation is set to 0 W / m 2 so as to be equal to the power consumption during rapid snow-melting operation. That is, the area is 33% of the heat generating units 1 and 2 ((35
6 * 75-200 * 100) / 200). In addition,
Table 1 shows the configuration of this example.

【0013】[0013]

【表1】 注)面積比率:優先区画A+準優先区画Bの面積を10
0%とする。
[Table 1] Note) Area ratio: Area of priority section A + semi-priority section B is 10
0%

【0014】この道路融雪設備の運転は以下のようにす
る。即ち、 1)降雪開始を検出した時点で、部分発熱ユニットA
1、A2に電源電圧200Vを印加して、発熱密度35
0W/m2 で区画Aのみについて急速融雪運転を開始す
る。このために、図2において、スイッチSW1、SW
2を閉じ、SW3を開く。ただし、舗装体温度が定常融
雪運転に切り換える温度よりも高ければ、最初から定常
融雪運転を行う。 2)急速融雪運転を行い、舗装体温度が定常融雪運転に
切り換える温度(通常、−3〜+5℃に設定される)に
到達したら、発熱ユニット1、2のスイッチSW1、S
W2を開き、発熱ユニットCのスイッチSW3を閉じ
て、発熱ユニット1、2、Cに電源電圧200Vを印加
して、定常融雪運転に切り換える。なお、急速融雪運転
が限界時間(通常、1〜5時間に設定される)を越えた
場合にも、ヒータの安全性を考慮して定常融雪運転に切
り換える。このように、発熱ユニットCを加えることに
より、供給電力容量をフルに利用して、定常融雪運転の
面積を拡大することができる。なお、発熱ユニットCは
複数のユニットで構成してもよい。
The operation of this road snow melting facility is as follows. 1) When the start of snowfall is detected, the partial heating unit A
A power source voltage of 200 V is applied to A1 and A2 to generate a heat generation density of 35
The rapid snow melting operation is started for only Section A at 0 W / m 2 . Therefore, in FIG. 2, the switches SW1 and SW
Close 2 and open SW3. However, if the pavement temperature is higher than the temperature at which the snow melting operation is switched to the steady snow melting operation, the steady snow melting operation is performed from the beginning. 2) When the pavement body temperature reaches a temperature (normally set to -3 to + 5 ° C) at which the pavement body is switched to the steady snowmelt operation after performing the rapid snowmelt operation, the switches SW1 and S of the heat generating units 1 and 2
W2 is opened, the switch SW3 of the heat generating unit C is closed, and a power supply voltage of 200 V is applied to the heat generating units 1, 2, and C to switch to the steady snow melting operation. Even when the rapid snow melting operation exceeds the limit time (usually set to 1 to 5 hours), the steady snow melting operation is switched to in consideration of the safety of the heater. In this way, by adding the heat generating unit C, the supply power capacity can be fully utilized and the area of the steady snow melting operation can be expanded. The heat generating unit C may be composed of a plurality of units.

