JPH0841466A - Method for hydrofining crude oil - Google Patents

Method for hydrofining crude oil

Info

Publication number
JPH0841466A
JPH0841466A JP18116694A JP18116694A JPH0841466A JP H0841466 A JPH0841466 A JP H0841466A JP 18116694 A JP18116694 A JP 18116694A JP 18116694 A JP18116694 A JP 18116694A JP H0841466 A JPH0841466 A JP H0841466A
Authority
JP
Japan
Prior art keywords
oil
crude oil
catalyst
hydrorefining
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18116694A
Other languages
Japanese (ja)
Other versions
JP3001775B2 (en
Inventor
Takao Nozaki
隆生 野崎
Ryuichiro Iwamoto
隆一郎 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP6181166A priority Critical patent/JP3001775B2/en
Publication of JPH0841466A publication Critical patent/JPH0841466A/en
Application granted granted Critical
Publication of JP3001775B2 publication Critical patent/JP3001775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To increase the production of stabilized kerosene and gas oil high in quality and simplify the refining equipment by collectively hydrodesulfurizing a crude oil or the crude oil removed from a naphtha fraction, then hydrocracking the resultant residual oil and providing an intermediate fraction having high saturation properties. CONSTITUTION:This method for hydrofining a crude oil is to initially bring the crude oil or the one removed from a naphtha fraction into contact with a catalyst in the presence of hydrogen, hydrodesulfurize the crude oil under conditions of preferably 100-180kg/cm<2>, 360-420 deg.C temperature, 500-1000Nm<3>/kl hydrogen/oil ratio and 0.2-0.8hr<-1> liquid hourly space velocity (LHSV), then separate the resultant effluent into a gaseous component and a liquid hydrocarbon component in a high-pressure gas-liquid separating tank, subsequently bring the separated liquid hydrocarbon component into contact with a catalyst in the presence of hydrogen, hydrocrack the liquid hydrocarbon component preferably under the same reactional conditions as those in the hydrodesulfurization, then join the prepared effluent with the gaseous component obtained by the hydrodesulfurization of the crude oil and carry out the atmospheric distillation. Thereby, hydrocarbons different in boiling point are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原油の水素化精製方法
に関する。さらに詳しくは、原油又はナフサ留分を除い
た原油の一括水素化脱硫工程において、高品質の灯油・
軽油を増産しうるとともに、精油設備の簡素化を図るこ
とのできる原油の水素化精製方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for hydrorefining crude oil. More specifically, in the batch hydrodesulfurization process of crude oil or crude oil excluding naphtha fraction, high-quality kerosene /
The present invention relates to a crude oil hydrorefining method capable of increasing the production of light oil and simplifying the essential oil equipment.

【0002】[0002]

【従来の技術】従来、原油の精製処理方法としては、一
般に、原油を常圧蒸留して各留分を分離したのち、分離
した各留分をそれぞれ脱硫する方法がとられている。し
かしながら、この方法は、精油設備の基数が多く、かつ
工程が煩雑である上、製品の冷却、加熱を繰り返すため
にエネルギー効率が悪いなどの問題があり、必ずしも満
足しうるものではなく、新しい形式の原油処理方法が求
められている。このような観点から、近年ナフサ留分を
除いた原油の一括処理が試みられている。例えば、
(1)原油中のナフサ留分を蒸留分離したのち、ナフサ
留分を除いた残油を一括水素化脱硫処理し、次いで蒸留
して各製品に分離する方法(特開平3−294390号
公報)、(2)原油中のナフサ留分を蒸留分離したの
ち、ナフサ留分を除いた残油を一括水素化脱硫処理し、
次いで、高圧分離槽で軽質留分と重質留分とに分離し、
得られた軽質留分を水素化精製する方法(特開平4−2
24890号公報)、(3)原油中のナフサ留分を蒸留
分離したのち、ナフサ留分を除いた残油を一括水素化脱
硫処理し、次いで、高圧分離槽で軽質留分と重質留分と
に分離し、得られた重質留分をほぼ大気圧の窒素雰囲気
下、500℃程度の温度で接触分解し、ガソリンとLC
Oを得た後、このLCOと高圧分離した軽質留分を水素
化精製する方法(特開平4−224892号公報)、
(4)原油一括処理及び常圧蒸留を行った後に残油流動
接触分解あるいは残油水素化分解を行い、製品得率調整
を行う方法(米国特許第3,617,501 号明細書)、など
が提案されている。しかしながら、上記(1)の方法に
おいては、通常の脱硫触媒を用いているため、品質が安
定した灯油・軽油留分が得られない上、白油増産効果も
満足できるものではない。また、上記(2)の方法にお
いては、灯軽油の性状は高められるが、得率調整が十分
にできず、需要構成によっては使用できる原油に制限が
ある。更に(3)の方法においては、ガソリンを増産す
る一方で、灯軽油の沸点範囲に相当するLCOが併産さ
れるが、このLCOは芳香族性が非常に高く、灯油留分
の煙点及び軽油留分のセタン価が著しく低い。このよう
なLCOを水素化し、十分な煙点あるいはセタン価を得
るには過酷度の高い高温・高圧の装置を必要とし、ま
た、LCOを反応圧まで再昇圧する必要があるため、固
定費、変動費ともに満足な経済性は得られていない。ま
た、(4)の方法では、流動接触分解で得られる中間留
分は品質、例えば軽灯油の色相、灯油の煙点、軽油のセ
タン指数といったものが非常に劣悪である。一方、水素
化分解は一度常圧蒸留で落とした温度及び圧力を再び3
00〜450℃、100〜200kg/cm2 の高温・
高圧にしなければならないため、エネルギー効率及び経
済性の面で必ずしも満足できるプロセスではない。この
ように、従来のナフサ留分を除いた原油の一活処理方法
は、品質の安定した灯油・軽油留分を得ることが困難で
あったり、また設備費や運転費が高くつく等の点から、
未だ実用化に至っていないのが実状である。
2. Description of the Related Art Conventionally, as a method for refining crude oil, generally, a method has been employed in which crude oil is subjected to atmospheric distillation to separate each fraction, and then each separated fraction is desulfurized. However, this method is not always satisfactory, because it has a large number of essential oil facilities, complicated processes, and poor energy efficiency due to repeated cooling and heating of the product. Crude oil processing method is required. From such a viewpoint, batch processing of crude oil excluding the naphtha fraction has been attempted in recent years. For example,
(1) A method in which the naphtha fraction in crude oil is separated by distillation, the residual oil from which the naphtha fraction has been removed is subjected to a batch hydrodesulfurization treatment, and then distilled to separate each product (JP-A-3-294390). (2) After distilling and separating the naphtha fraction in the crude oil, the residual oil from which the naphtha fraction has been removed is subjected to a batch hydrodesulfurization treatment,
Then, it is separated into a light fraction and a heavy fraction in a high pressure separation tank,
A method for hydrorefining the obtained light fraction (Japanese Patent Laid-Open No. 4-2 / 1992).
No. 24890), (3) After distilling and separating the naphtha fraction in crude oil, the residual oil excluding the naphtha fraction is subjected to a batch hydrodesulfurization treatment, and then a light fraction and a heavy fraction are separated in a high pressure separation tank. And the resulting heavy fraction was catalytically cracked at a temperature of about 500 ° C. under a nitrogen atmosphere at about atmospheric pressure to give gasoline and LC.
A method of hydrorefining the light fraction separated from this LCO under high pressure after obtaining O (JP-A-4-224892);
(4) Proposal of a method (US Pat. No. 3,617,501) in which a crude oil batch treatment and atmospheric distillation are performed, and then residual oil fluid catalytic cracking or residual oil hydrocracking is performed to adjust the product yield. Has been done. However, in the above method (1), since a normal desulfurization catalyst is used, a kerosene / light oil fraction having stable quality cannot be obtained, and the white oil production increasing effect is not satisfactory. In the method (2), the properties of kerosene can be improved, but the yield cannot be adjusted sufficiently, and the crude oil that can be used is limited depending on the demand structure. Further, in the method of (3), while increasing the production of gasoline, LCO corresponding to the boiling point range of kerosene is also co-produced, but this LCO has a very high aromaticity and the smoke point of the kerosene fraction and The cetane number of the light oil fraction is extremely low. In order to hydrogenate such a LCO and obtain a sufficient smoke point or cetane number, a high-temperature and high-pressure device with high severity is required, and since it is necessary to re-pressurize the LCO to the reaction pressure, fixed costs, Satisfaction with variable costs has not been obtained. In the method (4), the quality of the middle distillate obtained by fluid catalytic cracking, such as the hue of light kerosene, the smoke point of kerosene, and the cetane index of light oil, is very poor. On the other hand, in the hydrocracking, the temperature and pressure once dropped by the atmospheric distillation are restored to 3
00~450 ℃, high temperature and of 100~200kg / cm 2
Since it has to be a high pressure, it is not always a satisfactory process in terms of energy efficiency and economy. As described above, the conventional active treatment method of crude oil excluding the naphtha fraction is difficult to obtain a kerosene / light oil fraction with stable quality, and the equipment cost and the operating cost are high. From
The reality is that it has not yet been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】本発明は、かかる事情
下で、原油又はナフサ留分を除いた原油の一括水素化脱
硫工程において、残油の水素化分解により飽和性の高い
中間留分を得ることにより、品質が良好でかつ安定した
灯油・軽油を増産しうるとともに、精油設備の簡素化を
図ることのできる、経済的に有利な原油の水素化精製方
法を提供することを目的とする。
SUMMARY OF THE INVENTION Under the circumstances, the present invention is directed to a high-saturation intermediate fraction by hydrocracking of residual oil in a batch hydrodesulfurization process of crude oil or crude oil excluding naphtha fraction. An object of the present invention is to provide an economically advantageous hydrorefining method for crude oil, which can increase the production of kerosene and light oil of good quality and stable by obtaining the oil, and can simplify the essential oil equipment. .

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、原油又はナフ
サ留分を除いた原油を触媒の存在下で水素化脱硫し、次
いで蒸留して各製品に分離する水素化精製方法におい
て、一括水素化脱硫に続いて高圧気液分離槽にて気体成
分と液体炭化水素成分に分離を行った後、該液体炭化水
素を触媒と接触させて水素化分解することによって、飽
和性の高い中間留分を生成させ、中間留分の得率ととも
に品質も高めることが可能となることを見出した。本発
明は、かかる知見に基づいて完成したものである。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that crude oil or crude oil excluding naphtha fraction is hydrodesulfurized in the presence of a catalyst, and then In the hydrorefining method of distilling and separating each product, after batch hydrodesulfurization, after separating into a gas component and a liquid hydrocarbon component in a high pressure gas-liquid separation tank, the liquid hydrocarbon is contacted with a catalyst. It has been found that, by hydrocracking the resulting mixture, an intermediate fraction having a high degree of saturation can be generated, and the yield and the quality of the intermediate fraction can be improved. The present invention has been completed based on such findings.

【0005】すなわち、本発明は、(1)原油又はナフ
サ留分を除いた原油を、水素の存在下、触媒と接触させ
て水素化脱硫し、流出物を高圧気液分離槽で気体成分1
と液体炭化水素成分1に分離し、該液体炭化水素成分1
を水素の存在下、触媒と接触させて水素化分解し、次い
で前記気体成分1と前記水素化分解からの流出物を合わ
せて、常圧蒸留を行い、沸点の異なる炭化水素を得るこ
とを特徴とする、原油又はナフサ留分を除いた原油の水
素化精製方法、(2)水素化脱硫を、30〜200kg
/cm2 の圧力下、300〜450℃の温度で、LHS
Vが0.1〜3.0h-1、水素/油比が300〜2000N
3 /キロリットルの条件で行うことを特徴とする上記
(1)記載の水素化精製方法、(3)水素化脱硫に用い
られる触媒が、アルミナ,シリカ−アルミナあるいはア
ルミナにホウ素及びリンから選ばれる少なくとも一種の
化合物を添加したものを担体として、周期律表第6,
8,9又は10族に属する金属の中から選ばれる少なく
とも一種を担持したものであることを特徴とする上記
(1)記載の水素化精製方法、(4)水素化分解を、3
0〜200kg/cm2 の圧力下、300〜450℃の
温度で、LHSVが0.1〜3.0h-1、水素/油比が30
0〜2000Nm3 /キロリットルの条件で行うことを
特徴とする上記(1)記載の水素化精製方法、(5)水
素化分解に用いられる触媒が、結晶性アルミノシリケー
トあるいはこれと無機酸化物との混合物よりなる担体に
周期律表第6,8,9又は10族に属する金属の中から
選ばれる少なくとも一種を担持したものであることを特
徴とする上記(1)記載の水素化精製方法、(6)水素
化分解からの流出物と合わせて常圧蒸留を行う気体成分
が、高圧気液分離槽で分解された気体成分1を更に、3
0〜200kg/cm2 の圧力下、300〜450℃の
温度で、LHSVが0.5〜8.0h-1、水素/油比が20
0〜2000Nm3 /キロリットルの条件下で水素化精
製触媒と接触させて得られたものであることを特徴とす
る上記(1)記載の水素化精製方法、(7)水素化精製
触媒が、アルミナ,シリカ,シリカ−アルミナあるいは
アルミナにホウ素及びリンから選ばれる少なくとも一種
の化合物を添加したものを担体として、周期律表第6,
8,9又は10族に属する金属の中から選ばれる少なく
とも一種を担持したものであることを特徴とする上記
(6)記載の水素化精製方法、及び(8)水素化分解か
らの流出物を高圧気液分離槽で気体成分2と液体炭化水
素成分2に分離し、該気体成分2を前記気体成分1と合
わせて、30〜200kg/cm2 の圧力下、300〜
450℃の温度で、LHSVが0.5〜8.0h-1、水素/
油比が200〜2000Nm3 /キロリットルの条件下
で水素化精製触媒と接触させたものを、前記液体炭化水
素成分2と合わせて常圧蒸留を行うことを特徴とする上
記(1)記載の水素化精製方法、を提供するものであ
る。
That is, according to the present invention, (1) crude oil or crude oil excluding naphtha fraction is brought into contact with a catalyst in the presence of hydrogen to hydrodesulfurize, and the effluent is separated into a gas component 1 in a high pressure gas-liquid separation tank.
And a liquid hydrocarbon component 1 and the liquid hydrocarbon component 1
Is hydrolyzed by contacting with a catalyst in the presence of hydrogen, and then the gas component 1 and the effluent from the hydrocracking are combined and subjected to atmospheric distillation to obtain hydrocarbons having different boiling points. 30 to 200 kg of a method for hydrorefining crude oil or crude oil excluding naphtha fraction, (2) hydrodesulfurization
LHS at a temperature of 300 to 450 ° C. under a pressure of / cm 2.
V is 0.1 to 3.0 h -1 , hydrogen / oil ratio is 300 to 2000 N
hydrorefining method as described in (1) above, which comprises carrying out under the condition of m 3 / kl, (3) catalyst used for hydrodesulfurization is, alumina, silica - selected from boron and phosphorus on an alumina or alumina Using at least one compound added as a carrier,
The method for hydrorefining according to (1) above, which carries at least one selected from metals belonging to Group 8, 9, or 10;
Under a pressure of 0 to 200 kg / cm 2 , a temperature of 300 to 450 ° C., an LHSV of 0.1 to 3.0 h −1 , and a hydrogen / oil ratio of 30.
It is carried out under the conditions of 0 to 2000 Nm 3 / k liter, and (5) the hydrorefining method described in (1) above, and (5) the catalyst used for hydrocracking is crystalline aluminosilicate or an inorganic oxide thereof. The hydrorefining method according to the above (1), characterized in that at least one selected from the metals belonging to Groups 6, 8, 9 or 10 of the Periodic Table is carried on a carrier comprising a mixture of (6) The gas component that is subjected to atmospheric distillation in combination with the effluent from the hydrocracking further decomposes the gas component 1 decomposed in the high-pressure gas-liquid separation tank into 3 parts.
Under a pressure of 0 to 200 kg / cm 2 , a temperature of 300 to 450 ° C., an LHSV of 0.5 to 8.0 h −1 , and a hydrogen / oil ratio of 20.
The hydrorefining method according to (1) above, which is obtained by contacting with the hydrorefining catalyst under the condition of 0 to 2000 Nm 3 / kil, and (7) the hydrorefining catalyst, Alumina, silica, silica-alumina, or alumina to which at least one compound selected from boron and phosphorus is added is used as a carrier, and the periodic table
The hydrorefining method according to the above (6), characterized in that it carries at least one selected from the group 8, 9, and 10 metals, and (8) the effluent from the hydrocracking. It is separated into a gas component 2 and a liquid hydrocarbon component 2 in a high-pressure gas-liquid separation tank, and the gas component 2 is combined with the gas component 1 under a pressure of 30 to 200 kg / cm 2 and 300 to 200 kg / cm 2.
At a temperature of 450 ° C., LHSV is 0.5 to 8.0 h −1 , hydrogen /
The above-mentioned (1), characterized in that what is brought into contact with the hydrorefining catalyst under the condition of the oil ratio of 200 to 2000 Nm 3 / kil is combined with the liquid hydrocarbon component 2 and subjected to atmospheric distillation. A hydrorefining method is provided.

【0006】以下に、本発明を更に詳細に説明する。各
石油製品を分離する方法としては、通常原油をまず予備
蒸留塔に供給してナフサ留分を除去したのち、その残油
を水素化脱硫し、次いで、常圧蒸留塔に導き、ナフサ留
分、灯油留分、軽油留分及び残油に分離する方法、また
は原油を直接水素化脱硫した後、常圧蒸留塔に導き、ナ
フサ留分、灯油留分、軽油留分及び残油に分離する方法
がある。即ち、本発明においては、予備蒸留塔でナフサ
留分を除いた原油を一括水素化処理してもよく、また、
ナフサ留分の硫黄含有量を1ppm未満程度にする必要
がない場合、例えばナフサ留分をエチレン製造装置の原
料として使用する場合には、予備蒸留塔にてナフサ留分
を除くことなく、原油を直接一括して水素化処理しても
よい。
The present invention will be described in more detail below. As a method for separating each petroleum product, usually, crude oil is first supplied to a preliminary distillation column to remove the naphtha fraction, and then the residual oil is hydrodesulfurized and then introduced to an atmospheric distillation column to remove the naphtha fraction. , A kerosene fraction, a gas oil fraction and a residual oil, or directly hydrodesulfurizing crude oil and then introducing it to an atmospheric distillation column to separate it into a naphtha fraction, a kerosene fraction, a gas oil fraction and a residual oil. There is a way. That is, in the present invention, crude oil from which the naphtha fraction has been removed may be subjected to batch hydrotreatment in a preliminary distillation column, and
When it is not necessary to reduce the sulfur content of the naphtha fraction to less than about 1 ppm, for example, when the naphtha fraction is used as a raw material for an ethylene production apparatus, crude oil is removed without removing the naphtha fraction in a preliminary distillation column. The hydrogenation may be carried out directly and collectively.

【0007】予備蒸留塔に供給する原油や水素化処理工
程に供給する原油としては、通常入手可能な原油又はナ
フサ留分を除去した原油を用いることができ、このよう
な原油としては予備蒸留塔内の汚れや閉塞の防止、水素
化処理触媒の劣化防止などのために、予め脱塩処理を行
うことが好ましい。脱塩処理方法としては、当業者にて
一般的に行われている方法を用いることができ、例え
ば、化学的脱塩法,ペトレコ電気脱塩法、ハウ・ベーカ
ー電気脱塩法などが挙げられる。
As the crude oil to be supplied to the preliminary distillation column or the crude oil to be supplied to the hydrotreating step, a commercially available crude oil or a crude oil from which a naphtha fraction has been removed can be used. As such a crude oil, the preliminary distillation column is used. It is preferable to carry out desalting treatment in advance in order to prevent the inside from being contaminated and clogged, and to prevent deterioration of the hydrotreating catalyst. As a desalting method, a method generally used by those skilled in the art can be used, and examples thereof include a chemical desalting method, a petreco electric desalting method, and a How-Baker electric desalting method. .

【0008】前記のように予備蒸留塔で原油を処理する
場合、原油中のナフサ留分及びそれよりも軽質の留分の
除去が行われるが、この場合蒸留条件としては、通常、
温度は145〜200℃の範囲であり、また圧力は常圧
〜10kg/cm2 の範囲、好ましくは1.5kg/cm
2 前後である。この予備蒸留塔にて塔頂より除去するナ
フサ留分は、沸点が10℃以上で、上限が125〜17
4℃の範囲にあるものが好ましいが、後段にて水素化脱
硫して精留するため、精度よく蒸留する必要はない。な
お、沸点10〜125℃のナフサ留分としては、通常炭
素数が5〜8のものがあり、沸点10〜174℃のナフ
サ留分としては、通常炭素数5〜10のものがある。ナ
フサ留分を沸点125℃未満でカットした場合、次の工
程の水素化処理の際に水素分圧が低下して、水素化処理
の効率が低下するおそれがあり、また沸点174℃を超
えてカットすると、後段の水素化処理及び蒸留で得られ
る灯油留分の煙点が低下する傾向がみられる。
When crude oil is treated in the preliminary distillation column as described above, the naphtha fraction and the fraction lighter than that are removed from the crude oil. In this case, the distillation conditions are usually
The temperature is in the range of 145 to 200 ° C., and the pressure is in the range of atmospheric pressure to 10 kg / cm 2 , preferably 1.5 kg / cm.
It is around 2 . The naphtha fraction removed from the top of this preliminary distillation column has a boiling point of 10 ° C or higher and an upper limit of 125 to 17
It is preferably in the range of 4 ° C, but since it is hydrodesulfurized and rectified in the latter stage, it is not necessary to distill it with high precision. The naphtha fraction having a boiling point of 10 to 125 ° C usually has 5 to 8 carbon atoms, and the naphtha fraction having a boiling point of 10 to 174 ° C usually has 5 to 10 carbon atoms. When the naphtha fraction is cut at a boiling point of less than 125 ° C, the hydrogen partial pressure may decrease during the hydrotreating process in the next step, which may reduce the efficiency of the hydrotreating process. If cut, the smoke point of the kerosene fraction obtained by the subsequent hydrotreatment and distillation tends to decrease.

【0009】本発明において用いられる、原油あるいは
上記予備蒸留方法によりナフサ分を除去した原油として
は、バナジウム、ニッケル及び鉄の少なくとも一種から
なる金属成分を135重量ppm以下、アスファルテン
分を12重量%以下含有するものが好ましく用いられ
る。上記金属成分が135重量ppmを越えるものは、
金属成分の蓄積により著しく触媒寿命を短くするため好
ましくなく、また、アスファルテン分が12重量%を越
えるものは、炭素析出により著しく触媒寿命を短くする
ためやはり好ましくない。
The crude oil used in the present invention or the crude oil from which the naphtha content has been removed by the above-mentioned preliminary distillation method has a metal component consisting of at least one of vanadium, nickel and iron of 135 ppm by weight or less and an asphaltene content of 12% by weight or less. Those contained are preferably used. If the above metal component exceeds 135 ppm by weight,
It is not preferable because the catalyst life is remarkably shortened due to the accumulation of metal components, and those having an asphaltene content of more than 12% by weight are also not preferable because the catalyst life is remarkably shortened due to carbon precipitation.

【0010】本発明の水素化精製方法は、上記原油を、
水素の存在下、触媒と接触させて水素化脱硫し、流出物
を高圧気液分離槽で気体成分1と液体炭化水素成分1に
分離し、該液体炭化水素成分1を水素の存在下、触媒と
接触させて水素化分解し、次いで前記気体成分1と前記
水素化分解からの流出物を合わせて、常圧蒸留を行い沸
点の異なる炭化水素を得る工程を含むものである。
The hydrorefining method of the present invention comprises:
Hydrodesulfurization is performed by contacting with a catalyst in the presence of hydrogen, the effluent is separated into a gas component 1 and a liquid hydrocarbon component 1 in a high pressure gas-liquid separation tank, and the liquid hydrocarbon component 1 is subjected to the catalyst in the presence of hydrogen. And hydrolyzing the gas component 1 and the effluent from the hydrocracking, and performing atmospheric distillation to obtain hydrocarbons having different boiling points.

【0011】上記水素化脱硫工程で用いられる水素化脱
硫装置においては、原油あるいはナフサ留分を除いた原
油を水素化精製する場合の反応条件として以下の条件が
用いられる。まず、反応温度は300〜450℃の範囲
が好ましい。上記反応温度が300℃未満である時は反
応の進行が著しく遅く、また450℃を越える場合は触
媒上に固体炭素(コーク)が生成し、触媒寿命を著しく
低下させる。上記と同様の理由から、反応温度は360
〜420℃の範囲が更に好ましい。また、反応圧力、即
ち水素分圧は30〜200kg/cm2 の範囲が好まし
い。上記圧力が30kg/cm2 未満である時は、固体
炭素を析出し、触媒寿命が著しく低下し、また200k
g/cm2 を越える圧力は装置設計上不経済である。上
記と同様の理由から、水素分圧は100〜180kg/
cm2 の範囲であることが更に好ましい。更に、水素/
油比は300〜2000Nm3 /キロリットルの範囲で
あることが好ましい。上記比率が300Nm3 /キロリ
ットル未満の場合は、水素化精製が十分に進行せず、2
000Nm3 /キロリットルを越える場合は、装置設計
上不経済である。上記と同様の理由から、上記比率は5
00〜1000Nm 3 /キロリットルの範囲であること
が更に好ましい。液時空間速度(LHSV)は0.1〜3.
0h-1の範囲が好ましい。LHSVが0.1h-1未満の場
合は、経済的に十分な処理速度が得られず、また3.0h
-1を越える場合は、反応時間が不十分で原料油の水素化
精製が完了しないという欠点がある。上記と同様の理由
から、LHSVは0.2〜0.8h-1の範囲であることが更
に好ましい。
The hydrodesulfurization used in the above hydrodesulfurization step
In the sulfurizer, crude oil or crude oil excluding naphtha fraction is removed.
The reaction conditions for hydrorefining oil are as follows:
Used. First, the reaction temperature is in the range of 300 to 450 ° C.
Is preferred. When the reaction temperature is lower than 300 ° C,
The reaction is extremely slow, and if it exceeds 450 ° C
Solid carbon (coke) is generated on the medium, significantly increasing the catalyst life.
Lower. For the same reason as above, the reaction temperature is 360
The range of to 420 ° C is more preferable. Also, the reaction pressure,
The hydrogen partial pressure is 30 to 200 kg / cm2A range of
Yes. The above pressure is 30 kg / cm2Solid when less than
Carbon deposits, catalyst life is significantly reduced, and 200k
g / cm2Pressures exceeding 10 are uneconomical in terms of device design. Up
For the same reason as described above, the hydrogen partial pressure is 100 to 180 kg /
cm2It is more preferable that the range is Furthermore, hydrogen /
Oil ratio is 300-2000Nm3/ Kiloliter range
Preferably there is. The above ratio is 300 Nm3/ Kiri
If it is less than 100 ton, hydrorefining does not proceed sufficiently, and 2
000 Nm3If it exceeds / kiloliter, design the device
It is uneconomical. For the same reason as above, the ratio is 5
00-1000Nm 3/ Kiloliter range
Is more preferable. Liquid hourly space velocity (LHSV) is 0.1 to 3.
0h-1Is preferred. LHSV is 0.1h-1Less than
If it is not, economically sufficient processing speed cannot be obtained, and it is 3.0h.
-1If it exceeds the limit, the reaction time is insufficient and the feed oil is hydrogenated.
The drawback is that the purification is not completed. The same reason as above
Therefore, LHSV is 0.2-0.8h-1The range of
Preferred.

【0012】上記水素化脱硫工程で用いられる触媒とし
ては、アルミナ,シリカ−アルミナあるいはアルミナに
ホウ素及びリンから選ばれる少なくとも一種の化合物を
添加してなるものを担体として、周期律表第6,8,9
又は10族に属する金属の中から選ばれる少なくとも一
種を担持した触媒が好ましく用いられるが、周期律表第
6族に属する金属としては、タングステン、モリブデン
が好ましく、また周期律表第8〜10族に属する金属と
しては、ニッケル、コバルトが好ましい。なお、第6族
の金属及び第8〜10族の金属はそれぞれ一種用いても
よく、また複数種の金属を組み合わせて用いてもよい
が、特に水素化活性が高く、かつ劣化が少ない点から、
Ni−Mo,Co−Mo,Ni−W,Ni−Co−Mo
等の組合せが好適である。
The catalyst used in the hydrodesulfurization step is alumina, silica-alumina, or a mixture of alumina and at least one compound selected from boron and phosphorus as a carrier. , 9
Or, a catalyst carrying at least one selected from the metals belonging to Group 10 is preferably used, but as the metal belonging to Group 6 of the Periodic Table, tungsten and molybdenum are preferable, and the metals of Groups 8 to 10 of the Periodic Table are preferred. As the metal belonging to, nickel and cobalt are preferable. The Group 6 metal and the Group 8 to 10 metals may be used alone or in combination of two or more kinds of metals, but in particular, they have high hydrogenation activity and little deterioration. ,
Ni-Mo, Co-Mo, Ni-W, Ni-Co-Mo
A combination such as is preferable.

【0013】また、前記金属の担持量については、特に
制限はなく、各種条件に応じて適宜選定すればよいが、
通常は触媒全重量に基づき、金属酸化物として1〜35
重量%の範囲である。この担持量が1重量%未満では、
水素化処理触媒としての効果が充分に発揮されず、また
35重量%を超えると、その担持量の割には水素化活性
の向上が顕著でなく、かつ経済的に不利である。特に、
水素化活性及び経済性の点から5〜30重量%の範囲が
好ましい。
The amount of the metal carried is not particularly limited and may be appropriately selected according to various conditions.
Usually 1 to 35 as a metal oxide based on the total weight of the catalyst.
It is in the range of% by weight. If the supported amount is less than 1% by weight,
The effect as a hydrotreating catalyst is not sufficiently exerted, and when it exceeds 35% by weight, the hydrogenation activity is not significantly improved relative to the amount supported, and it is economically disadvantageous. In particular,
From the viewpoint of hydrogenation activity and economical efficiency, the range of 5 to 30% by weight is preferable.

【0014】上記触媒としては、アルミナにホウ素及び
リンから選ばれる少なくとも一種の化合物を添加してな
るものを担体として用いた場合、担体の全重量に基づ
き、ホウ素化合物,珪素化合物又はリン化合物をそれぞ
れ0.5〜20重量%の割合で含有するものが好適であ
る。上記含有量が上記下限値未満では、水素化活性を向
上させる効果が小さく、またその上限値を超えると、そ
の量の割には水素化活性の向上効果があまりみられず、
経済的でない上、脱硫活性が低下する場合があり、好ま
しくない。特に水素化活性の向上効果の点からそれぞれ
1〜18重量%の範囲が好ましい。
As the above-mentioned catalyst, when a carrier obtained by adding at least one compound selected from boron and phosphorus to alumina is used as a carrier, a boron compound, a silicon compound or a phosphorus compound is respectively added based on the total weight of the carrier. Those containing 0.5 to 20% by weight are preferable. When the content is less than the lower limit value, the effect of improving the hydrogenation activity is small, and when the content exceeds the upper limit value, there is not much improvement effect of the hydrogenation activity for the amount,
In addition to being uneconomical, desulfurization activity may decrease, which is not preferable. In particular, the range of 1 to 18% by weight is preferable from the viewpoint of the effect of improving the hydrogenation activity.

【0015】上記担体は、例えば水分含有量が65重量
%以上のアルミナ又はアルミナ前駆体に、ホウ素化合物
またはリン化合物を所定の割合で加え、60〜100℃
程度の温度で好ましくは1時間以上、さらに好ましくは
1.5時間以上加熱混練したのち、公知の方法により成
形,乾燥及び燒成を行うことによって、製造することが
できる。加熱混練が1時間未満では、混練が不充分とな
ってホウ素原子等の分散状態が不充分となるおそれがあ
り、また混練温度が上記範囲を逸脱すると、ホウ素等が
高分散しない場合があり、好ましくない。なお、上記ホ
ウ素,珪素,リン又はその各化合物の添加は、必要に応
じ、水に加熱溶解させて溶液状態で行ってもよい。
The carrier is, for example, 60 to 100 ° C. obtained by adding a boron compound or a phosphorus compound in a predetermined ratio to alumina or an alumina precursor having a water content of 65% by weight or more.
At a temperature of about 1 hour or more, and more preferably
After kneading by heating for 1.5 hours or more, it can be produced by molding, drying and baking by a known method. If the heating and kneading is less than 1 hour, the kneading may be insufficient and the dispersion state of boron atoms and the like may be insufficient. Further, if the kneading temperature deviates from the above range, the boron and the like may not be highly dispersed, Not preferable. The boron, silicon, phosphorus or each compound thereof may be added in a solution state by heating and dissolving in water, if necessary.

【0016】ここで、アルミナ前駆体としては、焼成に
よりアルミナを生成するものであれば、特に制限はな
く、例えば、水酸化アルミニウム,擬ベーマイト,ベー
マイト,バイヤライト,ジブサイトなどのアルミナ水和
物などを挙げることができる。上記のアルミナ又はアル
ミナ前駆体は水分含有量65重量%以上として使用する
のが望ましく、水分含有量が65重量%未満である場
合、添加した前記リン等の各化合物の分散が充分でない
おそれがある。
Here, the alumina precursor is not particularly limited as long as it can form alumina by firing, and for example, alumina hydrates such as aluminum hydroxide, pseudoboehmite, boehmite, bayerite and dibsite. Can be mentioned. The above-mentioned alumina or alumina precursor is preferably used with a water content of 65% by weight or more, and when the water content is less than 65% by weight, the dispersion of each compound such as phosphorus added may not be sufficient. .

【0017】また、ホウ素化合物としては、酸化ホウ素
の他に、焼成により酸化ホウ素に転化しうる各種のホウ
素化合物を使用することができ、例えば、ホウ酸,ホウ
酸アンモニウム,ホウ酸ナトリウム,過ホウ酸ナトリウ
ム,オルトホウ酸,四ホウ酸,五硫化ホウ素,三塩化ホ
ウ素,過ホウ酸アンモニウム,ホウ酸カルシウム,ジボ
ラン,ホウ酸マグネシウム,ホウ酸メチル,ホウ酸ブチ
ル,ホウ酸トリシクロヘキシルなどが挙げられる。ま
た、上記担体のうちアルミナにリン化合物を添加してな
る担体に用いられるリン化合物としては、リン単体を含
むことができる。リン単体としては、具体的には黄リ
ン、赤リン等が挙げられる。
As the boron compound, in addition to boron oxide, various boron compounds which can be converted into boron oxide by firing can be used. Examples thereof include boric acid, ammonium borate, sodium borate, and perborane. Sodium acid, orthoboric acid, tetraboric acid, boron pentasulfide, boron trichloride, ammonium perborate, calcium borate, diborane, magnesium borate, methyl borate, butyl borate, tricyclohexyl borate and the like can be mentioned. Further, among the above carriers, the phosphorus compound used in the carrier obtained by adding the phosphorus compound to alumina may include phosphorus alone. Specific examples of the phosphorus simple substance include yellow phosphorus and red phosphorus.

【0018】リン化合物としては、例えばオルトリン
酸,次リン酸,亜リン酸,次亜リン酸等の低酸化数の無
機リン酸またはこれらのアルカリ金属塩あるいはアンモ
ニウム塩、ピロリン酸,トリポリリン酸,テトラポリリ
ン酸等のポリリン酸またはこれらのアルカリ金属塩ある
いはアンモニウム塩、トリメタリン酸,テトラメタリン
酸,ヘキサメタリン酸等のメタリン酸またはこれらのア
ルカリ金属塩あるいはアンモニウム塩、カルコゲン化リ
ン、有機リン酸、有機リン酸塩、等が挙げられる。これ
らの中で、特に低酸化数の無機リン酸、縮合リン酸のア
ルカリ金属塩あるいはアンモニウム塩が活性、耐水耐熱
性、耐久性などの点から好ましい。
Examples of the phosphorus compound include inorganic phosphoric acids having a low oxidation number such as orthophosphoric acid, hypophosphoric acid, phosphorous acid and hypophosphorous acid, or their alkali metal salts or ammonium salts, pyrophosphoric acid, tripolyphosphoric acid and tetraphosphoric acid. Polyphosphoric acid such as polyphosphoric acid or alkali metal salt or ammonium salt thereof, metaphosphoric acid such as trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid or alkali metal salt or ammonium salt thereof, chalcogenized phosphorus, organic phosphoric acid, organic phosphoric acid Salt, etc. are mentioned. Of these, inorganic phosphoric acid having a low oxidation number and alkali metal salts or ammonium salts of condensed phosphoric acid are particularly preferable from the viewpoints of activity, water resistance and heat resistance, durability and the like.

【0019】シリカ−アルミナとしては、例えばアルミ
ナに対するシリカのモル比SiO2/Al2 3 が3.5
以上のフォージャサイト型ゼオライトなどが挙げられ
る。これらの中ではSiO2 /Al2 3 のモル比が4.
6以上のものが耐熱性の点から好ましい。
As silica-alumina, for example, the molar ratio of silica to alumina is SiO 2 / Al 2 O 3 is 3.5.
The above faujasite type zeolite and the like can be mentioned. Among these, the SiO 2 / Al 2 O 3 molar ratio is 4.
It is preferably 6 or more from the viewpoint of heat resistance.

【0020】上記の触媒の平均細孔径は、80〜120
Åの範囲の値であることが好ましく、平均細孔径が80
Å未満の場合は、重質分子が細孔内に十分に拡散でき
ず、反応が不十分となり、残油の性状(例えばNi,V
の含有率)の点から好ましくない。また、120Åを越
える場合は表面積が小さくなり、反応が十分に進行しな
い。また、本発明においては、上記組成を有する触媒か
らなる触媒層を更に二段に分割し、その上流側に200
〜5000Å、好ましくは1000〜3000Åの範囲
の平均細孔径を有する触媒を、下流側に80〜120Å
程度の平均細孔径を有する触媒を組み合わせて用いるこ
とが触媒寿命の点から更に好ましい。
The average pore diameter of the above catalyst is 80 to 120.
The value in the range of Å is preferable, and the average pore diameter is 80.
If it is less than Å, the heavy molecules cannot sufficiently diffuse into the pores, the reaction becomes insufficient, and the properties of the residual oil (eg Ni, V
Content ratio). On the other hand, when it exceeds 120 Å, the surface area becomes small and the reaction does not proceed sufficiently. Further, in the present invention, the catalyst layer composed of the catalyst having the above composition is further divided into two stages, and the upstream side thereof is provided with 200
~ 5000Å, preferably a catalyst having an average pore size in the range of 1000-3000Å, 80-120Å on the downstream side.
From the viewpoint of catalyst life, it is more preferable to use a combination of catalysts having an average pore diameter of a certain degree.

【0021】本発明においては、上記水素化脱硫処理さ
れた原油は、気体成分1と液体炭化水素成分1に気液分
離された後、該液体炭化水素成分1は水素化分解処理さ
れる。このような気液分離は、流出物の温度・圧力を大
きく変えることなく分離可能な点から高圧気液分離槽を
好ましく用いて行うことができる。水素化分解処理に用
いられる水素化分解装置では、その反応条件として以下
の条件が用いられる。まず、反応温度は300〜450
℃の範囲が好ましい。上記反応温度が300℃未満であ
る時は反応の進行が著しく遅くなり、また450℃を越
える場合は過分解が進行し、ガス収率の増加により中間
製品の得率が低下し不経済である。上記と同様の理由か
ら、反応温度としては360〜420℃の範囲が更に好
ましい。また、反応圧力、即ち水素分圧は30〜200
kg/cm2 の範囲が好ましい。上記圧力が30kg/
cm2 未満である時は生成する中間留分の性状、例えば
色相、煙点等が悪化し、また200kg/cm2 を越え
る圧力は装置設計上不経済である。上記と同様の理由か
ら、水素分圧は100〜180kg/cm2 の範囲であ
ることが更に好ましい。更に、水素/油比は300〜2
000Nm3 /キロリットルの範囲であることが好まし
い。上記比率が300Nm3 /キロリットル未満の場合
は、反応が十分に進行せず、分解油の製品性状が悪化
し、また2000Nm3 /キロリットルを越える場合
は、装置設計上不経済である。上記と同様の理由から、
上記比率は500〜1000Nm3 /キロリットルの範
囲であることが更に好ましい。LHSVは0.1〜3.0h
-1の範囲であることが好ましい。LHSVが0.1h-1
満の場合は経済的な観点から十分な処理速度が得られ
ず、また3.0h-1を越える場合は反応時間が不十分で分
解油の得率が十分に得られない。上記と同様の理由か
ら、LHSVは0.2〜0.8h-1の範囲であることが更に
好ましい。
In the present invention, the hydrodesulfurized crude oil is gas-liquid separated into a gas component 1 and a liquid hydrocarbon component 1, and then the liquid hydrocarbon component 1 is hydrocracked. Such gas-liquid separation can be preferably performed by using a high-pressure gas-liquid separation tank because it can be separated without largely changing the temperature and pressure of the effluent. In the hydrocracking apparatus used for hydrocracking treatment, the following conditions are used as the reaction conditions. First, the reaction temperature is 300 to 450.
The range of ° C is preferred. When the reaction temperature is lower than 300 ° C., the reaction progresses remarkably slow, and when it exceeds 450 ° C., overdecomposition progresses, and the yield of intermediate products decreases due to an increase in gas yield, which is uneconomical. . For the same reason as above, the reaction temperature is more preferably in the range of 360 to 420 ° C. The reaction pressure, that is, the hydrogen partial pressure is 30 to 200.
The range of kg / cm 2 is preferred. The above pressure is 30kg /
When it is less than cm 2 , the properties of the produced middle distillate, such as hue and smoke point, are deteriorated, and the pressure exceeding 200 kg / cm 2 is uneconomical in designing the apparatus. For the same reason as above, the hydrogen partial pressure is more preferably in the range of 100 to 180 kg / cm 2 . Furthermore, the hydrogen / oil ratio is 300-2.
It is preferably in the range of 000 Nm 3 / kiloliter. If the above ratio is less than 300 Nm 3 / kL, the reaction does not proceed sufficiently and the product properties of the cracked oil deteriorate, and if it exceeds 2000 Nm 3 / kL, it is uneconomical in the design of the apparatus. For the same reason as above,
More preferably, the above ratio is in the range of 500 to 1000 Nm 3 / kiloliter. LHSV is 0.1-3.0h
It is preferably in the range of -1 . When LHSV is less than 0.1 h -1, sufficient processing speed cannot be obtained from an economical point of view, and when it exceeds 3.0 h -1 , reaction time is insufficient and cracked oil yield is sufficiently obtained. I can't. For the same reason as above, LHSV is more preferably in the range of 0.2 to 0.8 h -1 .

【0022】上記水素化分解処理において使用される触
媒としては、例えば特公平4−24106号公報の第3
欄第18行〜第6欄第30行に記載の、一般に公知のゼ
オライト系残油分解触媒を用いることができる。結晶性
アルミノシリケート、好ましくは鉄含有アルミノシリケ
ート、あるいはこれと無機酸化物を混合したものを担体
として、これに周期律表第6,8,9及び10族に属す
る金属の中から選ばれる少なくとも一種を担持した触媒
を用いることができる。特に上記担体としては、鉄含有
アルミノシリケート10〜90重量%及び無機酸化物9
0〜10重量%とからなるものが好ましい。担体中の鉄
含有アルミノシリケートの含有量が10重量%未満で
は、水素化処理触媒としての効果が充分に発揮されず、
また90重量%を超えると、その量の割には水素化活性
の向上効果があまりみられず、むしろ経済的に不利とな
る。特に、水素化活性及び経済性の点から、鉄含有アル
ミノシリケート30〜70重量%及び無機酸化物70〜
30重量%からなるものが好適である。
The catalyst used in the hydrocracking treatment is, for example, No. 3 of Japanese Patent Publication No. 4-24106.
The generally known zeolitic residual oil cracking catalysts described in col. 18, line 18 to col. 6, line 30 can be used. Crystalline aluminosilicate, preferably iron-containing aluminosilicate, or a mixture of this and an inorganic oxide as a carrier, and at least one selected from metals belonging to Groups 6, 8, 9 and 10 of the Periodic Table It is possible to use a catalyst carrying. In particular, as the above carrier, iron-containing aluminosilicate 10 to 90% by weight and inorganic oxide 9
Those containing 0 to 10% by weight are preferable. When the content of iron-containing aluminosilicate in the carrier is less than 10% by weight, the effect as the hydrotreating catalyst is not sufficiently exerted,
On the other hand, if it exceeds 90% by weight, the effect of improving the hydrogenation activity is not so much seen for that amount, which is rather economically disadvantageous. In particular, from the viewpoint of hydrogenation activity and economical efficiency, iron-containing aluminosilicate 30 to 70% by weight and inorganic oxide 70 to 70% by weight are used.
It is preferably composed of 30% by weight.

【0023】前記鉄含有アルミノシリケート含有担体に
用いられる無機酸化物としては、例えばベーマイトゲル
やアルミナゾルなどのアルミナ,シリカゾルなどのシリ
カ、あるいはシリカ−アルミナなどの多孔質のものが挙
げられ、特にアルミナが好ましく用いられる。
Examples of the inorganic oxide used in the iron-containing aluminosilicate-containing carrier include alumina such as boehmite gel and alumina sol, silica such as silica sol, and porous one such as silica-alumina. It is preferably used.

【0024】本発明において、上記水素化分解処理にお
いて用いられる触媒は、上記のようにして得られた担体
に、周期律表第6,8,9又は10族に属する金属の中
から選ばれた少なくとも一種を担持させたものである
が、その担持方法については、特に制限はなく、含浸
法,共沈法,混練法などの公知の任意の方法を採用する
ことができる。また、上記担体に、所望の金属を所定の
割合で担持させたのち、必要に応じて乾燥後、焼成処理
を行う。焼成温度及び時間は、担持させた金属の種類な
どに応じて適宜選ばれる。また、周期律表第6,8,9
又は10族に属する金属としては、前記水素化脱硫処理
で述べたと同様のものを使用することができる。このよ
うにして得られた水素化分解触媒は、平均細孔径が10
0〜200Åのものが好ましい。この平均細孔径が10
0Å未満では、重質分子が細孔内に十分拡散しないので
反応が十分進行しない。また、200Åを越える場合は
表面積が小さくなるため、反応の進行が不十分である。
In the present invention, the catalyst used in the hydrocracking treatment is selected from the metals obtained from the groups 6, 8, 9 and 10 of the periodic table for the carrier obtained as described above. Although at least one kind is supported, the supporting method is not particularly limited, and a known arbitrary method such as an impregnation method, a coprecipitation method, or a kneading method can be adopted. In addition, a desired metal is supported on the carrier at a predetermined ratio, and if necessary, dried and then fired. The firing temperature and time are appropriately selected depending on the type of the metal supported. Also, the periodic table
Alternatively, the metal belonging to Group 10 may be the same as that described in the hydrodesulfurization treatment. The hydrocracking catalyst thus obtained has an average pore size of 10
It is preferably 0 to 200Å. This average pore size is 10
If it is less than 0Å, the heavy molecule does not sufficiently diffuse into the pores, and the reaction does not proceed sufficiently. On the other hand, if it exceeds 200 Å, the surface area becomes small, and the reaction progresses insufficiently.

【0025】本発明においては、前記水素化脱硫後に高
圧気液分離槽で気液分離されて得られた気体成分1につ
いて、必要に応じ更に水素化精製処理を行うことができ
る。上記水素化精製処理で用いられる水素化精製装置で
は、その反応条件として以下の条件が用いられる。ま
ず、反応温度は300〜450℃の範囲が好ましい。上
記反応温度が300℃未満である時は反応の進行が著し
く遅くなり、また450℃を越える場合は過分解が進行
し、ガス収率の増加により中間製品の得率が低下し不経
済である。上記と同様の理由から、反応温度としては3
60〜420℃の範囲が更に好ましい。また、反応圧
力、即ち水素分圧は30〜200kg/cm 2 、更に1
00〜180kg/cm2 の範囲が好ましい。上記圧力
は30kg/cm2 程度で十分であるが、高圧気液分離
槽の気体成分をそのまま反応器に供給することが経済的
であるため、このプロセスの圧力は前段の水素化脱硫の
条件により決定される。更に、水素/油比は200〜2
000Nm3 /キロリットル、更に500〜1500N
3 /キロリットルの範囲であることが好ましい。上記
比率は200Nm3 /キロリットル程度で十分である
が、高圧気液分離槽の気体成分をそのまま反応器に供給
することが経済的であるため、このプロセスの水素/油
比は前段の水素化脱硫の条件により決定される。LHS
Vは0.5〜8.0h-1の範囲であることが好ましい。LH
SVが0.5h-1未満の場合は経済的な観点から十分な処
理速度が得られず、また8.0h-1を越える場合は反応時
間が不十分で分解油の得率が十分に得られない。上記と
同様の理由から、LHSVは1.0〜5.0h-1の範囲であ
ることが更に好ましい。
In the present invention, after the hydrodesulfurization, the high
Gas component 1 obtained by gas-liquid separation in a pressure-liquid separation tank
Can be further hydrorefined if necessary.
It In the hydrorefining equipment used in the above hydrorefining treatment
The following conditions are used as the reaction conditions. Well
The reaction temperature is preferably in the range of 300 to 450 ° C. Up
When the reaction temperature is lower than 300 ° C, the reaction progresses remarkably.
If the temperature exceeds 450 ° C, overdecomposition progresses.
However, due to the increase in gas yield, the yield of intermediate products declined
Already done. For the same reason as above, the reaction temperature is 3
The range of 60 to 420 ° C. is more preferable. Also, the reaction pressure
Force, that is, hydrogen partial pressure is 30 to 200 kg / cm 2, 1 more
00-180kg / cm2Is preferred. Above pressure
Is 30 kg / cm2High pressure gas-liquid separation
It is economical to directly supply the gas component of the tank to the reactor
Therefore, the pressure of this process is
Determined by the conditions. Furthermore, the hydrogen / oil ratio is 200-2.
000 Nm3/ Kiloliter, further 500-1500N
m3It is preferably in the range of / liter. the above
Ratio is 200 Nm3/ Kiloliter is enough
However, the gas component of the high pressure gas-liquid separation tank is directly supplied to the reactor.
Hydrogen / oil in this process because it is economical to do
The ratio is determined by the hydrodesulfurization conditions in the preceding stage. LHS
V is 0.5-8.0h-1It is preferably in the range of. LH
SV is 0.5h-1If less than, it is sufficient from the economical point of view.
I couldn't get the speed, and it was 8.0h.-1If it exceeds the time of reaction
Insufficient time to obtain sufficient yield of cracked oil. And above
For the same reason, LHSV is 1.0-5.0h-1In the range of
More preferably.

【0026】上記水素化精製処理において使用される水
素化精製触媒としては、アルミナあるいはシリカ、ある
いはアルミナにホウ素及び/又はリンの化合物を添加し
たもの、または鉄含有アルミノシリケートを担体とし
て、周期律表第6,8,9又は10族に属する金属から
選ばれる少なくとも一種を担持した触媒が好ましく用い
られる。このようなものとしては、上記水素化脱硫また
は水素化分解処理で用いられたものと同様のものを使用
することができる。このような水素化精製触媒は、平均
細孔径が20〜60Åのものが好ましい。この平均細孔
径が20Å未満では、触媒内拡散抵抗が大きくなり反応
が十分進行しない。また、60Åを越える場合は表面積
が小さくなり、十分な反応速度が得られない。
The hydrorefining catalyst used in the hydrorefining treatment is alumina or silica, or a mixture of alumina and a compound of boron and / or phosphorus, or an iron-containing aluminosilicate as a carrier, and the periodic table. A catalyst carrying at least one selected from metals belonging to groups 6, 8, 9 and 10 is preferably used. As such a material, the same material as that used in the above hydrodesulfurization or hydrocracking treatment can be used. Such a hydrorefining catalyst preferably has an average pore size of 20 to 60Å. If the average pore size is less than 20Å, the diffusion resistance in the catalyst becomes large and the reaction does not proceed sufficiently. On the other hand, if it exceeds 60 Å, the surface area becomes small and a sufficient reaction rate cannot be obtained.

【0027】本発明においては、前記水素化分解からの
流出物を更に高圧気液分離槽で気体成分2と液体炭化水
素成分2に分離し、該気体成分2を前記水素化脱硫後の
高圧気液分離槽からの気体成分1と合わせて、30〜2
00kg/cm2 の圧力下、300〜450℃の温度
で、LHSVが0.5〜8.0h-1、水素/油比が200〜
2000Nm3 /キロリットルの条件下で水素化精製触
媒と接触させたものを、前記液体炭化水素成分2と合わ
せて常圧蒸留を行う方法を好ましく使用することができ
る。このような方法を採ることにより、灯油の煙点向上
あるいは軽油の色相改善、セタン価向上等の利点が得ら
れる。
In the present invention, the effluent from the hydrocracking is further separated into a gas component 2 and a liquid hydrocarbon component 2 in a high pressure gas-liquid separation tank, and the gas component 2 is subjected to the high pressure gas after hydrodesulfurization. 30 to 2 including the gas component 1 from the liquid separation tank
Under a pressure of 00 kg / cm 2 , at a temperature of 300 to 450 ° C., an LHSV of 0.5 to 8.0 h −1 and a hydrogen / oil ratio of 200 to
A method of contacting with a hydrorefining catalyst under the condition of 2000 Nm 3 / kL and combining it with the liquid hydrocarbon component 2 and carrying out atmospheric distillation can be preferably used. By adopting such a method, advantages such as improvement of smoke point of kerosene, improvement of hue of light oil, and improvement of cetane number can be obtained.

【0028】原油を直接水素化脱硫処理等する場合は、
その反応条件はナフサ留分を除いた原油を水素化脱硫処
理等する場合の反応条件と基本的に同様であるが、水素
分圧が低下するため、水素分圧及び水素/油比を、上記
範囲内で大きくすることが好ましい。このようにして、
原油又はナフサ留分を除いた原油を一括水素化脱硫処理
したのち、この処理油は、常圧蒸留塔にて各種製品、例
えばナフサ留分,灯油留分,軽油留分,常圧蒸留残油な
どに分離される。この際、常圧蒸留塔の操作条件として
は、石油精製設備において広く行われている原油常圧蒸
留方法と同様であり、通常温度は300〜380℃程
度、圧力は常圧〜1.0kg/cm2 G程度である。この
工程を、水素化脱硫工程に引き続き行うことにより、熱
回収を図り運転費を大きく低減することができる。ま
た、既設の原油常圧蒸留塔を有効に利用するため、他の
場所にある製油所へ水素化脱硫処理油を転送して製品の
分離を行うことにより、建設費を低減することができ
る。
When the crude oil is directly hydrodesulfurized,
The reaction conditions are basically the same as those for hydrodesulfurization of crude oil excluding the naphtha fraction, but the hydrogen partial pressure decreases, so the hydrogen partial pressure and hydrogen / oil ratio are It is preferable to increase within the range. In this way,
Crude oil or crude oil excluding naphtha fraction is subjected to a batch hydrodesulfurization treatment, and this treated oil is then subjected to various products in an atmospheric distillation tower, such as naphtha fraction, kerosene fraction, gas oil fraction, atmospheric distillation residue. Etc. At this time, the operating conditions of the atmospheric distillation column are the same as the crude oil atmospheric distillation method that is widely used in petroleum refining equipment, and the normal temperature is about 300 to 380 ° C. and the pressure is atmospheric pressure to 1.0 kg / It is about cm 2 G. By performing this step after the hydrodesulfurization step, heat recovery can be achieved and the operating cost can be greatly reduced. Further, in order to effectively use the existing crude oil atmospheric distillation column, the construction cost can be reduced by transferring the hydrodesulfurized oil to another refinery in another place and separating the product.

【0029】[0029]

【実施例】以下に、実施例により本発明を更に具体的に
説明するが、本発明はこれらの例によってなんら限定さ
れるものではない。 実施例1 原料油として、アラビアンヘビー脱塩原油のナフサ留分
(C5〜157℃)を除いた下記性状のものを用いた。 原料油A 密度(15℃) 0.9319g/cm3 硫黄分 3.24重量% 窒素分 1500重量ppm バナジウム 55重量ppm ニッケル 18重量ppm 鉄 1.5重量ppm アスファルテン分 9.9重量% 灯油留分(157℃より高く239℃以下) 9.8重量% 軽油留分(239℃より高く370℃以下) 25.8重量% 残油 (370℃より高いもの) 64.4重量% 図1に示すように、原料油と水素を1000ミリリット
ルの水素化脱硫反応器に供給し、第1表に示す触媒Aを
用いて水素化脱硫反応を行い、反応後の温度及び圧力を
保持したまま、高圧気液分離槽に供給し、分離された液
体成分と水素を1000ミリリットルの水素化分解装置
に供給し、第1表に示す触媒Dを用いて水素化分解を行
った。水素化分解反応の生成油と先の気体成分を合わせ
て常圧蒸留を行った。各反応器の反応条件を第2表に示
す。また、第1表に示す触媒Aは、アルミナ担体に第1
表に示す成分の水溶塩を含浸して作成した、一般に公知
の触媒である。また、触媒Dは鉄含有Y型ゼオライトと
アルミナの混合物を担体とし、金属塩を水溶液から含浸
した一般に公知の触媒である。得られた水素化処理油を
蒸留により、ナフサ留分(C5〜157℃以下)、灯油
留分(157℃より高く239℃以下),軽油留分(2
39℃より高く370℃以下)及び残油(370℃より
高いもの)に分留し、それぞれの性状を求めた。また、
灯油留分及び軽油留分について貯蔵安定性試験を行っ
た。その結果を第3表及び第4表に示す。尚、灯油留分
及び軽油留分の貯蔵安定性試験は、ベントを有した50
0ミリリットルのガラス容器に試料を400ミリリット
ル入れ、43℃に保たれた暗所にて30日間貯蔵して、
貯蔵試験前後の結果を評価して示した。第3表及び第4
表より、残油水素化分解により、パラフィン分に富む中
間留分が生成するため、煙点の良好な灯油及びセタン価
の良好な軽油が得られることがわかる。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Example 1 As the raw material oil, the one having the following properties excluding the naphtha fraction (C5 to 157 ° C.) of Arabian heavy desalted crude oil was used. Feedstock A Density (15 ° C) 0.9319 g / cm 3 Sulfur content 3.24 wt% Nitrogen content 1500 wtppm Vanadium 55 wtppm Nickel 18 wtppm Iron 1.5 wtppm Asphaltene content 9.9 wt% Kerosene fraction (Higher than 157 ° C and lower than 239 ° C) 9.8 wt% Gas oil fraction (higher than 239 ° C and lower than 370 ° C) 25.8 wt% Residual oil (higher than 370 ° C) 64.4 wt% As shown in Figure 1. In addition, the feed oil and hydrogen are supplied to a 1000 ml hydrodesulfurization reactor, the hydrodesulfurization reaction is performed using the catalyst A shown in Table 1, and the high pressure gas-liquid is maintained while maintaining the temperature and pressure after the reaction. The separated liquid component and hydrogen were supplied to a separation tank and then supplied to a 1000 ml hydrocracking apparatus, and hydrocracking was performed using the catalyst D shown in Table 1. The oil produced by the hydrocracking reaction and the above gas components were combined and subjected to atmospheric distillation. The reaction conditions of each reactor are shown in Table 2. In addition, the catalyst A shown in Table 1 has a
It is a generally known catalyst prepared by impregnating a water-soluble salt of the components shown in the table. The catalyst D is a generally known catalyst in which a mixture of iron-containing Y-type zeolite and alumina is used as a carrier and a metal salt is impregnated from an aqueous solution. The obtained hydrotreated oil was distilled to obtain a naphtha fraction (C5 to 157 ° C or less), a kerosene fraction (higher than 157 ° C and 239 ° C or less), and a gas oil fraction (2
Fractional distillation was conducted into a residual oil (higher than 370 ° C. and higher than 39 ° C.) and a residual oil (higher than 370 ° C.) to determine the respective properties. Also,
A storage stability test was conducted on the kerosene fraction and the gas oil fraction. The results are shown in Tables 3 and 4. In addition, the storage stability test of the kerosene fraction and the light oil fraction was conducted with a vent.
400 ml of the sample was put in a 0 ml glass container and stored in a dark place kept at 43 ° C. for 30 days,
The results before and after the storage test were evaluated and shown. Table 3 and 4
From the table, it is understood that kerosene having a good smoke point and gas oil having a good cetane number are obtained because the middle distillate rich in paraffin is produced by the hydrocracking of residual oil.

【0030】実施例2 原料油として、下記の性状を有するアラビアンライト脱
塩原油を用いた。 原料油B 密度(15℃) 0.8639g/cm3 硫黄分 1.93重量% 窒素分 850重量ppm バナジウム 18重量ppm ニッケル 5重量ppm 鉄 7.0重量ppm アスファルテン分 3.8重量% ナフサ留分(C5〜157℃) 14.7重量% 灯油留分(157℃より高く239℃以下) 14.2重量% 軽油留分(239℃より高く370℃以下) 25.6重量% 残油 (370℃より高いもの) 45.5重量% 図1に示すように、原料油と水素を1000ミリリット
ルの水素化脱硫反応器に供給し、第1表に示す触媒Cを
用いて水素化脱硫反応を行い、反応後の温度及び圧力を
保持したまま、高圧気液分離槽に供給し、分離された液
体成分と水素を1000ミリリットルの水素化分解装置
に供給し、第1表に示す触媒Dを用いて水素化分解を行
った。水素化分解反応の生成油と先の気体成分を合わせ
て常圧蒸留を行った。各反応器の反応条件を第2表に示
す。また、第1表に示す触媒Cは、アルミナ担体に第1
表に示す成分の水溶塩を含浸して作成した、一般に公知
の触媒である。また、触媒Dは鉄含有Y型ゼオライトと
アルミナの混合物を担体とし、金属塩を水溶液から含浸
した一般に公知の触媒である。実施例1と同様にして、
得られた水素化処理油を蒸留し、得られた各留分の性状
を求めた。また、灯油留分及び軽油留分について貯蔵安
定性試験を行った。その結果を第3表及び第4表に示
す。アラビアンライト脱塩原油を原料油とした場合で
も、実施例1と同様に性状の良好な中間留分を増産でき
ることがわかった。
Example 2 As a raw material oil, Arabian light desalted crude oil having the following properties was used. Feedstock B Density (15 ° C) 0.86339 g / cm 3 Sulfur content 1.93 wt% Nitrogen content 850 wtppm Vanadium 18 wtppm Nickel 5 wtppm Iron 7.0 wtppm Asphaltene content 3.8 wt% Naphtha fraction (C5 to 157 ° C) 14.7% by weight Kerosene fraction (higher than 157 ° C and lower than 239 ° C) 14.2% by weight light oil fraction (higher than 239 ° C and lower than 370 ° C) 25.6% by weight residual oil (370 ° C) Higher) 45.5 wt% As shown in FIG. 1, feed oil and hydrogen were supplied to a 1000 ml hydrodesulfurization reactor, and the hydrodesulfurization reaction was performed using the catalyst C shown in Table 1, While maintaining the temperature and pressure after the reaction, the mixture was supplied to a high-pressure gas-liquid separation tank, the separated liquid component and hydrogen were supplied to a 1000 ml hydrocracker, and hydrogen was produced using catalyst D shown in Table 1. Chemical decomposition was performed. The oil produced by the hydrocracking reaction and the above gas components were combined and subjected to atmospheric distillation. The reaction conditions of each reactor are shown in Table 2. In addition, the catalyst C shown in Table 1 is the first on the alumina carrier.
It is a generally known catalyst prepared by impregnating a water-soluble salt of the components shown in the table. The catalyst D is a generally known catalyst in which a mixture of iron-containing Y-type zeolite and alumina is used as a carrier and a metal salt is impregnated from an aqueous solution. In the same manner as in Example 1,
The obtained hydrotreated oil was distilled, and the properties of each obtained fraction were determined. In addition, a storage stability test was conducted on the kerosene fraction and the gas oil fraction. The results are shown in Tables 3 and 4. It was found that, even when Arabian light desalted crude oil was used as the raw material oil, it was possible to increase the production of middle distillates having good properties as in Example 1.

【0031】実施例3 図2に示すように、原料油Bと水素を1000ミリリッ
トルの水素化脱硫反応器に供給し、第1表に示す触媒B
を用いて水素化脱硫反応を行い、反応後の温度及び圧力
を保持したまま、高圧気液分離槽に供給し、分離された
液体成分と水素を1000ミリリットルの水素化分解装
置に供給し、第1表に示す触媒Dを用いて水素化分解を
行った。一方で、前記高圧気液分離槽で得られた気体成
分を100ミリリットルの水素化精製反応器にて触媒E
と接触させる。前記水素化分解からの生成油と水素化精
製からの気体成分を合わせて常圧蒸留を行った。各反応
器の反応条件を第2表に示す。また、第1表に示す触媒
B及びEは、アルミナ担体に第1表に示す成分の水溶塩
を含浸して作成した、一般に公知の触媒である。また、
触媒Dは鉄含有Y型ゼオライトとアルミナの混合物を担
体とし、金属塩を水溶液から含浸した一般に公知の触媒
である。実施例1と同様にして、得られた水素化処理油
を蒸留し、得られた各留分の性状を求めた。また、灯油
留分及び軽油留分について貯蔵安定性試験を行った。そ
の結果を第3表及び第4表に示す。水素化精製処理を行
うことにより、更に良好な性状の灯軽油が得られた。
Example 3 As shown in FIG. 2, feed oil B and hydrogen were fed to a 1000 ml hydrodesulfurization reactor, and catalyst B shown in Table 1 was used.
Is subjected to a hydrodesulfurization reaction, and while maintaining the temperature and pressure after the reaction, it is supplied to a high pressure gas-liquid separation tank, and the separated liquid component and hydrogen are supplied to a 1000 ml hydrocracker, Hydrocracking was carried out using catalyst D shown in Table 1. On the other hand, the gas component obtained in the high-pressure gas-liquid separation tank is used as a catalyst E in a 100 ml hydrorefining reactor.
Contact with. The product oil from the hydrocracking and the gas component from the hydrorefining were combined and subjected to atmospheric distillation. The reaction conditions of each reactor are shown in Table 2. The catalysts B and E shown in Table 1 are generally known catalysts prepared by impregnating an alumina carrier with a water-soluble salt of the components shown in Table 1. Also,
Catalyst D is a generally known catalyst in which a mixture of iron-containing Y-type zeolite and alumina is used as a carrier and a metal salt is impregnated from an aqueous solution. The hydrotreated oil obtained was distilled in the same manner as in Example 1, and the properties of each of the obtained fractions were determined. In addition, a storage stability test was conducted on the kerosene fraction and the gas oil fraction. The results are shown in Tables 3 and 4. By performing the hydrorefining treatment, kerosene oil having better properties was obtained.

【0032】実施例4 図3に示すように、原料油Aと水素を1000ミリリッ
トルの水素化脱硫反応器に供給し、第1表に示す触媒B
を用いて水素化脱硫反応を行い、反応後の温度及び圧力
を保持したまま、高圧気液分離槽1に供給し、分離され
た液体成分1と水素を1000ミリリットルの水素化分
解反応器に供給し、第1表に示す触媒Dを用いて水素化
分解を行った。更に水素化分解反応後の流出物を温度及
び圧力を保持したまま、高圧気液分離槽2で液体成分2
と気体成分2に分離した。一方に、高圧気液分離槽1及
び2でそれぞれ得られた気体成分1及び2を合わせて1
00ミリリットルの水素化精製反応器にて触媒Fと接触
させた。液体成分2と水素化精製で得られた気体成分と
を実施例1と同様に蒸留し、各留分の性状を評価した。
また、灯油留分及び軽油留分について貯蔵安定性試験を
行った。その結果を第3表及び第4表に示す。水素化分
解油を更に水素化精製することにより、灯油煙点,軽油
色相において更に良好な性状の灯軽油が得られた。
Example 4 As shown in FIG. 3, feed oil A and hydrogen were fed to a 1000 ml hydrodesulfurization reactor, and catalyst B shown in Table 1 was used.
Is used to perform a hydrodesulfurization reaction, and while maintaining the temperature and pressure after the reaction, the high pressure gas-liquid separation tank 1 is supplied, and the separated liquid component 1 and hydrogen are supplied to a 1000 ml hydrocracking reactor. Then, hydrogenolysis was performed using the catalyst D shown in Table 1. Further, the effluent after the hydrocracking reaction is kept in the high pressure gas-liquid separation tank 2 while maintaining the temperature and pressure, and the liquid component 2
And gas component 2 were separated. On the other hand, the gas components 1 and 2 obtained in the high-pressure gas-liquid separation tanks 1 and 2, respectively, are combined into 1
The catalyst F was contacted in a 00 ml hydrorefining reactor. The liquid component 2 and the gas component obtained by hydrorefining were distilled in the same manner as in Example 1, and the properties of each fraction were evaluated.
In addition, a storage stability test was conducted on the kerosene fraction and the gas oil fraction. The results are shown in Tables 3 and 4. By further hydrorefining the hydrocracked oil, kerosene and light oil with even better properties in kerosene smoke point and light oil hue were obtained.

【0033】比較例1 図4に示すように原料油Aについて、第2表に示す条件
で水素化脱硫のみを行ったこと以外は実施例1と同様に
水素化処理を行った。実施例1と同様に生成油を分留し
て得られた各留分の性状及び灯油・軽油成分についての
貯蔵安定性試験を実施例1と同様に評価しその結果を第
3表及び第4表に示す。原油一括処理において、水素化
脱硫のみを行った場合は、残油の金属量及び窒素量、灯
軽油の色相及び煙点、セタン指数すべてにおいて品質が
不十分であることがわかる。
Comparative Example 1 As shown in FIG. 4, the feed oil A was hydrotreated in the same manner as in Example 1 except that only hydrodesulfurization was performed under the conditions shown in Table 2. The properties of each fraction obtained by fractionally distilling the produced oil in the same manner as in Example 1 and the storage stability test for kerosene / light oil components were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4. Shown in the table. It can be seen that when only hydrodesulfurization is performed in the crude oil batch treatment, the quality is insufficient in all of the metal amount and nitrogen amount of the residual oil, the hue and smoke point of kerosene and light oil, and the cetane index.

【0034】比較例2 図5に示すように、原料油Bを水素化脱硫の後段で気液
分離を行うことなく、直接水素化分解装置に通油した。
使用した触媒及び反応条件を第1表及び第2表に示す。
実施例1と同様に生成油を分留して得られた各留分の性
状及び灯油・軽油成分についての貯蔵安定性試験を実施
例1と同様に評価しその結果を第3表及び第4表に示
す。気液分離を行わず、軽質留分も同時に水素化分解反
応器に供給した場合、重質分の分解以上に灯軽油分中の
パラフィン分が分解されるので、灯軽油の得率及び灯油
煙点,軽油セタン価等の品質が低下する。
Comparative Example 2 As shown in FIG. 5, the raw material oil B was directly fed to the hydrocracking apparatus without gas-liquid separation in the latter stage of hydrodesulfurization.
The catalysts used and the reaction conditions are shown in Tables 1 and 2.
The properties of each fraction obtained by fractionally distilling the produced oil in the same manner as in Example 1 and the storage stability test for kerosene / light oil components were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4. Shown in the table. When light fractions are also supplied to the hydrocracking reactor at the same time without gas-liquid separation, the paraffin content in kerosene oil is decomposed more than the decomposition of heavy fractions. However, the quality such as light oil cetane number will decrease.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【発明の効果】本発明によれば、原油又はナフサ留分を
除いた原油の一括水素化脱硫工程において、残油の水素
化分解により飽和性の高い中間留分を得ることにより、
重質油の水素化脱硫に併せて軽灯油の水素化改質を効果
的に行い、高品質の軽灯油を増産し、かつ精製設備の簡
素化を図ることができる。
According to the present invention, in a batch hydrodesulfurization process of crude oil or crude oil excluding naphtha fraction, by obtaining a highly saturated intermediate fraction by hydrocracking of residual oil,
In addition to hydrodesulfurization of heavy oil, it is possible to effectively carry out hydroreforming of light kerosene, increase production of high-quality light kerosene, and simplify refining equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1及び2の各々で用いた本発明の水素
化精製方法の一例を示す概略工程図である。
FIG. 1 is a schematic process drawing showing an example of the hydrorefining method of the present invention used in each of Examples 1 and 2.

【図2】 実施例3で用いた本発明の水素化精製方法の
一例を示す概略工程図である。
2 is a schematic process drawing showing an example of the hydrorefining method of the present invention used in Example 3. FIG.

【図3】 実施例4で用いた本発明の水素化精製方法の
一例を示す概略工程図である。
FIG. 3 is a schematic process drawing showing an example of the hydrorefining method of the present invention used in Example 4.

【図4】 比較例1で用いた本発明外の水素化精製方法
の一例を示す概略工程図である。
FIG. 4 is a schematic process drawing showing an example of the hydrorefining method outside the present invention used in Comparative Example 1.

【図5】 実施例2で用いた本発明外の水素化精製方法
の一例を示す概略工程図である。
5 is a schematic process diagram showing an example of the hydrorefining method outside the present invention used in Example 2. FIG.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 原油又はナフサ留分を除いた原油を、水
素の存在下、触媒と接触させて水素化脱硫し、流出物を
高圧気液分離槽で気体成分1と液体炭化水素成分1に分
離し、該液体炭化水素成分1を水素の存在下、触媒と接
触させて水素化分解し、次いで前記気体成分1と前記水
素化分解からの流出物を合わせて、常圧蒸留を行い沸点
の異なる炭化水素を得ることを特徴とする、原油又はナ
フサ留分を除いた原油の水素化精製方法。
1. A crude oil or a crude oil from which a naphtha fraction has been removed is brought into contact with a catalyst in the presence of hydrogen for hydrodesulfurization, and the effluent is separated into a gas component 1 and a liquid hydrocarbon component 1 in a high pressure gas-liquid separation tank. The liquid hydrocarbon component 1 is separated and hydrocracked by contacting it with a catalyst in the presence of hydrogen, and then the gas component 1 and the effluent from the hydrocracking are combined and subjected to atmospheric distillation to remove the boiling point. A method for hydrorefining crude oil or crude oil excluding naphtha fraction, which comprises obtaining different hydrocarbons.
【請求項2】 水素化脱硫を、30〜200kg/cm
2 の圧力下、300〜450℃の温度で、LHSVが0.
1〜3.0h-1、水素/油比が300〜2000Nm3
キロリットルの条件で行うことを特徴とする請求項1記
載の水素化精製方法。
2. Hydrodesulfurization is performed at 30 to 200 kg / cm.sup.2.
Under the pressure of 2 , at a temperature of 300 to 450 ° C., the LHSV is 0.
1 to 3.0 h -1 , hydrogen / oil ratio of 300 to 2000 Nm 3 /
The hydrorefining method according to claim 1, wherein the hydrorefining method is carried out under the condition of kiloliters.
【請求項3】 水素化脱硫に用いられる触媒が、アルミ
ナ、シリカ−アルミナあるいはアルミナにホウ素及びリ
ンから選ばれる少なくとも一種の化合物を添加したもの
を担体として、周期律表第6,8,9又は10族に属す
る金属の中から選ばれる少なくとも一種を担持したもの
であることを特徴とする請求項1記載の水素化精製方
法。
3. A catalyst used for hydrodesulfurization is alumina, silica-alumina, or a mixture of alumina and at least one compound selected from boron and phosphorus as a carrier. 2. The hydrorefining method according to claim 1, which carries at least one selected from the group 10 metals.
【請求項4】 水素化分解を、30〜200kg/cm
2 の圧力下、300〜450℃の温度で、LHSVが0.
1〜3.0h-1、水素/油比が300〜2000Nm3
キロリットルの条件で行うことを特徴とする請求項1記
載の水素化精製方法。
4. Hydrocracking is performed at 30 to 200 kg / cm.
Under the pressure of 2 , at a temperature of 300 to 450 ° C., the LHSV is 0.
1 to 3.0 h -1 , hydrogen / oil ratio of 300 to 2000 Nm 3 /
The hydrorefining method according to claim 1, wherein the hydrorefining method is carried out under the condition of kiloliters.
【請求項5】 水素化分解に用いられる触媒が、結晶性
アルミノシリケートあるいはこれと無機酸化物との混合
物よりなる担体に周期律表第6,8,9又は10族に属
する金属の中から選ばれる少なくとも一種を担持したも
のであることを特徴とする請求項1記載の水素化精製方
法。
5. A catalyst used for hydrocracking is selected from metals belonging to Groups 6, 8, 9 or 10 of the Periodic Table in a carrier composed of crystalline aluminosilicate or a mixture of crystalline aluminosilicate and inorganic oxide. The hydrorefining method according to claim 1, which carries at least one of the following:
【請求項6】 水素化分解からの流出物と合わせて常圧
蒸留を行う気体成分が、高圧気液分離槽で分離された気
体成分1を更に、30〜200kg/cm2の圧力下、
300〜450℃の温度で、LHSVが0.5〜8.0
-1、水素/油比が200〜2000Nm3 /キロリッ
トルの条件下で水素化精製触媒と接触させて得られたも
のであることを特徴とする請求項1記載の水素化精製方
法。
6. The gas component which is subjected to atmospheric distillation together with the effluent from the hydrocracking is further separated from the gas component 1 separated in the high pressure gas-liquid separation tank under a pressure of 30 to 200 kg / cm 2 .
LHSV of 0.5-8.0 at 300-450 ℃
2. The hydrorefining method according to claim 1, which is obtained by contacting with a hydrorefining catalyst under the conditions of h −1 and hydrogen / oil ratio of 200 to 2000 Nm 3 / kil.
【請求項7】 水素化精製触媒が、アルミナ,シリカ,
シリカ−アルミナあるいはアルミナにホウ素及びリンか
ら選ばれる少なくとも一種の化合物を添加したものを担
体として、周期律表第6,8,9又は10族に属する金
属の中から選ばれる少なくとも一種を担持したものであ
ることを特徴とする請求項6記載の水素化精製方法。
7. The hydrorefining catalyst comprises alumina, silica,
Silica-alumina or a material obtained by adding at least one compound selected from boron and phosphorus to alumina, and carrying at least one selected from metals belonging to Groups 6, 8, 9 or 10 of the periodic table. The hydrorefining method according to claim 6, wherein
【請求項8】 水素化分解からの流出物を高圧気液分離
槽で気体成分2と液体炭化水素成分2に分離し、該気体
成分2を前記気体成分1と合わせて、30〜200kg
/cm2 の圧力下、300〜450℃の温度で、LHS
Vが0.5〜8.0h-1、水素/油比が200〜2000N
3 /キロリットルの条件下で水素化精製触媒と接触さ
せたものを、前記液体炭化水素成分2と合わせて常圧蒸
留を行うことを特徴とする請求項1記載の水素化精製方
法。
8. The effluent from the hydrocracking is separated into a gas component 2 and a liquid hydrocarbon component 2 in a high pressure gas-liquid separation tank, and the gas component 2 together with the gas component 1 is 30 to 200 kg.
LHS at a temperature of 300 to 450 ° C. under a pressure of / cm 2.
V is 0.5-8.0h -1 , hydrogen / oil ratio is 200-2000N
The hydrorefining method according to claim 1, wherein what is brought into contact with the hydrorefining catalyst under the condition of m 3 / kilitter is combined with the liquid hydrocarbon component 2 and subjected to atmospheric distillation.
JP6181166A 1994-08-02 1994-08-02 Crude oil hydrorefining method Expired - Fee Related JP3001775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6181166A JP3001775B2 (en) 1994-08-02 1994-08-02 Crude oil hydrorefining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6181166A JP3001775B2 (en) 1994-08-02 1994-08-02 Crude oil hydrorefining method

Publications (2)

Publication Number Publication Date
JPH0841466A true JPH0841466A (en) 1996-02-13
JP3001775B2 JP3001775B2 (en) 2000-01-24

Family

ID=16096047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6181166A Expired - Fee Related JP3001775B2 (en) 1994-08-02 1994-08-02 Crude oil hydrorefining method

Country Status (1)

Country Link
JP (1) JP3001775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179795A (en) * 2001-06-28 2009-08-13 Chevron Usa Inc Crude oil desulfurization
JP2017132836A (en) * 2016-01-25 2017-08-03 出光興産株式会社 Heavy oil processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179795A (en) * 2001-06-28 2009-08-13 Chevron Usa Inc Crude oil desulfurization
JP2017132836A (en) * 2016-01-25 2017-08-03 出光興産株式会社 Heavy oil processing system

Also Published As

Publication number Publication date
JP3001775B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
EP0537500B1 (en) A method of treatment of heavy hydrocarbon oil
KR100577134B1 (en) Integrated Hydrotreating and Hydrocracking Process
AU607448B2 (en) Production of high octane gasoline
EP1600491A1 (en) Catalytic hydrorefining process for crude oil
US5011593A (en) Catalytic hydrodesulfurization
JP5231735B2 (en) Iron-containing crystalline aluminosilicate, hydrocracking catalyst containing the aluminosilicate, and hydrocracking method using the catalyst
KR20130079652A (en) Hydrocarbon conversion process
JPH0756035B2 (en) Hydrocracking method
KR100601822B1 (en) Method for improving a gas oil fraction cetane index
JPS63161073A (en) Production of lubricating base oil
JP4939724B2 (en) Production method of diesel by medium pressure hydrocracking
JP2003027071A (en) Method for simultaneous hydrotreatment of two stock oils
KR100980324B1 (en) A process for reducing sulfur and olefin contents in gasoline
JP3001775B2 (en) Crude oil hydrorefining method
WO2001074973A1 (en) Process for hydrodesulfurization of light oil fraction
CN1261545C (en) Combined process for heavy oil upgrading
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
CN1331989C (en) Method of hydro up grading isomerizing pour point depression to produce diesel oil
EP0271148B1 (en) Process for the manufacture of kerosine and/or gas oils
JPH083570A (en) Method for hydrofining crude oil
JP5852892B2 (en) Heavy oil hydroprocessing method
KR100731659B1 (en) Simultaneous hydroprocessing of two feedstocks
JPH05230473A (en) Treatment of heavy hydrocarbon oil
US5624548A (en) Heavy naphtha hydroconversion process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees