JPH0841241A - Recovery of reinforcing material from composite plastic - Google Patents

Recovery of reinforcing material from composite plastic

Info

Publication number
JPH0841241A
JPH0841241A JP17417994A JP17417994A JPH0841241A JP H0841241 A JPH0841241 A JP H0841241A JP 17417994 A JP17417994 A JP 17417994A JP 17417994 A JP17417994 A JP 17417994A JP H0841241 A JPH0841241 A JP H0841241A
Authority
JP
Japan
Prior art keywords
reinforcing material
resin
whiskers
composite plastic
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17417994A
Other languages
Japanese (ja)
Inventor
Takashi Ota
隆 太田
Takumi Taniguchi
拓未 谷口
Norio Sato
紀夫 佐藤
Shoichi Suzuki
正一 鈴木
Masao Owaki
雅夫 大脇
Kanemitsu Kondo
兼光 近藤
Nariaki Abe
成昭 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP17417994A priority Critical patent/JPH0841241A/en
Publication of JPH0841241A publication Critical patent/JPH0841241A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To provide a method for recovering a useful reinforcing material (e.g. whisker) contained in a composite plastic in such a manner that deterioration, damage, lowering of physical properties and aggregate formation of the reinforcing material is suppressed and the reinforcing material is recovered in a dispersed state and can be recycled without requiring additional treatment. CONSTITUTION:This recovering method is applied to a composite plastic composed of a ceramics reinforcing material and a resin matrix for embedding the reinforcing material. The recovering method is composed of the first process where the composite plastic resin is subjected to alcohol decomposition, amine decomposition or hydrolysis by reacting with an alcohol, an amine or water, respectively to obtain a liquid decomposed product and the second process where the recovered reinforcing material having a resin residue on it is heated in a temperature range, in which the reinforcing material is free from deterioration nor damage, to decompose and remove the remained resin to obtain the reinforcing material free from the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合プラスチックの廃
品などに含まれる有用強化材の回収方法に関し、特に複
合熱硬化性プラスチック廃品よりウイスカなどの強化材
を再利用可能な状態で回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a useful reinforcing material contained in a waste product of a composite plastic, and more particularly, a method for recovering a reinforcing material such as a whisker from a waste product of a composite thermosetting plastic in a reusable state. Regarding

【0002】[0002]

【従来の技術】ウイスカなどの単結晶繊維で強化した熱
硬化性プラスチック複合材料は、自動車部品、OA機器
部品、精密機器部品、家電部品などに使用されている。
たとえばチタン酸カリウムウイスカを埋設したポリウレ
タンは自動車のバンパに使用されている。
2. Description of the Related Art Thermosetting plastic composite materials reinforced with single crystal fibers such as whiskers are used for automobile parts, office automation equipment parts, precision equipment parts, home electric appliance parts and the like.
For example, polyurethane embedded with potassium titanate whiskers is used in automobile bumpers.

【0003】これらの複合プラスチック部品の使用済み
となった廃品の多くは、粉砕後埋め立て処分されるのが
現状であり、貴重な有用強化材も再利用されずに廃棄さ
れている。このためこれらの強化材の回収、再生方法の
開発が必要である。また、使用済みの複合プラスチック
部品の廃品以外にも製造時に発生する複合プラスチック
端材などの再生処理も必要である。
Most of the used wastes of these composite plastic parts are crushed and then disposed of in landfill, and valuable useful reinforcing materials are also discarded without being reused. Therefore, it is necessary to develop a method for recovering and regenerating these reinforcing materials. In addition to the waste of used composite plastic parts, it is also necessary to recycle composite plastic scraps generated during manufacturing.

【0004】複合プラスチックからの強化材の回収技術
として、たとえば、特開平2−121806号公報に
は、複合プラスチックのプラスチックを熱分解して、プ
ラスチックに埋設されていた強化材(主に無機質素材)
を分離再生する方法が開示されている。この方法では、
熱分解にたよっているため、熱分解温度に耐える強化材
のみ再利用可能となるが、熱分解で劣化する強化材の再
生回収はできない。
As a technique for recovering the reinforcing material from the composite plastic, for example, Japanese Patent Laid-Open No. 2-121806 discloses a reinforcing material (mainly an inorganic material) embedded in the plastic by thermally decomposing the plastic of the composite plastic.
A method of separating and regenerating is disclosed. in this way,
Since it relies on pyrolysis, only the reinforcement that can withstand the pyrolysis temperature can be reused, but the reinforcement that deteriorates due to pyrolysis cannot be recycled.

【0005】特開平4−357006号公報も、マトリ
ックスの樹脂を熱分解し、液状の熱分解生成物から強化
材である繊維を分離回収する方法が開示されている。こ
の方法も熱分解にたよっているため、熱分解温度に耐え
る強化材のみ再利用可能となるが、熱分解で劣化する強
化材の再生回収はできない。特開平6−87123号公
報には、無機質充填剤のシリカを含有する熱硬化性樹脂
を、酸化雰囲気中で800〜1300℃の温度で焼却し
てシリカを回収する方法の開示がある。この方法により
回収成分中へ樹脂の不完全燃焼物が残存するのを防止で
きるとしている。しかしこの方法では、さらに高温を必
要とするため、強化材の劣化は避けられない。
Japanese Unexamined Patent Publication (Kokai) No. 4-357006 also discloses a method of thermally decomposing a matrix resin and separating and recovering fibers as a reinforcing material from a liquid thermal decomposition product. Since this method also relies on pyrolysis, only reinforcements that can withstand the pyrolysis temperature can be reused, but reinforcements that deteriorate due to pyrolysis cannot be recycled. Japanese Unexamined Patent Publication (Kokai) No. 6-87123 discloses a method of recovering silica by incinerating a thermosetting resin containing silica as an inorganic filler at a temperature of 800 to 1300 ° C. in an oxidizing atmosphere. According to this method, it is possible to prevent the incomplete combustion products of the resin from remaining in the recovered components. However, this method requires higher temperatures, and thus deterioration of the reinforcing material cannot be avoided.

【0006】上記の従来の方法では、樹脂の分解に高温
を必要とするためセラミック強化材の物性の低下が免れ
ない。
According to the above-mentioned conventional method, the decomposition of the resin requires a high temperature, so that the physical properties of the ceramic reinforcing material are unavoidably deteriorated.

【0007】[0007]

【発明が解決しようとする課題】本発明は、複合プラス
チックに含まれる有用強化材、たとえばウイスカを回収
するもので、強化材の劣化・損傷・物性低下が少ない強
化材の回収方法、さらには強化材どうしの凝集が少ない
単離分散した状態で強化材を回収でき、回収品をそのま
ま再利用できる方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is intended to recover useful reinforcing materials, such as whiskers, contained in composite plastics. A method for recovering a reinforcing material with less deterioration, damage and deterioration of physical properties of the reinforcing material, and further strengthening. It is an object of the present invention to provide a method in which a reinforcing material can be recovered in a state where the materials are isolated and dispersed with little aggregation, and the recovered product can be reused as it is.

【0008】[0008]

【課題を解決するための手段】本発明の複合プラスチッ
クからの強化材回収方法は、セラミックス製強化材と該
強化材を埋設する樹脂製マトリックスからなる複合プラ
スチックの該樹脂をアルコール、アミン、水と反応させ
てアルコール分解、アミン分解または加水分解により液
状分解物とする第1工程と、該樹脂残渣の付着した該強
化材を該強化材が劣化、損傷しない条件で加熱し、該樹
脂残渣を熱分解して除去して該樹脂残渣の付着していな
い該強化材とするする第2工程と、からなることを特徴
とする 本発明の強化材回収方法は、セラミックス製の強化材で
物性を強化した熱可塑性および熱硬化性樹脂から強化材
を回収するものである。回収される強化材としては、樹
脂に配合される酸化物、炭化物、窒化物などの無機材料
である。特にウイスカ、セラミック繊維など経済的価値
の高いものが好ましい。しかし経済的価値の高いものに
限定されない。また強化材のサイズや形状についても、
特に限定はない。
A method for recovering a reinforcing material from a composite plastic according to the present invention is a method of recovering the resin of a composite plastic comprising a ceramic reinforcing material and a resin matrix in which the reinforcing material is embedded, with alcohol, amine and water. The first step of reacting to form a liquid decomposition product by alcohol decomposition, amine decomposition or hydrolysis, and heating the reinforcing material having the resin residue attached thereto under conditions that the reinforcing material is not deteriorated or damaged, and heat the resin residue. The reinforcing material recovery method of the present invention comprises a second step of decomposing and removing to obtain the reinforcing material to which the resin residue is not adhered. The reinforcing material is recovered from the thermoplastic and thermosetting resin. The reinforcing material to be recovered is an inorganic material such as an oxide, a carbide, or a nitride compounded in a resin. In particular, those having high economic value such as whiskers and ceramic fibers are preferable. However, it is not limited to those with high economic value. Also regarding the size and shape of the reinforcement,
There is no particular limitation.

【0009】樹脂としては、熱可塑性および熱硬化性樹
脂いずれでも良い。しかし高温での熱分解が必要である
熱硬化性樹脂の場合に特に適する。特に化学分解で容易
に液状化するポリウレタン樹脂が代表である。上記樹脂
に強化材を充填した複合プラスチックは、使用済の成形
部品のみでなく、新材から製品を製造する際に生じる成
形不良品あるいは成形後のトリミングで生じる端材など
も含む。この廃品はそのまま化学分解に供しても良く、
予め所定のサイズに粉砕してから化学分解に供してもよ
い。
The resin may be either thermoplastic or thermosetting resin. However, it is particularly suitable for thermosetting resins that require thermal decomposition at high temperatures. A typical example is a polyurethane resin that is easily liquefied by chemical decomposition. The composite plastic in which the above-mentioned resin is filled with the reinforcing material includes not only used molded parts but also defective moldings produced when a product is manufactured from a new material or end materials produced by trimming after molding. This waste product may be directly subjected to chemical decomposition,
It may be ground to a predetermined size in advance and then subjected to chemical decomposition.

【0010】化学分解は、アルコール分解、アミン分解
および加水分解などが適用できる。グリコール分解はア
ルコール分解の一種と考えており、グリコール分解も本
発明の化学分解に含まれる。この化学分解は、アルコー
ル、アミンまたは水と、複合プラスチックのマトリック
スを構成する樹脂とを反応させ、マトリックスを形成す
る樹脂をアルコール分解、アミン分解および加水分解し
て低分子とするものである。
As the chemical decomposition, alcohol decomposition, amine decomposition and hydrolysis can be applied. Glycolysis is considered to be a type of alcohol degradation, and glycol decomposition is also included in the chemical degradation of the present invention. In this chemical decomposition, alcohol, amine or water is reacted with a resin forming a matrix of the composite plastic, and the resin forming the matrix is decomposed by alcohol, amine and hydrolyzed to form a low molecular weight molecule.

【0011】分解剤としては、グリコール、アルコー
ル、アミン、場合によってはアルカリ性水溶液が利用で
きる。たとえば、グリコールとしては、エチレングリコ
ール、プロピレングリコール、グリセリンなど、アルコ
ールとしては、メタノール、エタノール、イソプロパノ
ールなど、アミンとしては、エタノールアミン、プロピ
ルアミン、ブチルアミンなどの液状物が挙げられる。分
解剤にはこれらの液体にアルカリなどを加水分解触媒と
して添加してもよい。
As the decomposing agent, glycol, alcohol, amine and, in some cases, alkaline aqueous solution can be used. For example, glycol includes ethylene glycol, propylene glycol, glycerin and the like, alcohol includes methanol, ethanol, isopropanol and the like, and amine includes liquid substances such as ethanolamine, propylamine and butylamine. An alkali or the like may be added to these liquids as a decomposition catalyst as a hydrolysis catalyst.

【0012】かかる化学分解ができる樹脂としては、エ
ステル結合、ウレタン結合、ウレア結合等の結合を持つ
樹脂である。具体的には、熱硬化性および熱可塑性ポリ
エステル樹脂、ウレタン樹脂、尿素樹脂等である。この
化学分解は、通常、加圧下で350℃以下の温度で短時
間で完了する。この化学分解に公知のアルカリあるいは
酸等の触媒を使用するのが好ましい。これにより反応時
間を短縮したり、反応温度を低くすることができる。
The resin which can be chemically decomposed is a resin having a bond such as an ester bond, a urethane bond or a urea bond. Specifically, it is a thermosetting or thermoplastic polyester resin, urethane resin, urea resin or the like. This chemical decomposition is usually completed in a short time at a temperature of 350 ° C. or lower under pressure. It is preferable to use a known catalyst such as alkali or acid for this chemical decomposition. Thereby, the reaction time can be shortened and the reaction temperature can be lowered.

【0013】この化学分解でマトリックスを構成する樹
脂が分解され、大部分の樹脂が低分子化された有機物と
して、液状となる。液状となった有機物は濾過、遠心分
離等により容易に強化材から分離できる。得られた液状
有機物は、燃料、モノマー原料その他の添加剤として利
用できる。第2工程は、樹脂残渣の付着した強化材を強
化材が劣化、損傷しない温度範囲で加熱し、樹脂残渣を
熱分解して除去して樹脂残渣の付着していない強化材と
するするものである。樹脂残差の熱分解は、例えば、加
熱炉中で、常圧下400〜550℃で1〜30分間とい
う相対的にマイルドな条件で加熱処理することにより達
成される。この結果、強化材の表面に付着している樹脂
残渣は、熱分解して低分子の液状物質またはガス状物質
として除去される。このガスおよび液状物は、第2工程
の熱分解をおこなうための燃料などに再利用することが
できる。
By this chemical decomposition, the resin constituting the matrix is decomposed, and most of the resin becomes liquid as an organic substance having a low molecular weight. The liquid organic matter can be easily separated from the reinforcing material by filtration, centrifugation or the like. The obtained liquid organic matter can be used as a fuel, a monomer raw material, and other additives. The second step is to heat the reinforcing material to which the resin residue is attached within a temperature range where the reinforcing material is not deteriorated or damaged, and thermally decompose and remove the resin residue to obtain a reinforcing material to which the resin residue is not attached. is there. The thermal decomposition of the resin residue is achieved, for example, by heat treatment in a heating furnace under normal pressure at 400 to 550 ° C. for 1 to 30 minutes, which is a relatively mild condition. As a result, the resin residue attached to the surface of the reinforcing material is thermally decomposed and removed as a low-molecular liquid substance or a gaseous substance. The gas and the liquid substance can be reused as fuel for performing the thermal decomposition in the second step.

【0014】本発明の強化材回収方法により、例えば、
ウイスカ、ガラス繊維などのセラミックス繊維が劣化・
損傷・物性低下の程度が少ない状態で、また凝集するこ
なく分散した状態で回収することができる。
According to the reinforcing material recovery method of the present invention, for example,
Deterioration of ceramic fibers such as whiskers and glass fibers
It can be collected in a state in which the degree of damage and deterioration of physical properties is small and in a dispersed state without aggregation.

【0015】[0015]

【発明の作用および効果】本発明の強化材回収方法で
は、第1工程で複合プラスチックのマトリックスを構成
する樹脂を低温で化学分解する、このため樹脂分を除去
するために高温での熱分解は必要でなくなる。したがっ
て、回収強化材に高温の熱履歴を与え劣化・損傷させる
のを防ぐことができる。第2工程では、単離した強化材
の表面に付着している程度の量の樹脂残渣を分解するも
のであり、既に化学分解を受けているため、低温で加熱
処理することで簡単に加熱分解除去できる。このため、
回収処理の各工程で強化材が劣化・損傷・物性などの低
下が少なく、高品質の強化材を回収することができる。
In the method for recovering the reinforcing material of the present invention, the resin constituting the matrix of the composite plastic is chemically decomposed at a low temperature in the first step. Therefore, in order to remove the resin component, the thermal decomposition at a high temperature is carried out. No longer needed. Therefore, it is possible to prevent the recovery reinforcing material from being deteriorated or damaged by being given a high-temperature heat history. In the second step, the amount of resin residue attached to the surface of the isolated reinforcement is decomposed, and since it has already been chemically decomposed, it can be easily decomposed by heat treatment at a low temperature. Can be removed. For this reason,
It is possible to collect high-quality reinforcing material with little deterioration, damage, and deterioration of physical properties of the reinforcing material in each process of recovery processing.

【0016】複合プラスチックのマトリックスを構成す
る樹脂が化学分解により、低分子化されて液化されるの
で、強化材は複合プラスチックに埋設されていた状態で
回収され、強化材は凝集・偏在することなく均一に分散
した状態で回収することができる。このため回収された
強化材は、そのままの状態で強化材として再使用でき
る。また、これに新材の強化材を添加して使用できる。
あるいはその他の任意の用途の原料として転用すること
ができる。
Since the resin constituting the matrix of the composite plastic is chemically decomposed into a low molecular weight and liquefied, the reinforcing material is recovered in a state of being embedded in the composite plastic, and the reinforcing material is not aggregated or unevenly distributed. It can be collected in a uniformly dispersed state. Therefore, the recovered reinforcing material can be reused as it is as a reinforcing material. Further, a new reinforcing material can be added to this and used.
Alternatively, it can be diverted as a raw material for any other purpose.

【0017】本発明の処理温度は過度に高温でなく、処
理時間も比較的短いため作業性が良く、連続処理も可能
であるので、品質の良い有用材料の強化材の再生品を安
価に得ることが可能となる。
Since the treatment temperature of the present invention is not excessively high and the treatment time is relatively short, workability is good and continuous treatment is also possible, so that a regenerated product of a reinforcing material of a useful material of good quality can be obtained at a low cost. It becomes possible.

【0018】[0018]

【実施例】以下、実施例により具体的に説明する。本実
施例では、複合プラスチックとして、ポリプロピレング
リコール(PPG)、ジエチルトルエンジアミン(DE
TDA)、メチレンジフェニル4、4イソシアネート
(MDI)をモノマー原料とするウレタン樹脂に、強化
材としてチタン酸カリウムの繊維状ウイスカ(大塚化学
(株)製「テイスモD」:K2O-8TiO2、直径約0.3μ
m、長さ約20μm)を用い、これを反応型射出成形機
で均一な分散状態で充填した厚さ約3mmの成形品を使
用した。
EXAMPLES The present invention will be specifically described below with reference to examples. In this embodiment, as the composite plastic, polypropylene glycol (PPG), diethyltoluenediamine (DE)
TDA), methylenediphenyl 4,4 isocyanate (MDI) in urethane resin as a monomer raw material, fibrous whiskers of potassium titanate as a reinforcing material (Otsuka Chemical Co., Ltd. “Teismo D”: K 2 O-8TiO 2 , Diameter about 0.3μ
m, the length was about 20 μm), and a molded product having a thickness of about 3 mm was used which was filled with the reaction type injection molding machine in a uniform dispersion state.

【0019】まず、この成形品をハンマーミルで約5m
m角に粉砕し、その粉砕品を試料として次の方法で処理
した。 (実施例1)試料100gをオートクレーブ(日東高圧
(株)製の容量1000mlのもの、以下同じ)にい
れ、これに分解剤としてエチレングリコール100gを
加えた後、密閉した。内容物をオートクレーブ中で攪拌
しながら、ウイスカの結晶構造には全く影響しない温度
の300℃に加熱して10分間保持した。このときオー
トクレーブ内の最高圧力は0.8MPaであった。
First, this molded product was hammered for about 5 m.
It was crushed into m squares, and the crushed product was treated as a sample by the following method. (Example 1) 100 g of a sample was placed in an autoclave (manufactured by Nitto High Pressure Co., Ltd., having a capacity of 1000 ml, the same applies hereinafter), and 100 g of ethylene glycol as a decomposing agent was added to the autoclave, followed by sealing. While stirring the contents in an autoclave, the contents were heated to 300 ° C., which had no influence on the whisker crystal structure, and held for 10 minutes. At this time, the maximum pressure in the autoclave was 0.8 MPa.

【0020】次いで冷却後、ウイスカを含んだ液状の化
学分解生成物を取り出した。この化学分解生成物はポリ
オールを主成分とする液状の低分子有機物を含む液体で
あり、この液体中に強化材であるウイスカが分散してい
た。液状の有機物を含む液体を濾別した後、液状の樹脂
残渣が表面に付着した状態のウイスカを加熱炉にいれ、
常圧下、500℃で5分間加熱処理して液状の有機物残
渣を分解除去した。
After cooling, a liquid chemical decomposition product containing whiskers was taken out. This chemical decomposition product was a liquid containing a liquid low molecular weight organic compound containing polyol as a main component, and whiskers as a reinforcing material were dispersed in this liquid. After filtering the liquid containing the liquid organic matter, put the whiskers in the state where the liquid resin residue adheres to the surface,
The liquid organic residue was decomposed and removed by heat treatment at 500 ° C. for 5 minutes under normal pressure.

【0021】回収したウイスカの表面には、灰分や炭化
物などの残留物は認められず、損傷がないことが確認さ
れた。またウイスカは凝集することなく分散した状態で
得られた。ウイスカの結晶構造には変化はなかった。得
られたウイスカは、強化材として再度ポリウレタン樹脂
への充填は勿論のこと、他の樹脂への充填も新材ウイス
カと同様に行うことができ、再生製品の物性も新材と同
等であった。ポリウレタン樹脂への充填の場合、反応射
出成形機で3mm厚さの平板を成形し、これから試験片
を作製して該成形体の物性即ち引張り強度、曲げ強度、
低温脆化温度を測定したところ、ウイスカ新材を充填し
たポリウレタン樹脂成形品と同等の物性を示した。
No residue such as ash or carbide was found on the surface of the recovered whiskers, which confirmed that there was no damage. The whiskers were obtained in a dispersed state without agglomerating. There was no change in the whisker crystal structure. The obtained whiskers could be filled not only with the polyurethane resin as a reinforcing material but also with other resins in the same manner as the new material whiskers, and the physical properties of the recycled products were similar to those of the new materials. . In the case of filling in a polyurethane resin, a flat plate having a thickness of 3 mm is molded by a reaction injection molding machine, and a test piece is prepared from the molded product to obtain physical properties of the molded article, that is, tensile strength, bending strength,
When the low temperature embrittlement temperature was measured, it showed the same physical properties as the polyurethane resin molded product filled with the new whisker material.

【0022】なお、化学分解後のウイスカの分散状態に
ついては、分解生成物の一滴をスポイト等でスライドグ
ラスに滴下し、顕微鏡で観察して、ウイスカの凝集の有
無を評価した。また、熱分解後に回収したウイスカの状
態については、顕微鏡で観察して、ウイスカの分散性を
凝集の有無で、およびウイスカ表面の損傷の有無、残留
物の有無を視覚的に評価して、合格を○とし、不合格を
×として再利用に耐える状態か否かを調べた。またウイ
スカの結晶構造をX線回折装置で解析して劣化の有
(×)、無(○)を評価した。結果は表1にまとめて示
した。
Regarding the dispersed state of the whiskers after chemical decomposition, one drop of the decomposition product was dropped on a slide glass with a dropper and observed with a microscope to evaluate the presence or absence of agglomeration of the whiskers. The state of the whiskers recovered after thermal decomposition was observed with a microscope, and the dispersibility of the whiskers was visually evaluated for the presence or absence of agglomeration, the presence or absence of damage on the whisker surface, and the presence or absence of residues, and passed. Was evaluated as ◯, and the failure was evaluated as x, and it was examined whether or not it was in a state of enduring reuse. In addition, the crystal structure of the whiskers was analyzed by an X-ray diffractometer to evaluate whether deterioration (x) or no deterioration (o). The results are summarized in Table 1.

【0023】(実施例2)試料100gをオートクレー
ブに入れ、これに分解剤としてエチレングリコール10
0gを加えた後、密閉した。内容物をオートクレーブ中
で攪拌しながら、ウイスカの結晶構造には全く影響しな
い温度の300℃に加熱して10分間保持した。このと
きのオートクレーブ内の最高圧力は0.8MPaであっ
た。次いで冷却後、ウイスカを含んだ液状の化学分解生
成物を取出した。
Example 2 100 g of a sample was placed in an autoclave and ethylene glycol 10 was added as a decomposing agent.
After adding 0 g, it was sealed. While stirring the contents in an autoclave, the contents were heated to 300 ° C., which had no influence on the whisker crystal structure, and held for 10 minutes. The maximum pressure in the autoclave at this time was 0.8 MPa. Then, after cooling, a liquid chemical decomposition product containing whiskers was taken out.

【0024】化学分解後のウイスカの分散状態を評価し
た結果、ポリオールを主成分とする液状の分解生成物中
には、有用物質のウイスカが均一に分散していることが
認められた。液状の分解生成物を濾別した後、液状の分
解生成物が表面に付着した状態のウイスカを加熱炉に入
れ、常圧下、550℃で1分間加熱処理した。
As a result of evaluating the dispersion state of the whiskers after the chemical decomposition, it was found that the useful substances, whiskers, were uniformly dispersed in the liquid decomposition product containing the polyol as the main component. After the liquid decomposition product was filtered off, the whiskers with the liquid decomposition product adhering to the surface were placed in a heating furnace and heat-treated at 550 ° C. for 1 minute under normal pressure.

【0025】回収したウイスカは凝集することなく分散
した状態で得られたが、ウイスカの表面には液状成分の
未分解部分が若干残存しているのが認められた。ウイス
カの結晶構造には変化はなかった。得られたウイスカを
ポリウレタン樹脂へ充填して反応射出成形機で3mm厚
さの平板を成形し、これから試験片を作製して該成形体
の物性例えば引張り強度、曲げ強度、低温脆化温度等を
測定したところ、元の成形体すなわちウイスカ新材を充
填したポリウレタン樹脂成形品と同等の物性を示した。
Although the recovered whiskers were obtained in a dispersed state without agglomerating, it was found that some undecomposed portion of the liquid component remained on the surface of the whiskers. There was no change in the whisker crystal structure. The obtained whiskers were filled in a polyurethane resin, and a flat plate having a thickness of 3 mm was molded by a reaction injection molding machine. A test piece was prepared from the whiskers, and the physical properties of the molded product such as tensile strength, bending strength, low temperature embrittlement temperature, etc. When measured, it showed physical properties equivalent to the original molded product, that is, a polyurethane resin molded product filled with a new whisker material.

【0026】(実施例3)試料100gをオートクレー
ブに入れ、これに分解剤としてエチレングリコール15
0gを加えた後、密閉した。内容物をオートクレーブ中
で攪拌しながら、ウイスカの結晶構造には全く影響しな
い温度の300℃に加熱して10分間保持した。このと
きのオートクレーブ内の最高圧力は0.8MPaであっ
た。 ウイスカを含んだ液状の化学分解生成物の内容物
を取出さず、図1に示すように、直ちにオートクレーブ
1での化学分解処理時の0.8MPaの加圧下から、加
熱炉2中へ常圧下に放出した。500℃で3分間加熱処
理して液状の分解生成物を分解してガス化して除去し
た。この時には、内容物は容易に噴霧状となって加熱炉
中に通すことができた。強化材のウイスカは下方のウイ
スカ捕集器3に集めた。このように加熱炉中の熱分解に
よる液状分解生成物の除去が短時間でかつ完全に行うこ
とができ、より効率的な連続処理が可能となる。
Example 3 100 g of a sample was placed in an autoclave, and ethylene glycol 15 as a decomposing agent was added to the autoclave.
After adding 0 g, it was sealed. While stirring the contents in an autoclave, the contents were heated to 300 ° C., which had no influence on the whisker crystal structure, and held for 10 minutes. The maximum pressure in the autoclave at this time was 0.8 MPa. As shown in FIG. 1, immediately without applying the content of the liquid chemical decomposition product containing whiskers, the pressure of 0.8 MPa during the chemical decomposition treatment in the autoclave 1 was immediately changed to the heating furnace 2 under normal pressure. Released to. The liquid decomposition product was decomposed by heating at 500 ° C. for 3 minutes to be gasified and removed. At this time, the contents could easily be atomized and passed through the heating furnace. The reinforcement whiskers were collected in the whisker collector 3 below. As described above, the liquid decomposition products due to the thermal decomposition in the heating furnace can be completely removed in a short time, and a more efficient continuous treatment becomes possible.

【0027】回収したウイスカの表面には、灰分や炭化
物などの残留物は認められず、損傷がないことを確認し
た。またウイスカは凝集することなく分散した状態で得
られた。ウイスカの結晶構造には変化なかった。得られ
たウイスカは、強化材として再度ポリウレタン樹脂への
充填は勿論のこと、他の樹脂への充填も新材ウイスカと
同様に行うことができ、再生製品の物性も新材と同等で
あった。ポリウレタン樹脂への充填の場合、反応射出成
形機で3mm厚さの平板を成形し、これから試験片を作
製して該成形体の物性例えば引張り強度、曲げ強度、低
温脆化温度等を測定したところ、元の成形体すなわちウ
イスカ新材を充填したポリウレタン樹脂成形品と同等の
物性を示した。
No residues such as ash and carbide were found on the surface of the recovered whiskers, confirming that they were not damaged. The whiskers were obtained in a dispersed state without agglomerating. The whisker crystal structure did not change. The obtained whiskers could be filled not only with the polyurethane resin as a reinforcing material but also with other resins in the same manner as the new material whiskers, and the physical properties of the recycled products were similar to those of the new materials. . In the case of filling into a polyurethane resin, a reaction injection molding machine was used to mold a flat plate having a thickness of 3 mm, and a test piece was prepared from the molded product, and the physical properties of the molded product were measured, for example, tensile strength, bending strength, low temperature embrittlement temperature, etc. , Shows the same physical properties as the original molded product, that is, a polyurethane resin molded product filled with a new whisker material.

【0028】(実施例4)試料100gを攪拌機付き容
器に入れ、これにエチレングリコール99gに苛性ソー
ダ1gを混合した液を分解剤として容器に加えた後、常
圧下攪拌しながら、内容物をウイスカの結晶構造には全
く影響しない温度の160℃に加熱して60分間保持し
た。
Example 4 100 g of a sample was placed in a container equipped with a stirrer, and a solution prepared by mixing 99 g of ethylene glycol with 1 g of caustic soda was added to the container as a decomposing agent. The contents of whiskers were stirred under normal pressure. The crystal structure was heated to 160 ° C., which had no influence on the crystal structure, and held for 60 minutes.

【0029】冷却後、ウイスカを含んだ液状の化学分解
生成物を取出した。化学分解後のウイスカの分散状態を
評価した結果、ポリオールを主成分とする液状の分解生
成物中には、有用物質のウイスカが均一に分散している
ことが認められた。液状の分解生成物を濾別した後、液
状の分解生成物が表面に付着した状態のウイスカを加熱
炉に入れ、常圧下、500℃で5分間加熱処理して分解
生成物を分解し除去した。
After cooling, a liquid chemical decomposition product containing whiskers was taken out. As a result of evaluating the dispersion state of the whiskers after the chemical decomposition, it was found that the useful substances, whiskers, were uniformly dispersed in the liquid decomposition product containing the polyol as the main component. After the liquid decomposition product was filtered off, the whiskers in which the liquid decomposition product adhered to the surface were placed in a heating furnace, and the decomposition product was decomposed and removed by heat treatment at 500 ° C. for 5 minutes under normal pressure. .

【0030】回収したウイスカの表面には、灰分や炭化
物などの残留物は認められず、損傷がないことを確認し
た。またウイスカは凝集することなく分散した状態で得
られた。ウイスカの結晶構造には変化はなかった。得ら
れたウイスカは、強化材として再度ポリウレタン樹脂へ
の充填は勿論のこと、他の樹脂への充填も新材ウイスカ
と同様に行うことができ、再生製品の物性も新材と同等
であった。ポリウレタン樹脂への充填の場合、反応射出
成形機で3mmの厚さの平板を成形し、これから試験片
を作製して該成形体の物性例えば引張り強度、曲げ強
度、低温脆化温度等を測定したところ、元の成形体すな
わちウイスカ新材を充填したポリウレタン樹脂成形品と
同等の物性を示した。
No residue such as ash and carbide was observed on the surface of the recovered whiskers, which confirmed that the whiskers were not damaged. The whiskers were obtained in a dispersed state without agglomerating. There was no change in the whisker crystal structure. The obtained whiskers could be filled not only with the polyurethane resin as a reinforcing material but also with other resins in the same manner as the new material whiskers, and the physical properties of the recycled products were similar to those of the new materials. . In the case of filling into a polyurethane resin, a plate having a thickness of 3 mm was molded by a reaction injection molding machine, and a test piece was prepared from the molded product, and the physical properties of the molded product such as tensile strength, bending strength, low temperature embrittlement temperature, etc. were measured. However, it showed the same physical properties as the original molded product, that is, a polyurethane resin molded product filled with a new whisker material.

【0031】(実施例5)試料100gを攪拌機付き容
器に入れ、これにエチレングリコール99gに苛性ソー
ダ1gを混合した液を分解剤として容器に加えた後、常
圧下で攪拌しながら、内容物をウイスカの結晶構造には
全く影響しない温度の160℃に加熱して60分間保持
した。
(Example 5) 100 g of a sample was placed in a container equipped with a stirrer, and a liquid prepared by mixing 99 g of ethylene glycol with 1 g of caustic soda was added to the container as a decomposing agent, and the contents were stirred while stirring under normal pressure. It was heated to 160 ° C., which is a temperature that does not affect the crystal structure of, and held for 60 minutes.

【0032】冷却後、ウイスカを含んだ液状の化学分解
生成物を取出した。化学分解後のウイスカの分散状態を
評価した結果、ポリオールを主成分とする液状の分解生
成物中には、有用物質のウイスカが均一に分散している
ことが認められた。液状の分解生成物を濾別した後、液
状の分解生成物が表面に付着した状態のウイスカを加熱
炉に入れ、常圧下、400℃で30分間加熱処理した。
After cooling, a liquid chemical decomposition product containing whiskers was taken out. As a result of evaluating the dispersion state of the whiskers after the chemical decomposition, it was found that the useful substances, whiskers, were uniformly dispersed in the liquid decomposition product containing the polyol as the main component. After the liquid decomposition product was filtered off, the whiskers with the liquid decomposition product adhering to the surface were placed in a heating furnace and heat-treated at 400 ° C. for 30 minutes under normal pressure.

【0033】回収したウイスカは凝集することなく分散
した状態で得られたが、ウイスカの表面には液状成分の
未分解部分が若干残存しているのが認められた。ウイス
カの結晶構造には変化はなかった。得られたウイスカを
ポリウレタン樹脂へ充填して反応射出成形機で3mm厚
さの平板を成形し、これから試験片を作製して該成形体
の物性例えば引張り強度、曲げ強度、低温脆化温度等を
測定したところ、元の成形体すなわちウイスカ新材を充
填したポリウレタン樹脂成形品と同等の物性を示した。
Although the recovered whiskers were obtained in a dispersed state without agglomerating, it was found that some undecomposed portion of the liquid component remained on the surface of the whiskers. There was no change in the whisker crystal structure. The obtained whiskers were filled in a polyurethane resin, and a flat plate having a thickness of 3 mm was molded by a reaction injection molding machine. A test piece was prepared from the whiskers, and the physical properties of the molded product such as tensile strength, bending strength, low temperature embrittlement temperature, etc. When measured, it showed physical properties equivalent to the original molded product, that is, a polyurethane resin molded product filled with a new whisker material.

【0034】(実施例6)試料100gをオートクレー
ブに入れ、これにメチルアルコ−ル99gに苛性ソーダ
1gを混合した液を分解剤として容器に加えた後、密閉
した。内容物をオートクレーブ中で攪拌しながら、ウイ
スカの結晶構造には全く影響しない温度の160℃に加
熱して30分間保持する。このときのオートクレーブ内
の最高圧力は2.0MPaであった。
Example 6 100 g of a sample was placed in an autoclave, and a liquid obtained by mixing 99 g of methyl alcohol with 1 g of caustic soda was added to the container as a decomposing agent, and then the container was closed. While stirring the contents in an autoclave, the contents are heated to 160 ° C., which does not affect the crystal structure of whiskers, and kept for 30 minutes. The maximum pressure in the autoclave at this time was 2.0 MPa.

【0035】冷却後、ウイスカを含んだ液状の化学分解
生成物を取出した。化学分解後のウイスカの分散状態を
評価した結果、ポリオールを主成分とする液状の分解生
成物中には、有用物質のウイスカが均一に分散している
ことが認められた。液状の分解生成物を濾別した後、液
状の分解生成物が表面に付着した状態のウイスカを加熱
炉に入れ、常圧下、550℃で3分間加熱処理して液状
の分解生成物を分解して除去した。
After cooling, a liquid chemical decomposition product containing whiskers was taken out. As a result of evaluating the dispersion state of the whiskers after the chemical decomposition, it was found that the useful substances, whiskers, were uniformly dispersed in the liquid decomposition product containing the polyol as the main component. After separating the liquid decomposition products by filtration, put the whiskers with the liquid decomposition products attached to the surface in a heating furnace, and heat-treat at 550 ° C. for 3 minutes under normal pressure to decompose the liquid decomposition products. Removed.

【0036】回収したウイスカの表面には、灰分や炭化
物などの残留物は認められず、損傷がないことを確認し
た。またウイスカは凝集することなく分散した状態で得
られた。ウイスカの結晶構造には変化はなかった。得ら
れたウイスカは、強化材として再度ポリウレタン樹脂へ
の充填は勿論のこと、他の樹脂への充填も新材ウイスカ
と同様に行うことができ、再生製品の物性も新材と同等
であった。ポリウレタン樹脂への充填の場合、反応射出
成形機で3mmの厚さの平板を成形し、これから試験片
を作製して該成形体の物性、例えば引張り強度、曲げ強
度、低温脆化温度等を測定したところ、元の成形体すな
わちウイスカ新材を充填したポリウレタン樹脂成形品と
同等の物性を示した。
No residue such as ash and carbide was found on the surface of the recovered whiskers, confirming that there was no damage. The whiskers were obtained in a dispersed state without agglomerating. There was no change in the whisker crystal structure. The obtained whiskers could be filled not only with the polyurethane resin as a reinforcing material but also with other resins in the same manner as the new material whiskers, and the physical properties of the recycled products were similar to those of the new materials. . In the case of filling into a polyurethane resin, a reaction injection molding machine is used to mold a flat plate having a thickness of 3 mm, and a test piece is prepared from this to measure the physical properties of the molded product, such as tensile strength, bending strength, low temperature embrittlement temperature, etc. As a result, it showed the same physical properties as the original molded product, that is, a polyurethane resin molded product filled with a new whisker material.

【0037】(実施例7)試料100gをオートクレー
ブに入れ、これにイソプロピルアルコ−ル99gに苛性
ソーダ1gを混合した液を分解剤として容器に加えた
後、密閉した。内容物をオートクレーブ中で攪拌しなが
ら、ウイスカの結晶構造には全く影響しない温度の16
0℃に加熱して30分間保持した。このときのオートク
レーブ内の最高圧力は2.0MPaであった。
Example 7 100 g of a sample was placed in an autoclave, and a liquid obtained by mixing 99 g of isopropyl alcohol with 1 g of caustic soda was added as a decomposing agent to the container and then sealed. While stirring the contents in an autoclave, the temperature of the whiskers was not affected at 16 ° C.
Heat to 0 ° C. and hold for 30 minutes. The maximum pressure in the autoclave at this time was 2.0 MPa.

【0038】冷却後.ウイスカを含んだ液状の化学分解
生成物を取出した。化学分解後のウイスカの分散状態を
評価した結果、ポリオールを主成分とする液状の分解生
成物中には、有用物質のウイスカが均一に分散している
ことが認められた。液状の分解生成物を濾別した後、液
状の分解生成物が表面に付着した状態のウイスカを加熱
炉に入れ、常圧下、500℃で10分間加熱処理して液
状の分解生成物を分解して除去した。
After cooling. A liquid chemical decomposition product containing whiskers was taken out. As a result of evaluating the dispersion state of the whiskers after the chemical decomposition, it was found that the useful substances, whiskers, were uniformly dispersed in the liquid decomposition product containing the polyol as the main component. After separating the liquid decomposition products by filtration, put the whiskers with the liquid decomposition products adhering to the surface in a heating furnace, and heat-treat at 500 ° C. for 10 minutes under normal pressure to decompose the liquid decomposition products. Removed.

【0039】回収したウイスカの表面には、灰分や炭化
物などの残留物は認められず、損傷がないことを確認し
た。またウイスカは凝集することなく分散した状態で得
られた。ウイスカの結晶構造には変化はなかった。得ら
れたウイスカは、強化材として再度ポリウレタン樹脂へ
の充填は勿論のこと、他の樹脂への充填も新材ウイスカ
と同様に行うことができ、再生製品の物性も新材と同等
であった。ポリウレタン樹脂への充填の場合、反応射出
成形機で3mmの厚さの平板を成形し、これから試験片
を作製して該成形体の物性例えば引張り強度、曲げ強
度、低温脆化温度等を測定したところ、元の成形体すな
わちウイスカ新材を充填したポリウレタン樹脂成形品と
同等の物性を示した。
No residue such as ash or carbide was observed on the surface of the recovered whiskers, which confirmed that the whiskers were not damaged. The whiskers were obtained in a dispersed state without agglomerating. There was no change in the whisker crystal structure. The obtained whiskers could be filled not only with the polyurethane resin as a reinforcing material but also with other resins in the same manner as the new material whiskers, and the physical properties of the recycled products were similar to those of the new materials. . In the case of filling into a polyurethane resin, a plate having a thickness of 3 mm was molded by a reaction injection molding machine, and a test piece was prepared from the molded product, and the physical properties of the molded product such as tensile strength, bending strength, low temperature embrittlement temperature, etc. were measured. However, it showed the same physical properties as the original molded product, that is, a polyurethane resin molded product filled with a new whisker material.

【0040】(実施例8)試料100gをオートクレー
ブに入れ、これにイソプロピルアルコ−ル149gに苛
性ソーダ1gを混合した液を分解剤として容器に加えた
後、密閉した。内容物をオートクレーブ中で攪拌しなが
ら、ウイスカの結晶構造には全く影響しない温度の16
0℃に加熱して30分間保持した。このときのオートク
レーブ内の最高圧力は1.5MPaであった。
Example 8 100 g of a sample was placed in an autoclave, and a liquid obtained by mixing 149 g of isopropyl alcohol with 1 g of caustic soda was added as a decomposing agent to the container and then sealed. While stirring the contents in an autoclave, the temperature of the whiskers was not affected at 16 ° C.
Heat to 0 ° C. and hold for 30 minutes. The maximum pressure in the autoclave at this time was 1.5 MPa.

【0041】ウイスカを含んだ液状の化学分解生成物の
内容物を取出さず、図1に示すように、直ちにオートク
レーブ1での化学分解処理時の1.5MPaの加圧下か
ら、加熱炉2中の常圧下に放出した。加熱炉2中で50
0℃で3分間加熱処理して液状の分解生成物を分解して
除去した。この時には、内容物は容易に噴霧状となって
加熱炉2中に通すことができた。熱分解による生成物は
ガス排出口4から短時間でかつ完全に除去がすることが
でき、より効率的な連続処理が可能となる。
The content of the liquid chemical decomposition product containing whiskers was not taken out, and as shown in FIG. 1, immediately under pressure of 1.5 MPa during the chemical decomposition treatment in the autoclave 1, in the heating furnace 2. Was released under normal pressure. 50 in heating furnace 2
A liquid decomposition product was decomposed and removed by heating at 0 ° C. for 3 minutes. At this time, the contents could be easily atomized and passed through the heating furnace 2. The product of thermal decomposition can be completely removed from the gas outlet 4 in a short time, and a more efficient continuous process can be performed.

【0042】回収したウイスカは加熱炉2の下方に設け
たウイスカ捕集器に落下して集められ、得られたウイス
カの表面には、灰分や炭化物などの残留物は認められ
ず、損傷がないことを確認した。またウイスカは凝集す
ることなく分散した状態で得られた。さらに、ウイスカ
の結晶構造には変化はなかった。得られたウイスカは、
強化材として再度ポリウレタン樹脂への充填は勿論のこ
と、他の樹脂への充填も新材ウイスカと同様に行うこと
ができ、再生製品の物性も新材と同等であった。ポリウ
レタン樹脂への充填の場合、反応射出成形機で3mm厚
さの平板を成形し、これから試験片を作製して該成形体
の物性例えば引張り強度、曲げ強度、低温脆化温度等を
測定したところ、元の成形体すなわちウイスカ新材を充
填したポリウレタン樹脂成形品と同等の物性を示した。
The recovered whiskers fall into a whisker collector provided below the heating furnace 2 and are collected, and no residue such as ash and carbide is observed on the surface of the obtained whiskers, and there is no damage. It was confirmed. The whiskers were obtained in a dispersed state without agglomerating. Furthermore, there was no change in the crystal structure of the whiskers. The obtained whiskers are
As a reinforcing material, not only refilling with a polyurethane resin but also other resins could be performed in the same manner as the new material whisker, and the physical properties of the recycled product were similar to those of the new material. In the case of filling into a polyurethane resin, a flat plate having a thickness of 3 mm was molded by a reaction injection molding machine, and a test piece was prepared from it, and the physical properties of the molded body were measured, for example, tensile strength, bending strength, low temperature embrittlement temperature and the like. , Shows the same physical properties as the original molded product, that is, a polyurethane resin molded product filled with a new whisker material.

【0043】(比較例1)試料100gを化学分解せず
直ちに加熱炉に入れ、常圧下、500℃で5分間加熱処
理した。ウイスカの表面には、ほとんど分解されない樹
脂分が分離せずに固着し、ウイスカの回収は不可能であ
った。
Comparative Example 1 100 g of a sample was immediately placed in a heating furnace without being chemically decomposed, and heat-treated at 500 ° C. for 5 minutes under normal pressure. On the surface of the whiskers, resin that was hardly decomposed adhered without separation, and it was impossible to collect the whiskers.

【0044】(比較例2)試料100gを化学分解せず
直ちに加熱炉に入れ、常圧下、600℃で30分間加熱
処理した。回収したウイスカは分散した状態で、そのウ
イスカの表面には、灰分や炭化物などの残留物は認めら
れなかった。ウイスカの結晶構造をX線回折装置で解析
した結果、K2O-8TiO2 の構造が、K2O-6TiOの構造に変質
していた。ウイスカ劣化を示唆している。
(Comparative Example 2) 100 g of a sample was immediately placed in a heating furnace without being chemically decomposed and heat-treated at 600 ° C. for 30 minutes under normal pressure. The recovered whiskers were in a dispersed state, and no residues such as ash and carbide were found on the surface of the whiskers. As a result of analyzing the whisker crystal structure with an X-ray diffractometer, the structure of K 2 O-8TiO 2 was altered to the structure of K 2 O-6TiO. Suggests whisker deterioration.

【0045】表1に実施例および比較例の処理条件と回
収したウイスカの状態を一覧表にして示した。本実施例
は、比較例に比べウイスカの分離性、損傷性、残留付
着、劣化のいずれの点でも優れていることを示してい
る。
Table 1 shows a list of the processing conditions of Examples and Comparative Examples and the state of the recovered whiskers. This example shows that the whisker is superior to the comparative example in terms of separability, damage, residual adhesion, and deterioration.

【0046】[0046]

【表1】 注:EGはエチレングリコール、MAはメチルアルコー
ル、IPAはイソプロピルアルコール
[Table 1] Note: EG is ethylene glycol, MA is methyl alcohol, IPA is isopropyl alcohol

【図面の簡単な説明】[Brief description of drawings]

【図1】この図は、実施例3および実施例8で使用した
ウイスカ再生回収装置の模式図である。
FIG. 1 is a schematic diagram of a whisker regeneration and recovery device used in Examples 3 and 8.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29B 17/00 ZAB 9350−4F // B29K 75:00 105:06 105:26 (72)発明者 谷口 拓未 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 佐藤 紀夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 鈴木 正一 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 大脇 雅夫 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 近藤 兼光 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 安部 成昭 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display area B29B 17/00 ZAB 9350-4F // B29K 75:00 105: 06 105: 26 (72) Inventor Takumi Taniguchi Aichi 1 in 41, Yokota, Nagakute, Nagakute-machi, Aichi Prefecture 1st in Toyota Central Research Laboratory, Inc. (72) Inventor Norio Sato 1 in 41, Yokota, Nagakute-cho, Aichi-gun, Aichi District ) Inventor Shoichi Suzuki 1st 41st Yokomichi, Nagakute-cho, Aichi-gun, Aichi-gun, Toyota Central Research Institute Co., Ltd. (72) Inventor Masao Owaki 1st Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (72) ) Inventor Kanemitsu Kondo 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Naruaki Abe 1 Toyota Town, Toyota City, Aichi Toyota Motor Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】セラミックス製強化材と該強化材を埋設す
る樹脂製マトリックスからなる複合プラスチックの該樹
脂をアルコール、アミン、水と反応させてアルコール分
解、アミン分解または加水分解により液状分解物とする
第1工程と、 該樹脂残渣の付着した該強化材を該強化材が劣化、損傷
しない条件で加熱し、該樹脂残渣を熱分解して除去して
該樹脂残渣の付着していない該強化材とする第2工程
と、からなることを特徴とする複合プラスチックからの
強化材の回収方法。
1. A liquid decomposition product obtained by reacting the resin of a composite plastic comprising a ceramic reinforcing material and a resin matrix in which the reinforcing material is embedded with alcohol, amine, and water by alcohol decomposition, amine decomposition or hydrolysis. The first step, and the reinforcing material to which the resin residue is not attached by heating the reinforcing material to which the resin residue is adhered under conditions that do not deteriorate or damage the reinforcing material and thermally decomposing and removing the resin residue. And a second step, which is a method for recovering a reinforcing material from a composite plastic.
【請求項2】第1工程の後に液状分解物を樹脂残渣が付
着した強化材から分離した後第2工程を実施する請求項
1記載の複合プラスチックからの強化材の回収方法。
2. The method for recovering a reinforcing material from a composite plastic according to claim 1, wherein after the first step, the liquid decomposition product is separated from the reinforcing material to which the resin residue is attached and then the second step is carried out.
【請求項3】第1工程は加圧下で実施する請求項1記載
の複合プラスチックからの強化材の回収方法。
3. The method for recovering a reinforcing material from a composite plastic according to claim 1, wherein the first step is carried out under pressure.
【請求項4】第1工程で得られた加圧状態の生成物を常
状圧下の高温雰囲気内に噴射して投入して第2工程を実
施する請求項3記載の複合プラスチックからの強化材の
回収方法。
4. The reinforcing material from a composite plastic according to claim 3, wherein the product in a pressurized state obtained in the first step is injected and injected into a high temperature atmosphere under normal pressure to carry out the second step. Recovery method.
【請求項5】複合プラスチックのマトリックスを構成す
る樹脂はポリウレタン樹脂である請求項1〜4のいずれ
かに記載の複合プラスチックからの強化材の回収方法。
5. The method for recovering a reinforcing material from a composite plastic according to claim 1, wherein the resin constituting the matrix of the composite plastic is a polyurethane resin.
JP17417994A 1994-07-26 1994-07-26 Recovery of reinforcing material from composite plastic Pending JPH0841241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17417994A JPH0841241A (en) 1994-07-26 1994-07-26 Recovery of reinforcing material from composite plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17417994A JPH0841241A (en) 1994-07-26 1994-07-26 Recovery of reinforcing material from composite plastic

Publications (1)

Publication Number Publication Date
JPH0841241A true JPH0841241A (en) 1996-02-13

Family

ID=15974099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17417994A Pending JPH0841241A (en) 1994-07-26 1994-07-26 Recovery of reinforcing material from composite plastic

Country Status (1)

Country Link
JP (1) JPH0841241A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290822A (en) * 1998-04-09 1999-10-26 Asics Corp Production of carbon fiber
JP2003089750A (en) * 2001-09-18 2003-03-28 Nec Corp Plastic composite, and method for manufacturing and method for recovering instrument using the same
JP2008255361A (en) * 2008-05-22 2008-10-23 Hitachi Chem Co Ltd Reutilizing method of filler material
KR101126036B1 (en) * 2011-09-22 2012-03-20 최영민 Recovering method for aggregate from waste paving material with mixture of polyurethane and aggregate
JP2022529336A (en) * 2019-04-15 2022-06-21 ランクセス・ドイチュランド・ゲーエムベーハー How to recycle glass fiber reinforced plastic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290822A (en) * 1998-04-09 1999-10-26 Asics Corp Production of carbon fiber
JP2003089750A (en) * 2001-09-18 2003-03-28 Nec Corp Plastic composite, and method for manufacturing and method for recovering instrument using the same
JP2008255361A (en) * 2008-05-22 2008-10-23 Hitachi Chem Co Ltd Reutilizing method of filler material
KR101126036B1 (en) * 2011-09-22 2012-03-20 최영민 Recovering method for aggregate from waste paving material with mixture of polyurethane and aggregate
JP2022529336A (en) * 2019-04-15 2022-06-21 ランクセス・ドイチュランド・ゲーエムベーハー How to recycle glass fiber reinforced plastic

Similar Documents

Publication Publication Date Title
US20080302136A1 (en) Process for recycling glass fiber
Behrendt et al. The chemical recycling of polyurethanes
EP2308919B1 (en) Polyvinyl butyral recycling method
US7319113B2 (en) Solvent-based recovery and recycle of polyamide material
CN1264903C (en) Desulfurization of sulfurized rubber
CN1220550C (en) Catalyst for low-temp. pyrolysis of hydrocarbon-containing polymer materials
EP2649121B1 (en) Plastics recycling process
CN101616969A (en) Regenerated rubber and method
CN1346840A (en) Method of devulcanization of rubber
Bodzay et al. Polymer waste: controlled breakdown or recycling?
AU2003236029A1 (en) Method and apparatus for recovering carbon and/or glass fibers from a composite material
CN113677656A (en) Method for recycling glass fiber reinforced plastics
JPH0841241A (en) Recovery of reinforcing material from composite plastic
JP2004502811A (en) Composite material and method for recycling polyethylene terephthalate
Jody et al. A process to recover carbon fibers from polymer-matrix composites in end-of-life vehicles
Derosa et al. Current state of recycling sheet molding compounds and related materials
JP4696423B2 (en) Fiber reinforced plastic reinforced with recycled fiber
US20040214906A1 (en) Rubber reduction
EP2123705B1 (en) Method for separation/removal of foreign material from polyester fiber waste
CN113004572A (en) Method for recovering expanded polymer tools
KR20080058594A (en) Apparatus and method for devulcanization and deodorization of reclaimed rubber powder
Henshaw Recycling and disposal of polymer-matrix composites
Shuaib et al. Energy intensity and quality of recyclate in composite recycling
CN115073808A (en) Method for recovering nylon 6 from tire cord fabric, cleaning solution and regenerated nylon 6
White III et al. Recycling of rigid polyurethane articles and reformulation into a variety of polyurethane applications