【0015】(実施例2)図3は本発明にかかる道路融
雪設備の他の実施例を施工した道路面の説明図であり、
図4はその電気接続回路図である。本実施例は前記実施
例と同様に交差点手前の一車線に設けられており、電源
電圧を200V、定常融雪運転時の発熱密度を200W
/m2 とする。その構造は以下の通りである。即ち、 1)前記実施例と同様に、優先区画Aを歩行者横断歩道
および二車線のブレーキゾーンに設置する。その発熱ユ
ニットの構成および運転条件は前記実施例における区画
Aの通りである。即ち、区画Aを発熱ユニット1、2の
それぞれの面積の75%(α=0.75)の面積を有す
る部分発熱ユニットA1およびA2で融雪する。 2)準優先区画Bを二車線幅にわたって優先区画Aに隣
接して設ける。その発熱ユニットの構成および運転条件
は前記実施例の区画Bと同様である。即ち、定常融雪運
転時に、発熱ユニット1、2のそれぞれの面積の25%
の面積を有する部分発熱ユニットB1およびB2で融雪
する。 3)準優先区画Cを準優先区画Bに隣接して設ける。そ
の発熱ユニットの構成および運転条件は前記実施例の区
画Cと同様である。即ち、発熱ユニットCで定常融雪を
行い、その消費電力量は、部分発熱ユニットA1および
A2のみに電源電圧を印加したときの急速融雪の消費電
力量と、部分発熱ユニットA1とB1、および部分発熱
ユニットA2とB2を直列に接続して電源電圧を印加し
たときの定常融雪の消費電力量との差に相当するように
する。なお、非優先区画Dを路側帯に設けると、本発明
の融雪設備をより有効に活用することができる。この区
画の発熱ユニットDには、定常融雪運転中の温度制御に
よるOFF時に通電する。従って、発熱ユニットDの分
は給電設備の容量に含める必要はない。ここでは、発熱
ユニットDの消費電力を、印加電圧を200Vとして給
電容量の25%に設定する。そうすると、その面積は3
3%((75+25+33)×0.25))になる。な
お、本実施例の構成を表2に示す。
(Embodiment 2) FIG. 3 is an explanatory view of a road surface on which another embodiment of the road snow melting equipment according to the present invention is constructed.
FIG. 4 is a circuit diagram of the electrical connection. Like this embodiment, this embodiment is installed in a lane in front of an intersection and has a power supply voltage of 200 V and a heat generation density of 200 W during steady snow melting operation.
/ M 2 . Its structure is as follows. 1) Similar to the above-mentioned embodiment, the priority section A is installed in the pedestrian crosswalk and the two-lane brake zone. The configuration and operating conditions of the heat generating unit are as shown in section A in the above embodiment. That is, the section A is melted by the partial heat generating units A1 and A2 having an area of 75% (α = 0.75) of the area of each of the heat generating units 1 and 2. 2) A semi-priority section B is provided adjacent to the priority section A over the width of two lanes. The structure and operating conditions of the heat generating unit are the same as those in Section B of the above-mentioned embodiment. That is, 25% of the area of each of the heat generating units 1 and 2 during the steady snow melting operation.
The partial heat generating units B1 and B2 having the area of are used to melt snow. 3) The semi-priority section C is provided adjacent to the semi-priority section B. The configuration and operating conditions of the heat generating unit are the same as those in section C of the above-mentioned embodiment. That is, the steady heat melting is performed in the heat generating unit C, and the power consumption thereof is the power consumption of the rapid snow melting when the power supply voltage is applied only to the partial heat generating units A1 and A2, The units A2 and B2 are connected in series so as to correspond to the difference from the power consumption of steady snowmelt when a power supply voltage is applied. If the non-priority section D is provided on the roadside strip, the snow melting facility of the present invention can be used more effectively. The heat generating unit D in this section is energized at the time of OFF by temperature control during the steady snow melting operation. Therefore, it is not necessary to include the heat generating unit D in the capacity of the power supply equipment. Here, the power consumption of the heat generating unit D is set to 25% of the power supply capacity with the applied voltage of 200V. Then, the area is 3
3% ((75 + 25 + 33) × 0.25)). The configuration of this embodiment is shown in Table 2.

【0016】[0016]

【表2】 注)面積比率:優先区画A+準優先区画B)の面積を1
00%とする。
[Table 2] Note) Area ratio: Area of priority section A + semi-priority section B) is 1
00%.

【0017】この道路融雪設備の運転は以下のようにす
る。即ち、 1)降雪開始を検出した時点で、部分発熱ユニットA
1、A2に電源電圧200Vを印加して、発熱密度35
0W/m2 で区画Aのみを急速融雪運転を開始する。こ
のために、図4において、発熱ユニット1、2のスイッ
チSW1、SW2を閉じ、発熱ユニットCのSW3を開
く。また、発熱ユニット1、2、Cの温調用スイッチで
あり、発熱ユニットDと発熱ユニット1、2、Cを連動
させるスイッチSW41〜43は、発熱ユニット1、
2、C側を閉じ、発熱ユニットD側を開く。ただし、舗
装体温度が定常融雪運転に切り換える温度よりも高けれ
ば、最初から定常融雪運転を行う。 2)急速融雪運転を行い、舗装体温度が定常融雪運転に
切り換える温度(通常、−3〜+5℃に設定される)に
到達したら、スイッチSW1、SW2を開き、SW3を
閉じる。また、スイッチSW41〜43は、発熱ユニッ
ト1、2、3側を閉じ、発熱ユニットD側を開く。この
ようにして、発熱ユニット1、2、Cに電源電圧200
Vを印加して、定常融雪運転に切り換える。なお、急速
融雪運転が限界時間(通常、1〜5時間に設定される)
を越えた場合にも、ヒータの安全性を考慮して定常融雪
運転に切り換える。 3)定常融雪運転中の温度制御によるON−OFFは、
各発熱ユニット1、2、Cについて時間をずらして、い
ずれか一つ以上の発熱ユニット1、2、CがOFFして
いるときは、発熱ユニットDに通電するようにし、発熱
ユニットDに通電される機会を多くする。言い換える
と、スイッチSW41〜43の発熱ユニット1、2、C
側のいずれかを開き、発熱ユニットD側を閉じる。
The operation of this road snow melting facility is as follows. 1) When the start of snowfall is detected, the partial heating unit A
A power source voltage of 200 V is applied to A1 and A2 to generate a heat generation density of 35
The rapid snow melting operation is started only in section A at 0 W / m 2 . Therefore, in FIG. 4, the switches SW1 and SW2 of the heat generating units 1 and 2 are closed, and the switch SW3 of the heat generating unit C is opened. Further, the switches SW41 to 43 which are temperature control switches for the heat generating units 1, 2, and C, and which interlock the heat generating unit D and the heat generating units 1, 2, and C, are the heat generating unit 1,
2. Close the C side and open the heat generating unit D side. However, if the pavement temperature is higher than the temperature at which the snow melting operation is switched to the steady snow melting operation, the steady snow melting operation is performed from the beginning. 2) Perform a rapid snow melting operation, and when the pavement temperature reaches a temperature (normally set to -3 to + 5 ° C) for switching to the steady snow melting operation, open the switches SW1 and SW2, and close SW3. Further, the switches SW41 to 43 close the heat generating units 1, 2, and 3 and open the heat generating unit D side. In this way, the power supply voltage 200 is applied to the heating units 1, 2, and C.
Apply V to switch to steady snow melting operation. In addition, rapid snow melting operation is the limit time (usually set to 1 to 5 hours)
Even if the temperature exceeds the limit, the operation is switched to the steady snow melting operation in consideration of the safety of the heater. 3) ON-OFF by temperature control during steady snowmelt operation is
The heating units 1, 2, and C are staggered in time, and when at least one of the heating units 1, 2, and C is OFF, the heating unit D is energized, and the heating unit D is energized. More opportunities to live. In other words, the heat generating units 1, 2, C of the switches SW41 to 43
Open either side and close the heat generating unit D side.

【0018】なお、上記実施例では、急速融雪運転を行
う部分発熱ユニットの面積の割合αを0.75にした
が、αはこの値に限定されるものではない。定常融雪運
転時の発熱密度を融雪効果を得るために必要な大きさ
(150〜250W/m2 )とし、かつ、部分発熱ユニ
ットの急速融雪運転時の発熱密度を、発熱線の被覆絶縁
体(EPゴム、架橋ポリエチレン、ポリ塩化ビニルな
ど)が耐える値(400〜500W/m2 程度)より小
さくすることを考慮すると、α>0.6とすることが望
ましい。
In the above embodiment, the area ratio α of the partial heat generating unit that performs the rapid snow melting operation is set to 0.75, but α is not limited to this value. The heat generation density during steady snow-melting operation is set to a value necessary for obtaining the snow-melting effect (150 to 250 W / m 2 ), and the heat generation density during rapid snow-melting operation of the partial heat generating unit is set to the insulation of the heating wire ( Considering that it is smaller than the value (about 400 to 500 W / m 2 ) that EP rubber, cross-linked polyethylene, polyvinyl chloride, etc. can withstand, it is desirable that α> 0.6.

【0019】また、上記実施例において、1cm以下の
微小積雪を検出することができる積雪センサを、部分発
熱ユニットAが埋設された道路表面下に設置し、積雪セ
ンサが積雪を検出することにより急速融雪運転を開始
し、積雪センサが積雪を検出しなくなると、定常融雪運
転を開始するようにして、急速融雪運転から定常融雪運
転に自動的に切り換えるようにしてもよい。このように
積雪センサを道路表面下に設置して利用すると、確実に
積雪を検出するので、適切な道路融雪設備の運転判断を
おこなうことができる。この積雪センサとしては、例え
ば、赤外線の発受光装置を車両の走行に耐える構造体に
内蔵したもので、積雪があれば雪からの反射赤外線を検
出することにより積雪を検出するセンサを用いる。
In the above embodiment, a snow sensor capable of detecting a minute snowfall of 1 cm or less is installed under the surface of the road in which the partial heat generating unit A is embedded, and the snow sensor detects the snowfall to rapidly When the snowmelt operation is started and the snowfall sensor no longer detects snowfall, the steady snowmelt operation may be started to automatically switch from the rapid snowmelt operation to the steady snowmelt operation. When the snow cover sensor is installed and used under the road surface as described above, the snow cover is surely detected, so that the operation of the road snow melting facility can be appropriately determined. As this snowfall sensor, for example, an infrared ray emitting / receiving device is built in a structure that can withstand running of a vehicle, and if snowfall is present, a sensor that detects snowfall by detecting infrared rays reflected from the snow is used.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、発
熱線が配線された一個または複数個の発熱ユニットを道
路面下に埋設し、前記発熱線に給電して融雪する道路融
雪設備において、発熱ユニットは、面積の大きい部分発
熱ユニット(部分発熱ユニットAとする)と面積の小さ
い部分発熱ユニット(部分発熱ユニットBとする)に分
割されており、部分発熱ユニットAのみに電源電圧を印
加することと、部分発熱ユニットAと部分発熱ユニット
Bを直列に接続して電源電圧を印加することとを切り換
え可能な給電設備を備えているため、部分発熱ユニット
Aのみの発熱密度を急速融雪に必要な大きさにすること
ができるので、速やかに路面温度を上げることができ、
予熱運転が不要になり、ランニングコストが低下すると
いう優れた効果がある。また、電源電圧を印加したとき
に、部分発熱ユニットAのみに電源電圧を印加したとき
の消費電力と、部分発熱ユニットAと部分発熱ユニット
Bを直列に接続して電源電圧を印加したときの消費電力
の差の電力を消費する発熱ユニットCを備え、部分発熱
ユニットAと部分発熱ユニットBを直列に接続して電源
電圧を印加する際には、発熱ユニットCにも電源電圧を
印加する給電設備を備えているため、給電設備容量を有
効に利用して融雪面積を拡大することができるという効
果もある。なお、発熱ユニットDを備え、温度調節によ
り定常融雪運転が停止している間のみ、発熱ユニットD
に電源電圧を印加する給電設備を備えると、給電設備容
量の利用効率が向上し、融雪面積をさらに拡大すること
ができるという効果もある。
As described above, according to the present invention, in a road snow melting facility in which one or a plurality of heat generating units in which heat generating wires are wired are buried under a road surface and the heat generating wires are supplied with power to melt snow. The heating unit is divided into a partial heating unit having a large area (referred to as a partial heating unit A) and a partial heating unit having a small area (referred to as a partial heating unit B), and the power supply voltage is applied only to the partial heating unit A. Since it is equipped with a power supply facility capable of switching between the operation of the partial heating unit A and the application of the power source voltage by connecting the partial heating unit B in series, the heat generation density of only the partial heating unit A can be rapidly melted. Since it can be made the required size, the road surface temperature can be raised quickly,
There is an excellent effect that the preheating operation becomes unnecessary and the running cost is reduced. Further, when the power supply voltage is applied, the power consumption when the power supply voltage is applied only to the partial heat generating unit A and the power consumption when the power supply voltage is applied by connecting the partial heat generating unit A and the partial heat generating unit B in series. A power supply facility that includes a heat generating unit C that consumes power of a difference in power and that applies a power supply voltage to the heat generating unit C when the power generating voltage is applied by connecting the partial heat generating unit A and the partial heat generating unit B in series. Since it is equipped with the above, there is also an effect that the snow melting area can be expanded by effectively utilizing the power supply equipment capacity. In addition, the heat generating unit D is provided, and only while the steady snow melting operation is stopped by the temperature adjustment, the heat generating unit D is provided.
If the power supply equipment for applying the power supply voltage is provided in the power supply equipment, the utilization efficiency of the power supply equipment capacity is improved, and the snow melting area can be further expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる道路融雪設備の一実施例を施工
した道路面の説明図である。
FIG. 1 is an explanatory view of a road surface on which an embodiment of a road snow melting facility according to the present invention is constructed.

【図2】上記実施例の電気接続回路図である。FIG. 2 is an electrical connection circuit diagram of the above embodiment.

【図3】本発明にかかる道路融雪設備の他の実施例を施
工した道路面の説明図である。
FIG. 3 is an explanatory view of a road surface on which another embodiment of the road snow melting facility according to the present invention is constructed.

【図4】上記実施例の電気接続回路図である。FIG. 4 is an electrical connection circuit diagram of the above embodiment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一個または複数個の発熱ユニットを道路
に埋設して融雪する道路融雪設備において、前記発熱ユ
ニットは面積の大きい部分発熱ユニットAと、面積の小
さい部分発熱ユニットBとからなり、該発熱ユニット
は、部分発熱ユニットAのみに通電する回路Xと、部分
発熱ユニットAと部分発熱ユニットBとを直列に接続し
て通電する回路Yとが切替え可能に配線された給電装置
により制御されるように構成したことを特徴とする道路
融雪設備。
1. A road snow melting facility in which one or a plurality of heat generating units are buried in a road to melt snow, wherein the heat generating units include a partial heat generating unit A having a large area and a partial heat generating unit B having a small area. The heat generating unit is controlled by a power supply device in which a circuit X that energizes only the partial heat generating unit A and a circuit Y that electrically connects the partial heat generating unit A and the partial heat generating unit B in series are switchably wired. A road snow melting facility characterized by being configured as described above.
【請求項2】 請求項1において、通電回路Xに通電し
て部分発熱ユニットAを発熱させる急速融雪運転を行
い、次いで、通電回路Yに通電して部分発熱ユニットA
とBとを発熱させて定常融雪運転を行うことを特徴とす
る道路融雪設備の運転方法。
2. The rapid snow-melting operation according to claim 1, wherein the energizing circuit X is energized to heat the partial heating unit A, and then the energizing circuit Y is energized to perform the partial heating unit A.
A method for operating a road snow melting facility, characterized in that a constant snow melting operation is performed by generating heat in B and B.
【請求項3】 一個または複数個の発熱ユニットを道路
に埋設して融雪する道路融雪設備において、前記発熱ユ
ニットは部分発熱ユニットAと部分発熱ユニットBと、
部分発熱ユニットCとからなり、部分発熱ユニットC
は、部分発熱ユニットAのみに通電したときの消費電力
と、部分発熱ユニットAと部分発熱ユニットBとを直列
に接続して通電したときの消費電力との差の消費電力で
発熱運転制御するように構成したことを特徴とする道路
融雪設備。
3. In a road snow melting facility in which one or a plurality of heat generating units are buried in a road to melt snow, the heat generating units include a partial heat generating unit A and a partial heat generating unit B.
Partial heat generating unit C
Controls the heat generation operation by the power consumption which is the difference between the power consumption when only the partial heating unit A is energized and the power consumption when the partial heating unit A and the partial heating unit B are connected in series and energized. A road snow melting facility characterized by being configured in.
【請求項4】 請求項3において、部分発熱ユニットA
を発熱させる急速融雪運転に次いで、部分発熱ユニット
AとBとを直列に接続して発熱させるとともに部分発熱
ユニットCをも発熱させる定常運転に切り換えることを
特徴とする道路融雪設備の運転方法。
4. The partial heat generating unit A according to claim 3.
A method for operating a road snow melting facility, characterized in that, following the rapid snow melting operation for generating heat, the partial heating units A and B are connected in series to generate heat and the partial heating unit C is also switched to steady operation for generating heat.
【請求項5】 積雪センサを部分発熱ユニットAが埋設
される道路表面下に設置したことを特徴とする請求項1
または3記載の道路融雪設備。
5. The snow accumulation sensor is installed below the surface of the road in which the partial heat generating unit A is buried.
Or the road snow melting facility described in 3.
JP17546194A 1994-07-27 1994-07-27 Road snow melting facility and its operation method Expired - Fee Related JP2825443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17546194A JP2825443B2 (en) 1994-07-27 1994-07-27 Road snow melting facility and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17546194A JP2825443B2 (en) 1994-07-27 1994-07-27 Road snow melting facility and its operation method

Publications (2)

Publication Number Publication Date
JPH0841811A true JPH0841811A (en) 1996-02-13
JP2825443B2 JP2825443B2 (en) 1998-11-18

Family

ID=15996477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17546194A Expired - Fee Related JP2825443B2 (en) 1994-07-27 1994-07-27 Road snow melting facility and its operation method

Country Status (1)

Country Link
JP (1) JP2825443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025540A1 (en) * 1999-10-05 2001-04-12 Hean Sik Kim The construction method of no freezing system for road

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025540A1 (en) * 1999-10-05 2001-04-12 Hean Sik Kim The construction method of no freezing system for road

Also Published As

Publication number Publication date
JP2825443B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US8921739B2 (en) Systems and methods for windshield deicing
JPH0841811A (en) Snow-thawing equipment of road and running method thereof
WO2008109682A2 (en) Systems and methods for windshield deicing
JP2004011230A (en) Snow melting device of platform
JP3592792B2 (en) Automatic load heating control mechanism
JP2523437B2 (en) Road heating sheet device and road heating device
JP3022242B2 (en) Rearview mirror for vehicle
US6758630B1 (en) Snow and ice melting system for roads
JP2605431B2 (en) Ice melting equipment for vehicles
JPH05247907A (en) Snow-melting equipment
WO2000046065A1 (en) A transport system
JP3289019B2 (en) Road surface snow melting method for wireless power transfer equipment
JP3273147B2 (en) Snow melting system
JP3488562B2 (en) How to prevent cavitation of road surface moisture sensor
JPH09256313A (en) Snow-melting apparatus for road, and operating method therefor
JPH068798A (en) Device for controlling current to electrically heatable transparent body
JPH05171610A (en) Road heater and controlling thereof
JP7121422B1 (en) Snow melting device and snow melting control system
JPH05132902A (en) Snow-melting device for railroad turnout
JP2002369384A (en) Power control device for cutting basic contract rate for electric power used for snow-melting heater system
JPH0615292U (en) heater
JP2003064616A (en) Snow-melting system
JP2004047314A (en) Snow melting apparatus having flat heating element
JP4496694B2 (en) Snow melting road construction method
JPH0757851A (en) Road heating control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090911

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110911

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees