JPH0840723A - Production of barium ferrite fine particle - Google Patents

Production of barium ferrite fine particle

Info

Publication number
JPH0840723A
JPH0840723A JP6200189A JP20018994A JPH0840723A JP H0840723 A JPH0840723 A JP H0840723A JP 6200189 A JP6200189 A JP 6200189A JP 20018994 A JP20018994 A JP 20018994A JP H0840723 A JPH0840723 A JP H0840723A
Authority
JP
Japan
Prior art keywords
temperature
barium
compound
barium ferrite
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6200189A
Other languages
Japanese (ja)
Other versions
JP3628354B2 (en
Inventor
Kunio Arai
邦夫 新井
Masafumi Ajiri
雅文 阿尻
Yasushi Koshi
康 高子
Isao Ota
勇夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP20018994A priority Critical patent/JP3628354B2/en
Publication of JPH0840723A publication Critical patent/JPH0840723A/en
Application granted granted Critical
Publication of JP3628354B2 publication Critical patent/JP3628354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain barium ferrite fine particles excellent in magnetic characteristics by mixing a ferric compound, a barium compound and an alkali material with each other and rapidly raising temperature of the mixture from around room temperature up to a temperature range from sub-critical temperature to super-critical temperature of water in two steps by using a flow type reacting tube. CONSTITUTION:(A) Aqueous solutions of each of a ferric compound (e.g. ferric nitrate), a barium compound (e.g. barium nitrate) and an alkali material (e.g. potassium hydroxide) are homogeneously mixed with each other at 10-60 deg.C to prepare a reaction solution. (B) The temperature of the reaction mixture is rapidly raised up to 250-300 deg.C within 5sec under a constant pressure of 20-50MPa in a flow-type reacting tube. (C) Subsequently, the temperature is further rapidly raised up to 350-450 deg.C within 5sec and this temperature of the reaction solution is kept for 10-1000sec in the reaction tube. In the reaction solution, a molar ratio of the total of anions of the ferric compound and the barium compound to the hydroxide ion of the alkali material is 1-4. Concentrations of the ferric compound, the barium compound and the alkali material are each 0.0001-1.0mol/L.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録材料として有
用なバリウムフェライト微粒子の連続製造方法に関す
る。さらに詳しくは、水の亜臨界ないしは臨界状態で、
鉄化合物、バリウム化合物及びアルカリ性物質の水溶液
を流通型反応管を用いて反応させるバリウムフェライト
微粒子の連続製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous production method of barium ferrite fine particles useful as a magnetic recording material. More specifically, in the subcritical or critical state of water,
The present invention relates to a continuous production method of barium ferrite fine particles in which an aqueous solution of an iron compound, a barium compound and an alkaline substance is reacted using a flow-type reaction tube.

【0002】[0002]

【従来の技術】近年、磁気記録の高密度化の要求にとも
ない、六方晶のバリウムフェライト(BaO・6Fe2O3)微粒
子による垂直磁気記録媒体の開発が進められている。製
造方法としては、主にガラス結晶化法と水熱合成法が知
られている。例えば、特開昭56-60002号には、第2鉄塩
とバリウム塩を含む水溶液にアルカリ及びアルカリ炭酸
塩を撹拌しながら混合して、水酸化第2鉄と炭酸バリウ
ムの共沈物を得た後、濾過、水洗、乾燥した後、熱処理
してバリウムフェライト粒子を得る方法が開示されてい
る。特開昭56-160328 号には、第2鉄塩とバリウム塩と
を溶解したアルカリ性溶液を、オートクレーブ中で150
〜250 ℃で処理してバリウムフェライト前駆体の沈澱物
を生成させた後、800 ℃以上の温度で焼成してバリウム
フェライト粉末を得る方法が開示されている。特開昭56
-67904号には、酸化バリウムと酸化鉄などのバリウムフ
ェライトを構成する成分と酸化硼素などのガラスを形成
する成分とを混合し、溶融したものを急冷固化した後、
熱処理してガラス中にバリウムフェライトを析出させた
後、得られた微粉末を希酸で処理して、ガラス成分を溶
解除去することによってバリウムフェライト粒子を抽出
し、水洗、乾燥する方法が開示されている。
2. Description of the Related Art In recent years, along with the demand for higher density magnetic recording, the development of perpendicular magnetic recording media using hexagonal barium ferrite (BaO.6Fe 2 O 3 ) particles has been advanced. As a manufacturing method, a glass crystallization method and a hydrothermal synthesis method are mainly known. For example, in JP-A-56-60002, an alkali and an alkali carbonate are mixed in an aqueous solution containing a ferric salt and a barium salt while stirring to obtain a coprecipitate of ferric hydroxide and barium carbonate. After that, a method of obtaining barium ferrite particles by performing filtration, washing with water, drying and then heat treatment is disclosed. Japanese Patent Application Laid-Open No. 56-160328 discloses an alkaline solution in which a ferric salt and a barium salt are dissolved in an autoclave.
A method of obtaining a barium ferrite powder by treating at -250 ° C to form a precipitate of a barium ferrite precursor and then firing at a temperature of 800 ° C or higher is disclosed. JP 56
-67904, after mixing the components forming the barium ferrite such as barium oxide and iron oxide and the components forming the glass such as boron oxide, after quenching and solidifying the melted,
After precipitating barium ferrite in the glass by heat treatment, the fine powder obtained is treated with a dilute acid, barium ferrite particles are extracted by dissolving and removing the glass component, washed with water, and a method of drying is disclosed. ing.

【0003】[0003]

【発明が解決しようとする課題】特開昭56-60002号の方
法は簡単な工程であるが、単分散の微粒子を得ることが
困難で、また共沈物の濾過性が悪いという問題がある。
特開昭56-160328 号の方法は共沈物の濾過の問題を解決
することができるが、反応時間が長く、またオートクレ
ーブを用いる回分型水熱処理であるために生産性が悪
く、経済性に欠けるという問題がある。特開昭56-67904
号の方法は、粒度分布がシャープな微粉末を得ることが
できるが、原料を溶融するために高温が必要であり、ま
た再度熱処理が必要となるため、複雑な製造工程となり
生産性が極めて低い。
The method of Japanese Patent Laid-Open No. 56-60002 is a simple process, but it is difficult to obtain monodisperse fine particles, and the coprecipitate has poor filterability. .
The method of JP-A-56-160328 can solve the problem of coprecipitate filtration, but the reaction time is long and the batch type hydrothermal treatment using an autoclave results in poor productivity and economical efficiency. There is a problem of lacking. JP-A-56-67904
The method of No. 1 can obtain fine powder having a sharp particle size distribution, but it requires a high temperature to melt the raw material and requires heat treatment again, resulting in a complicated manufacturing process and extremely low productivity. .

【0004】本発明者らは、先に流通型反応管を用い金
属塩水溶液を水の亜臨界ないしは超臨界状態で金属酸化
物微粒子を連続的に製造する方法を特開平4-50105 号に
て提案した。この方法をバリウムフェライトの製造に応
用した。すなわち、鉄化合物、バリウム化合物及びアル
カリ性物質からなる混合水溶液を流通型反応管に通液す
ることにより、上記の諸問題点を克服でき、しかもバリ
ウムフェライト微粒子が選択的かつ効率的に製造できる
ことを見出し特願平5-115425号として出願した。しか
し、得られたバリウムフェライト微粒子の磁気特性は、
必ずしも満足できるものではなかった。そこで、流通型
反応装置の昇温方式の変更も含めてバリウムフェライト
の結晶生成条件を詳細に検討した。その結果、原料水溶
液の混合した時の温度は、室温付近であること、そこか
ら二段階で急速昇温することがバリウムフェライト微粒
子の磁気特性の向上に顕著に有効であることを発見し本
発明を完成した。
The inventors of the present invention previously disclosed a method of continuously producing metal oxide fine particles in a subcritical or supercritical state of an aqueous solution of a metal salt using a flow-type reaction tube in JP-A-4-50105. Proposed. This method was applied to the production of barium ferrite. That is, it was found that by passing a mixed aqueous solution of an iron compound, a barium compound and an alkaline substance through a flow-type reaction tube, the above problems can be overcome, and barium ferrite fine particles can be selectively and efficiently produced. Filed as Japanese Patent Application No. 5-115425. However, the magnetic properties of the obtained barium ferrite fine particles are
It was not always satisfactory. Therefore, the crystal formation conditions of barium ferrite were examined in detail, including the change of the temperature raising method of the flow reactor. As a result, it was discovered that the temperature at the time of mixing the raw material aqueous solution is around room temperature, and that the rapid temperature increase in two steps from that is remarkably effective in improving the magnetic properties of the barium ferrite fine particles. Was completed.

【0005】[0005]

【発明を解決するための手段】すなわち、本発明は、下
記の連続する(イ)工程、(ロ)工程および(ハ)工
程、(イ)鉄化合物、バリウム化合物およびアルカリ性
物質の各水溶液を10〜60℃にて均一に混合して反応液を
調製する工程、次いで、(ロ)流通型反応管内にて20〜
50MPa の一定圧力で該反応液を5 秒以内で250〜300 ℃
に急速昇温させる工程、次いで、および、(ハ)5秒以
内で350 〜450 ℃に急速昇温させ該温度にて10〜1000秒
の滞留時間で該反応液を流通させる工程、からなること
を特徴とするバリウムフェライト微粒子の製造方法であ
る。
That is, according to the present invention, the following consecutive aqueous solutions of (a) step, (b) step and (c) step, (a) iron compound, barium compound and alkaline substance are used. Step of uniformly mixing at ~ 60 ℃ to prepare the reaction solution, then (b) 20 ~ in the flow-type reaction tube
250 to 300 ℃ within 5 seconds at a constant pressure of 50MPa
A step of rapidly raising the temperature to 350 to 450 ° C. within 5 seconds and then circulating the reaction liquid at the temperature for a residence time of 10 to 1000 seconds. And a method for producing barium ferrite fine particles.

【0006】以下、本発明をさらに詳細に説明する。(
イ) 工程にて、原料の各水溶液を均一に混合した時の温
度は、10〜60℃であること、特に、10〜30℃の低温が好
ましい。また、鉄化合物、バリウム化合物およびアルカ
リ性物質を水に直接溶解させて反応液として使用するこ
ともできることはいうまでもないが、その時の温度も60
℃を越さないことが重要である。次いで( ロ) 工程で
は、熱水を流通型反応管の該反応液に供給して、および
/または外部から該反応液を加熱して、5 秒以下、望ま
しくは 1秒以下で瞬時に250 〜300 ℃、望ましくは260
〜290 ℃へ該反応液を急速昇温させてることによって、
均一なバリウムフェライトの結晶核を発生させ、( ハ)
工程へと導く。( ハ) 工程では、バリウムフェライトの
結晶核を生成した250 〜300 ℃の該反応液に超臨界水を
供給して、および/または外部から該反応液を加熱し
て、5秒以下、望ましくは1秒以下で瞬時に350 〜450
℃、望ましくは380 〜420 ℃へ該反応液を急速昇温さ
せ、該温度にて10〜1000秒の滞留時間となるように流通
させてバリウムフェライトの結晶成長を行わせる。(
ハ)工程を経た後は、該反応液を冷却・濾過し、フィル
ター上にバリウムフェライト微粒子を捕集する。本発明
の本質は、( イ) 工程から( ロ) 工程と( ハ )工程へと
二段階で瞬時に急速昇温させることにある。
The present invention will be described in more detail below. (
In the step (a), the temperature at which the respective raw material aqueous solutions are uniformly mixed is 10 to 60 ° C., and particularly preferably a low temperature of 10 to 30 ° C. Needless to say, the iron compound, the barium compound and the alkaline substance can be directly dissolved in water and used as a reaction liquid, but the temperature at that time is 60
It is important not to exceed ℃. Next, in the step (b), hot water is supplied to the reaction solution in the flow-type reaction tube and / or the reaction solution is heated from the outside, and the temperature is 250 to 250 seconds instantaneously in 5 seconds or less, preferably 1 second or less. 300 ° C, preferably 260
By rapidly raising the reaction to ~ 290 ° C,
Generate uniform barium ferrite crystal nuclei, and
Lead to the process. In the step (c), supercritical water is supplied to the reaction solution at 250 to 300 ° C. in which the crystal nuclei of barium ferrite are generated, and / or the reaction solution is externally heated for 5 seconds or less, preferably Instantly 350-450 in less than 1 second
The reaction solution is rapidly heated to ℃, preferably 380 to 420 ℃, and is allowed to flow at the temperature for a residence time of 10 to 1000 seconds to carry out crystal growth of barium ferrite. (
After the step (c), the reaction solution is cooled and filtered, and barium ferrite fine particles are collected on the filter. The essence of the present invention resides in that the temperature is rapidly raised in two steps from step (a) to step (b) and step (c).

【0007】本発明で使用する原料を説明すると、鉄化
合物は、塩化物、臭化物、沃化物、硝酸塩、硫酸塩、炭
酸塩、有機酸塩および錯塩が挙げられ、例えば、塩化第
1鉄、塩化第2鉄、臭化第1鉄、臭化第2鉄、沃化第1
鉄、硝酸第1鉄、硝酸第2鉄、硫酸第1鉄、硫酸第2鉄
および炭酸第1鉄がある。さらに、しゅう酸、酢酸、グ
リコール酸、グリセリン酸、乳酸、りんご酸、酒石酸、
くえん酸、マンデル酸およびサリチル酸の鉄塩や鉄キレ
ート錯体が挙げられる。これら鉄化合物は1種または2
種類以上用いることができる。これら鉄化合物の中で、
水への溶解性や装置の腐食性や経済性の観点から、硝酸
第2鉄が最も好ましい。これら鉄化合物の濃度は、0.00
01〜1.0mol/リットル、好ましくは0.001 〜0.2mol/リ
ットルである。
Explaining the raw materials used in the present invention, iron compounds include chlorides, bromides, iodides, nitrates, sulfates, carbonates, organic acid salts and complex salts. For example, ferrous chloride and chloride. Ferric iron, ferrous bromide, ferric bromide, ferric iodide
There are iron, ferrous nitrate, ferric nitrate, ferrous sulfate, ferric sulfate and ferrous carbonate. Furthermore, oxalic acid, acetic acid, glycolic acid, glyceric acid, lactic acid, malic acid, tartaric acid,
Examples include iron salts of citric acid, mandelic acid, and salicylic acid, and iron chelate complexes. These iron compounds are one or two
More than one type can be used. Among these iron compounds,
From the viewpoint of solubility in water, corrosiveness of equipment, and economical efficiency, ferric nitrate is most preferable. The concentration of these iron compounds is 0.00
It is from 01 to 1.0 mol / liter, preferably from 0.001 to 0.2 mol / liter.

【0008】本発明に使用するバリウム化合物は、ハロ
ゲン化物、硝酸塩、炭酸塩、有機酸塩および錯塩が挙げ
られ、例えば、塩化バリウム、臭化バリウム、沃化バリ
ウム、硝酸バリウムおよび炭酸バリウムがある。さら
に、しゅう酸バリウム等の有機酸塩や分子内に水酸基や
カルボキシル基を持った有機物とのキレート錯体が挙げ
られる。これらバリウム化合物は1種または2種以上用
いることができる。これらバリウム化合物の中で、硝酸
バリウムと沃化バリウムが、水への溶解性や装置の腐食
性や経済性の観点からより好ましい。これらバリウム化
合物の濃度は、0.0001〜1.0mol/リットル、好ましくは
0.001 〜0.2mol/リットルである。
The barium compound used in the present invention includes halides, nitrates, carbonates, organic acid salts and complex salts, for example, barium chloride, barium bromide, barium iodide, barium nitrate and barium carbonate. Further, a chelate complex with an organic acid salt such as barium oxalate or an organic substance having a hydroxyl group or a carboxyl group in the molecule can be mentioned. These barium compounds may be used alone or in combination of two or more. Among these barium compounds, barium nitrate and barium iodide are more preferable from the viewpoints of solubility in water, corrosiveness of equipment, and economical efficiency. The concentration of these barium compounds is 0.0001 to 1.0 mol / liter, preferably
It is 0.001 to 0.2 mol / liter.

【0009】本発明に使用するアルカリ性物質は、アル
カリ金属水酸化物、アルカリ土類水酸化物および第4級
アンモニウム水酸化物が挙げられ、例えば、水酸化リチ
ウム、水酸化ナトリウム、水酸化カリウム、水酸化マグ
ネシウム、水酸化バリウム、アンモニアおよび水酸化テ
トラメチルアンモニウムがある。これらアルカリ性物質
は1種または2種以上用いることができる。前記のアル
カリ性物質の中で水酸化カリウムと水酸化ナトリウムが
好ましい。これらアルカリ性物質の濃度は、0.0001〜
1.0mol/リットル、好ましくは0.01〜2.0 mol/リット
ルである。
The alkaline substances used in the present invention include alkali metal hydroxides, alkaline earth hydroxides and quaternary ammonium hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, There are magnesium hydroxide, barium hydroxide, ammonia and tetramethylammonium hydroxide. These alkaline substances may be used alone or in combination of two or more. Among the above alkaline substances, potassium hydroxide and sodium hydroxide are preferred. The concentration of these alkaline substances is 0.0001 ~
It is 1.0 mol / liter, preferably 0.01 to 2.0 mol / liter.

【0010】本発明に使用する水溶液中の鉄化合物とバ
リウム化合物の比率としては、Fe/Ba の mol比表示にて
5/1 〜1/2 の範囲でバリウムフェライトが生成可能であ
るが、選択的にバリウムフェライト微粒子を生成させ、
生成したバリウムフェライトの磁気特性のパラメータで
ある飽和磁化σs と保磁力Hc の値を大きくするために
はFe/Ba のモル比を2/1 〜1/2 とすることがが好まし
い。
The ratio of the iron compound and the barium compound in the aqueous solution used in the present invention is represented by the Fe / Ba mol ratio.
Barium ferrite can be generated in the range of 5/1 to 1/2, but barium ferrite fine particles are selectively generated,
In order to increase the values of the saturation magnetization σ s and the coercive force H c , which are parameters of the magnetic characteristics of the generated barium ferrite, it is preferable that the molar ratio of Fe / Ba be 2/1 to 1/2.

【0011】本発明に使用する水溶液としては、鉄化合
物とバリウム化合物の合計の陰イオンの mol数に対する
アルカリ性物質の水酸化物イオンのmol 数の比すなわち
アルカリmol 比(R)は、1以上で好ましくは1〜4で
ある。さらに、本発明に使用する代表的な反応装置を図
1に従って説明する。ステンレス製の円管を流通型反応
管とし、該反応管への送液は脈流のない高圧ポンプによ
る。系内の圧力は背圧弁18により制御することができ
る。また、送液ライン及び反応管は、シースヒーターで
加熱し、それらの温度はPIDにて制御する。( イ) 工
程にて、タンク1に入っている鉄化合物とバリウム化合
物の混合水溶液をポンプ4により送液する。タンク2に
入っているアルカリ性物質の水溶液はポンプ5により送
液し、上記の混合水溶液と混合し反応液とする。この時
の温度は温度計10にて測定し10〜60℃にする。一
方、( ロ) 工程にて、タンク3からの純水は、ポンプ6
により送液しシースヒータ8にて加熱して熱水とし(
イ)工程の反応液に供給・混合する。この時の温度は温
度計11にて測定して250 〜300 ℃にする。この温度が
バリウムフェライトの結晶核発生温度である。その後直
ちに( ハ) 工程にて、タンク3の純水をポンプ7により
送液しシースヒータ9にて加熱し熱水とし( ロ) 工程の
反応液に供給・混合する。この時の温度は温度計12に
て測定し350 〜450 ℃にする。反応管出口の温度は温度
計15にて測定し、その温度は、通常、温度計12での
温度になるように設定する。( イ) 、(ロ) および( ハ)
の工程を経て生成したバリウムフェライトを含有する
水溶液は冷却器16にて常温まで冷却後、フィルター1
7で捕集する。バリウムフェライトを捕集後の水溶液
は、背圧弁18で常圧に戻し、容器19に入る。
The aqueous solution used in the present invention has a ratio of the number of moles of hydroxide ions of an alkaline substance to the total number of moles of anions of an iron compound and a barium compound, that is, an alkali mole ratio (R) of 1 or more. It is preferably 1 to 4. Further, a typical reaction apparatus used in the present invention will be described with reference to FIG. A circular tube made of stainless steel is used as a flow-type reaction tube, and liquid is fed to the reaction tube by a high-pressure pump having no pulsating flow. The pressure in the system can be controlled by the back pressure valve 18. Further, the liquid feeding line and the reaction tube are heated by a sheath heater, and their temperatures are controlled by PID. In the step (a), the pump 4 feeds the mixed aqueous solution of the iron compound and the barium compound contained in the tank 1. The aqueous solution of the alkaline substance contained in the tank 2 is sent by the pump 5 and mixed with the above mixed aqueous solution to form a reaction solution. The temperature at this time is measured by the thermometer 10 and is set to 10 to 60 ° C. On the other hand, in the step (b), the pure water from the tank 3 is pumped by the pump 6
And the sheath heater 8 heats it into hot water (
A) Supply and mix with the reaction solution of step. The temperature at this time is measured by the thermometer 11 and is set to 250 to 300 ° C. This temperature is the crystal nucleus generation temperature of barium ferrite. Immediately thereafter, in the step (c), the pure water in the tank 3 is sent by the pump 7 and heated by the sheath heater 9 to be hot water, which is supplied and mixed with the reaction solution in the step (b). The temperature at this time is measured by the thermometer 12 and is set to 350 to 450 ° C. The temperature at the outlet of the reaction tube is measured by the thermometer 15, and the temperature is usually set to the temperature measured by the thermometer 12. (B), (b) and (c)
The aqueous solution containing barium ferrite produced through the above step is cooled to room temperature by the cooler 16, and then the filter 1
Collect at 7. The aqueous solution after the barium ferrite is collected is returned to normal pressure by the back pressure valve 18 and enters the container 19.

【0012】[0012]

【作用】( イ) 工程にて10〜30℃の常温付近で充分混合
することで不純物の生成を抑え、後続の( ロ) 工程にて
250 〜300 ℃に急速に昇温させてバリウムフェライトの
均質な結晶核を生成させ、さらに後続の( ハ) 工程にて
350 〜450 ℃に急速に昇温させた後、該温度でバリウム
フェライトを結晶成長させるが、これら( イ) 、( ロ)
および(ハ)工程を連続して行うことにより粒度分布が
小さく磁気特性の優れたバリウムフェライト粒子が得ら
れる。
[Operation] In the (a) step, the formation of impurities is suppressed by thoroughly mixing at around room temperature of 10 to 30 ° C, and in the subsequent (b) step
Rapidly raise the temperature to 250-300 ℃ to generate homogeneous crystal nuclei of barium ferrite, and in the subsequent step (c),
After rapidly raising the temperature to 350-450 ° C, crystal growth of barium ferrite is performed at that temperature. These (a), (b)
By continuously performing the step (c) and (c), barium ferrite particles having a small particle size distribution and excellent magnetic properties can be obtained.

【0013】(イ) 工程にて、混合溶液の温度が60℃を
越えるとヘマタイトなどの不純物が生成し、バリウムフ
ェライト以外の非晶質微粒子が生成する副反応が進行
し、生成したバリウムフェライトの飽和磁化が低下す
る。10℃未満へ混合溶液を冷却することも可能である
が、生成したバリウムフェライトの飽和磁化がさらに上
昇することはない。 (ロ) 工程にて、5 秒を越す長い時
間で250 〜300 ℃へ昇温すると、バリウムフェライトの
結晶核が不均質となりやすい。5 秒以下で急速に昇温し
ても250 ℃以下では、バリウムフェライトの結晶核の生
成が充分でない。また300 ℃を越すと、一部結晶化が進
みバリウムフェライトの微細な結晶粒子が析出してく
る。( ハ) 工程にて、5 秒を越す長い時間で350 〜450
℃へ昇温すると、バリウムフェライトの粒子径が不揃い
となる。5 秒以下で急速に昇温しても250℃以下では結
晶成長が充分に進行しない。450 ℃を越すことも可能で
はあるが加熱装置と反応装置の負担が大きくなり実用性
に乏しくなる。滞留時間が10秒未満では結晶成長が充分
に進行せず、1000秒を越す滞留時間を採用すると反応管
が必要以上に長くなり効率的でない。
In the step (a), when the temperature of the mixed solution exceeds 60 ° C., impurities such as hematite are produced, and a side reaction of producing amorphous fine particles other than barium ferrite progresses. Saturation magnetization decreases. Although it is possible to cool the mixed solution to below 10 ° C, the saturation magnetization of the produced barium ferrite does not rise further. In the step (b), if the temperature is raised to 250 to 300 ° C. for a long time exceeding 5 seconds, the crystal nuclei of barium ferrite are likely to become heterogeneous. Even if the temperature is rapidly raised in 5 seconds or less, the crystal nucleus of barium ferrite is not sufficiently generated at 250 ° C or less. Further, when the temperature exceeds 300 ° C, some crystallization progresses and fine crystal grains of barium ferrite are precipitated. (C) In the process, 350 to 450 in a long time exceeding 5 seconds
When the temperature is raised to ℃, the particle size of barium ferrite becomes uneven. Even if the temperature is rapidly raised in 5 seconds or less, crystal growth does not proceed sufficiently at 250 ° C or less. It is possible to exceed 450 ° C, but the load on the heating device and the reaction device becomes large, and it becomes impractical. If the residence time is less than 10 seconds, the crystal growth does not proceed sufficiently, and if the residence time exceeds 1000 seconds, the reaction tube becomes longer than necessary and is not efficient.

【0014】原料の反応水溶液のFe/Ba の mol比が5を
越えるとヘマタイトが生成しやすくく、生成するバリウ
ムフェライトの平均粒子径は約1μ以上にも達し好まし
くない。Fe/Ba の mol比が1/2 未満であるとBaO ・6Fe2
O3からBaO ・2Fe2O3への相変化が進行しやすくなるので
好ましくない。原料の反応水溶液のアルカリのmol 比R
が1未満の場合、バリウムフェライトはほとんど生成し
ない。また、Rが大きくなる程、生成する粒子数は増大
し、生成するバリウムフェライトの平均粒径は小さくな
る。Rは4を越えることも可能であるが、それ以上アル
カリ性物質を増加してもバリウムフェライトの平均粒径
は小さくはならない。
When the Fe / Ba mol ratio of the starting reaction aqueous solution exceeds 5, hematite is likely to be produced, and the average particle diameter of the produced barium ferrite reaches about 1 μ or more, which is not preferable. If the Fe / Ba mol ratio is less than 1/2, BaO ・ 6Fe 2
This is not preferable because the phase change from O 3 to BaO 2 Fe 2 O 3 tends to proceed. Alkali molar ratio R of the starting reaction aqueous solution
When is less than 1, barium ferrite is hardly generated. Further, as R becomes larger, the number of particles produced increases, and the average particle diameter of the barium ferrite produced becomes smaller. It is possible for R to exceed 4, but the average grain size of barium ferrite does not decrease even if the amount of alkaline substance is increased further.

【0015】なお、水熱合成法は、加水分解などによっ
て生成した金属水酸化物の沈澱を水あるいは水溶液と共
に高温高圧処理することにより酸化物微粒子を生成する
手法であるが、高温高圧の溶液を用いているので、常温
常圧より反応が速く、生成物の結晶性および均一性が優
れている。本発明の方法は、水熱合成法の一般的な特徴
に加えて、連続プロセスであり滞留時間が非常に短く
生産効率が高い、管型反応器であり外熱式加熱が可能
であり装置がコンパクトになる、反応温度、圧力、金
属塩濃度、滞留時間、アニオン種などにより生成粒子の
粒径や形状を変えることができる、超臨界水は他のガ
スと均一な混合ができるので、原料水溶液と共に反応性
のガスを反応管に導入して反応雰囲気の制御ができるな
どの利点を持っている。
The hydrothermal synthesis method is a method for producing oxide fine particles by subjecting a precipitate of a metal hydroxide produced by hydrolysis or the like to high temperature and high pressure treatment with water or an aqueous solution. Since it is used, the reaction is faster than normal temperature and pressure, and the crystallinity and uniformity of the product are excellent. In addition to the general features of the hydrothermal synthesis method, the method of the present invention is a continuous process and has a very short residence time and high production efficiency. Compact size, the particle size and shape of the produced particles can be changed by the reaction temperature, pressure, metal salt concentration, residence time, anion species, etc. Supercritical water can be uniformly mixed with other gases, so the raw material aqueous solution At the same time, it has an advantage that a reactive gas can be introduced into the reaction tube to control the reaction atmosphere.

【0016】[0016]

【実施例】【Example】

実施例1 図1に従って説明する。濃度0.01mol/リットルの硝酸第
2鉄水溶液と濃度0.005mol/ リットルの硝酸バリウム水
溶液からなる混合液(タンク1)を3.0 ml/ 分の流量でポ
ンプ4より30MPa に加圧・送液した。一方、ポンプ5 よ
り0.16mol/リットルの水酸化カリウム水溶液( タンク2)
を3.0ml/分の流量でポンプ5 より30MPaに加圧・送液
し、両者の水溶液を混合した。混合直後の水溶液の温度
を温度計10で測定したところ25℃であった。なお、混合
水溶液のFe/Ba の mol比は2であり、硝酸第2鉄と硝酸
バリウムに含まれる硝酸イオンの合計量に対する水酸化
カリウム中の水酸化物の mol比(R) は4であった。
Example 1 will be described with reference to FIG. A mixed solution (tank 1) consisting of an aqueous ferric nitrate solution having a concentration of 0.01 mol / liter and an aqueous barium nitrate solution having a concentration of 0.005 mol / liter (tank 1) was pressurized and sent to 30 MPa from a pump 4 at a flow rate of 3.0 ml / min. On the other hand, from pump 5, 0.16 mol / liter potassium hydroxide aqueous solution (Tank 2)
Was pressurized and sent to 30 MPa with a pump 5 at a flow rate of 3.0 ml / min, and both aqueous solutions were mixed. When the temperature of the aqueous solution immediately after mixing was measured with a thermometer 10, it was 25 ° C. The molar ratio of Fe / Ba in the mixed aqueous solution was 2, and the molar ratio (R) of hydroxide in potassium hydroxide to the total amount of nitrate ions contained in ferric nitrate and barium nitrate was 4. It was

【0017】ポンプ6 より30MPa に加圧した純水を6.0m
l / 分の流量で送液し、送液ラインのヒーター8 にて加
熱調節して、温度計11が 280℃( バリウムフェライトの
結晶核発生温度に対応)を示すようにした。一方、ポン
プ 7より30MPa に加圧した純水を水6.0ml / 分の流量で
送液し、送液ラインのシースヒーター9 にて加熱調節し
て、温度計12が 380℃を示すようにし、反応液と混合さ
れる。これら混合された反応液は、SUS316製の円管(外
形 3/8インチ、厚さ1.65mm) に連続供給される。純水の
送液ラインおよび流通型反応器はシースヒーター(外形
1.6mm)により加熱し、その温度は PID制御した。流通型
反応管内では、圧力30MPa 、温度380 ℃および滞留時間
53秒の条件にて反応させた。流通型反応管からの流出液
は、2 重管型の冷却管16を通して常温まで冷却し、背圧
弁18の前に設置してあるインラインフィルター17( 孔径
0.1 μm)にて生成粒子を捕集した。これらの実験条件
は、後述の実施例2および比較例 1〜3 も含めて一括し
て第1表に示した。なお、第1表にて、核発生温度は、
バリウムフェライトの結晶核発生温度の略称である。
Pure water pressurized to 30 MPa by the pump 6 is 6.0 m
The liquid was sent at a flow rate of l / min, and the temperature was adjusted by the heater 8 of the liquid sending line so that the thermometer 11 showed 280 ° C. (corresponding to the crystal nucleus generation temperature of barium ferrite). On the other hand, pure water pressurized to 30 MPa from the pump 7 was sent at a flow rate of 6.0 ml / min of water, and the sheath heater 9 in the solution sending line was used to adjust the heat so that the thermometer 12 showed 380 ° C. It is mixed with the reaction solution. The mixed reaction solution is continuously supplied to a SUS316 circular tube (outer diameter 3/8 inch, thickness 1.65 mm). The pure water feed line and the flow reactor are sheath heaters (outer shape)
1.6 mm) and the temperature was controlled by PID. In the flow-type reaction tube, the pressure was 30 MPa, the temperature was 380 ° C, and the residence time was
The reaction was carried out under the condition of 53 seconds. The effluent from the flow-type reaction tube is cooled to room temperature through the double-tube cooling pipe 16, and the in-line filter 17 (pore size) installed in front of the back pressure valve 18 is used.
The produced particles were collected at 0.1 μm). The experimental conditions are collectively shown in Table 1, including Example 2 and Comparative Examples 1 to 3 described later. In Table 1, the nucleation temperature is
It is an abbreviation for the crystal nucleus generation temperature of barium ferrite.

【0018】実施例2 図 1の温度計11が300 ℃(バリウムフェライトの結晶核
発生温度に対応)を示すように昇温させた以外は実施例
1と同様な方法で行った。 比較例1 実施例と同様に図1に従って説明する。濃度0.01mol/リ
ットルの硝酸第2鉄水溶液と濃度0.005mol/ リットルの
硝酸バリウム水溶液からなる混合液(タンク1)を3.0 ml
/ 分の流量でポンプ4 より30MPa に加圧・送液した。一
方、ポンプ5 より0.16mol/リットルの水酸化カリウム水
溶液( タンク2)を3.0ml/分の流量でポンプ5 より30MPa
に加圧・送液し、両者の水溶液を混合した。混合直後の
水溶液の温度を温度計10で測定したところ25℃であっ
た。なお、混合水溶液のFe/Ba の mol比および硝酸第2
鉄と硝酸バリウムに含まれる硝酸イオンの合計量に対す
る水酸化カリウム中の水酸化物の mol比は実施例1 と同
一である。ポンプ 6は停止したままで、ポンプ7 より30
MPa に加圧した純水を水6.0ml / 分の流量で送液し、送
液ラインのシースヒーター9 にて加熱調節して、温度計
12が 380℃を示すようにして反応液と混合し、流通型反
応管に送液した。流通型反応管内では、実施例1 と同一
条件で反応させ、実施例1と同様に生成粒子を捕集し
た。
Example 2 The same procedure as in Example 1 was carried out except that the temperature was raised by the thermometer 11 in FIG. 1 to indicate 300 ° C. (corresponding to the crystal nucleus generation temperature of barium ferrite). Comparative Example 1 Similar to the example, description will be given according to FIG. 3.0 ml of a mixture (tank 1) consisting of a ferric nitrate aqueous solution with a concentration of 0.01 mol / l and a barium nitrate aqueous solution with a concentration of 0.005 mol / l
At a flow rate of / minute, the pressure was increased by pump 4 to 30 MPa. On the other hand, 0.16 mol / liter potassium hydroxide aqueous solution (tank 2) from pump 5 was pumped at 30 MPa from pump 5 at a flow rate of 3.0 ml / min.
Then, the solution was pressurized and fed, and both aqueous solutions were mixed. When the temperature of the aqueous solution immediately after mixing was measured with a thermometer 10, it was 25 ° C. The Fe / Ba mol ratio in the mixed aqueous solution and the nitric acid second
The mol ratio of hydroxide in potassium hydroxide to the total amount of nitrate ions contained in iron and barium nitrate is the same as in Example 1. Pump 6 remains stopped, pump 30
Pure water pressurized to MPa is sent at a flow rate of 6.0 ml / min of water, and the sheath heater 9 in the solution sending line is used to heat and adjust the temperature.
12 was mixed with the reaction solution so as to show 380 ° C., and the solution was sent to a flow-type reaction tube. In the flow-type reaction tube, the reaction was carried out under the same conditions as in Example 1, and the produced particles were collected in the same manner as in Example 1.

【0019】比較例2 図1に従って説明する。濃度0.01mol/リットルの硝酸第
2鉄水溶液と濃度0.005mol/ リットルの硝酸バリウム水
溶液からなる混合液(タンク1)を3.0 ml/ 分の流量で
ポンプ4 より30MPa に加圧・送液した。一方、ポンプ5
より0.16mol/リットルの水酸化カリウム水溶液( タンク
2)を3.0ml/分の流量でポンプ5 より30MPa に加圧・送液
し、両者の水溶液を混合した。ただし、水酸化カリウム
水溶液の送液ラインをシースヒーター( 図1 には図示せ
ず)にて加熱し、混合直後の水溶液の温度を温度計10で
測定して200 ℃とした。なお、混合水溶液のFe/Ba の m
ol比および硝酸第2鉄と硝酸バリウムに含まれる硝酸イ
オンの合計量に対する水酸化カリウム中の水酸化物の m
ol比は実施例1と同一である。
Comparative Example 2 An explanation will be given with reference to FIG. A mixed solution (tank 1) consisting of an aqueous ferric nitrate solution having a concentration of 0.01 mol / liter and an aqueous barium nitrate solution having a concentration of 0.005 mol / liter (tank 1) was pressurized and sent to 30 MPa from a pump 4 at a flow rate of 3.0 ml / min. Meanwhile, pump 5
0.16 mol / liter potassium hydroxide aqueous solution (tank
2) was pressurized and sent to 30 MPa with pump 5 at a flow rate of 3.0 ml / min, and both aqueous solutions were mixed. However, the solution feeding line of the potassium hydroxide aqueous solution was heated by a sheath heater (not shown in FIG. 1), and the temperature of the aqueous solution immediately after mixing was measured with a thermometer 10 to be 200 ° C. Note that m of Fe / Ba in the mixed aqueous solution
ol ratio and m of hydroxide in potassium hydroxide with respect to the total amount of nitrate ions contained in ferric nitrate and barium nitrate
The ol ratio is the same as in Example 1.

【0020】続いてポンプ 6は停止したままで、ポンプ
7より30MPa に加圧した純水を6.0ml / 分の流量で送液
し、送液ラインのシースヒーター9 にて加熱調節して、
温度計12が380 ℃を示すようにして反応液と混合し、流
通型反応管に送液した。流通型反応管内では、実施例1
と同一条件で反応させ、実施例1と同様に生成粒子を捕
集した。
Subsequently, the pump 6 remains stopped and the pump
Pure water pressurized from 7 to 30 MPa is sent at a flow rate of 6.0 ml / min, and the sheath heater 9 in the solution sending line heats and adjusts it.
The mixture was mixed with the reaction solution so that the thermometer 12 showed 380 ° C., and the solution was sent to the flow-type reaction tube. In the flow-type reaction tube, Example 1 was used.
The reaction was conducted under the same conditions as above, and the produced particles were collected in the same manner as in Example 1.

【0021】比較例3 濃度0.01mol/リットルの硝酸第2鉄水溶液と濃度0.005m
ol/ リットルの硝酸バリウム水溶液からなる混合液 20m
l と0.16mol/リットルの水酸化カリウム水溶液20 mlを2
5℃にて混合した。この混合水溶液 9mlを実効内容積9ml
のSUS304製反応器に充填・密栓した後、380 ℃に加熱
した金属塩浴に浸漬した。145 秒で380℃に到達した
が、そのまま60秒間金属塩浴に浸漬した後、その反応器
を取り出し、水冷して生成粒子を捕集した。
Comparative Example 3 Ferric nitrate aqueous solution having a concentration of 0.01 mol / liter and a concentration of 0.005 m
20m mixed solution consisting of ol / liter barium nitrate aqueous solution
l and 20 ml of 0.16 mol / liter potassium hydroxide aqueous solution
Mixed at 5 ° C. 9 ml of this mixed aqueous solution is the effective internal volume of 9 ml.
The SUS304 reactor was filled up and tightly capped, and then immersed in a metal salt bath heated to 380 ° C. Although the temperature reached 380 ° C. in 145 seconds, it was immersed in the metal salt bath for 60 seconds as it was, and then the reactor was taken out and cooled with water to collect the produced particles.

【0022】評価方法 実施例と比較例で得られた粒子の粒子径は、透過型電子
顕微鏡の写真撮影により測定した。同時に粒度分布も観
察した。また、粉末の磁気特性は、磁気天秤により、保
磁力Hcと飽和磁化σsを測定した。なお、粉末X線回
折法では、いずれの粒子もバリウムフェライト(BaO・6F
e2O3) の結晶のピークしか検出されなかった。以上の測
定結果とまとめて第2表に示した。
Evaluation method The particle diameters of the particles obtained in the examples and comparative examples were measured by photographing with a transmission electron microscope. At the same time, the particle size distribution was also observed. As for the magnetic properties of the powder, the coercive force Hc and the saturation magnetization s were measured with a magnetic balance. In the powder X-ray diffraction method, all the particles were made of barium ferrite (BaO ・ 6F).
Only the crystalline peak of e 2 O 3 ) was detected. The results of the above measurements are shown together in Table 2.

【0023】[0023]

【表1】 第1表 ─────────────────────────────────── 実施例 混合温度 核発生温度/時間 入口温度 出口温度 滞留時間 /比較例 (℃) (℃) (秒) (℃) (℃) (秒) ─────────────────────────────────── 実施例1 25 280 <1 380 380 53 実施例2 25 300 <1 380 380 53 比較例1 25 380 <1 380 380 73 比較例2 200 380 <1 380 380 60 比較例3 25 380 145 (380) (380) 90 ────────────────────────────────────[Table 1] Table 1 ─────────────────────────────────── Example Mixing temperature Nucleation temperature / Time Inlet temperature Outlet temperature Residence time / Comparative example (℃) (℃) (sec) (℃) (℃) (sec) ─────────────────────── ───────────── Example 1 25 280 <1 380 380 53 Example 2 25 300 <1 380 380 53 Comparative example 1 25 380 <1 380 380 73 Comparative example 2 200 380 <1 380 380 60 Comparative Example 3 25 380 145 (380) (380) 90 ─────────────────────────────────── ──

【0024】[0024]

【表2】 第2表 ─────────────────────────────────── 実施例 平均粒子径 粒度分布 保磁力 飽和磁化 /比較例 ( μm ) H c (Oe) σs (emu/g) ─────────────────────────────────── 実施例1 0.15 非常に小 2026 47.1 実施例2 0.20 小 2075 48.1 比較例1 0.20 大 1700 49.4 比較例2 0.35 非常に大 1819 38.6 比較例3 0.20 大 1253 37.0 ──────────────────────────────────── 第2表から次のことがわかる。すなわち、実施例1及び
実施例2では、粒子の粒度分布が小さく、しかも高い保
磁力と高い飽和磁化を持ち、優れたバリウムフェライト
粒子であることがわかる。一方、25℃から一段階で急速
昇温した比較例1( 核発生温度 380 ℃)では、飽和磁
化は高いが、大きい粒子と小さい粒子が混在し粒度分布
が大きい。また、比較例2及び比較例3では、ヘマタイ
トと推定される50nmの球状粒子が混在しており、粒度
分布が大きい。混合温度が200 ℃である比較例2では、
飽和磁化が低くしかも粒度分布が大きくなることがわか
る。混合温度が25℃であっても、380 ℃に到達する時間
が145 秒と長い比較例3では、飽和磁化が低くしかも粒
度分布が大きくなり、急速昇温により均質な結晶核を生
成させることが重要であることがわかる。
[Table 2] Table 2 ─────────────────────────────────── Example Average particle size Particle size distribution Magnetic force Saturation magnetization / Comparative example (μm) H c (Oe) σ s (emu / g) ─────────────────────────────── ────── Example 1 0.15 Very small 2026 47.1 Example 2 0.20 Small 2075 48.1 Comparative example 1 0.20 Large 1700 49.4 Comparative example 2 0.35 Very large 1819 38.6 Comparative example 3 0.20 Large 1253 37.0 ───── ─────────────────────────────── Table 2 shows the following. That is, it can be seen that in Examples 1 and 2, the barium ferrite particles are excellent in that the particle size distribution of the particles is small, and that they have high coercive force and high saturation magnetization. On the other hand, in Comparative Example 1 (nucleation temperature 380 ° C) in which the temperature was rapidly raised from 25 ° C in one step, the saturation magnetization was high, but large particles and small particles were mixed and the particle size distribution was large. Further, in Comparative Example 2 and Comparative Example 3, spherical particles of 50 nm estimated to be hematite are mixed, and the particle size distribution is large. In Comparative Example 2 in which the mixing temperature is 200 ° C.,
It can be seen that the saturation magnetization is low and the particle size distribution is large. Even if the mixing temperature is 25 ° C., in Comparative Example 3 in which the time to reach 380 ° C. is as long as 145 seconds, the saturation magnetization is low and the particle size distribution is large, and it is possible to generate a homogeneous crystal nucleus by rapid heating. It turns out to be important.

【0025】[0025]

【発明の効果】本発明は、流通型反応管を用いて、反応
水溶液を室温付近から水の亜臨界温度ないしは超臨界温
度に二段階で瞬間的に急速昇温することにより、六方晶
のバリウムフェライト(BaO ・6Fe2O3)微粒子を連続的
に製造する方法である。本発明の方法によれば、非平衡
状態から短時間に加水分解と晶析が同時に起こり、均質
な微粒子が得られるので、磁性特性の優れたバリウムフ
ェライト微粒子が製造できる。六方晶のバリウムフェラ
イト微粒子は、その形状が六角板状で板面に対し垂直な
方向に磁化容易軸を持つので、この粒子の板面を基体面
と平行に並べると、垂直磁気記録媒体を作ることができ
る。また、塗布媒体であるため量産に適するほか、耐久
性など信頼性確保の面でも従来の技術が応用できる。従
って、本発明の工業的意義は極めて大きい。
INDUSTRIAL APPLICABILITY According to the present invention, hexagonal barium is obtained by instantaneously rapidly raising the temperature of an aqueous reaction solution from near room temperature to a subcritical temperature or supercritical temperature of water by using a flow-type reaction tube. This is a method for continuously producing fine particles of ferrite (BaO · 6Fe 2 O 3 ). According to the method of the present invention, hydrolysis and crystallization simultaneously occur in a short time from a non-equilibrium state, and uniform fine particles are obtained, so that barium ferrite fine particles having excellent magnetic properties can be produced. The hexagonal barium ferrite fine particles have a hexagonal plate shape and have an easy axis of magnetization in a direction perpendicular to the plate surface. Therefore, by arranging the plate surface of the particles parallel to the substrate surface, a perpendicular magnetic recording medium is produced. be able to. Further, since it is a coating medium, it is suitable for mass production, and conventional techniques can be applied in terms of ensuring reliability such as durability. Therefore, the industrial significance of the present invention is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】流通型反応管を用いた本発明の装置概略図であ
る。
FIG. 1 is a schematic view of an apparatus of the present invention using a flow-type reaction tube.

【図2】実施例1で得られたバリウムフェライト(Ba
O・6Fe2 3 )の粒子構造を示す電子顕微鏡写真。
倍率は8万倍。
2 is a barium ferrite (Ba) obtained in Example 1. FIG.
An electron micrograph showing the particle structure of O · 6Fe 2 O 3 ).
The magnification is 80,000 times.

【図3】実施例2で得られたバリウムフェライト(Ba
O・6Fe2 3 )の粒子構造を示す電子顕微鏡写真。
倍率は8万倍。
3 is a barium ferrite (Ba) obtained in Example 2. FIG.
An electron micrograph showing the particle structure of O · 6Fe 2 O 3 ).
The magnification is 80,000 times.

【図4】比較例1で得られたバリウムフェライト(Ba
O・6Fe2 3 )の粒子構造を示す電子顕微鏡写真。
倍率は8万倍。
4 is a barium ferrite (Ba) obtained in Comparative Example 1. FIG.
An electron micrograph showing the particle structure of O · 6Fe 2 O 3 ).
The magnification is 80,000 times.

【図5】比較例2で得られたバリウムフェライト(Ba
O・6Fe2 3 )の粒子構造を示す電子顕微鏡写真。
倍率は8万倍。
5 is a barium ferrite (Ba) obtained in Comparative Example 2. FIG.
An electron micrograph showing the particle structure of O · 6Fe 2 O 3 ).
The magnification is 80,000 times.

【図6】比較例3で得られたバリウムフェライト(Ba
O・6Fe2 3 )の粒子構造を示す電子顕微鏡写真。
倍率は8万倍。
6 is a barium ferrite (Ba) obtained in Comparative Example 3. FIG.
An electron micrograph showing the particle structure of O · 6Fe 2 O 3 ).
The magnification is 80,000 times.

【符号の説明】[Explanation of symbols]

1 鉄化合物とバリウム化合物の混合水溶液が入って
いるタンク 2 アルカリ性物質の水溶液が入っているタンク 3 純水タンク 4 高圧無脈流ポンプ 5 高圧無脈流ポンプ 6 高圧無脈流ポンプ 7 高圧無脈流ポンプ 8 送液ラインのシースヒーター 9 送液ラインのシースヒーター 10 反応液混合部の温度計 11 第1段目急速昇温部の温度計 12 第2段目急速昇温部の温度計 13 反応管のシースヒーター 14 反応管 15 反応管出口部の温度計 16 外部水冷型冷却器 17 フィルター(2個を切り換える) 18 背圧弁 19 生成物を捕集した後の水溶液をうける容器
1 Tank containing mixed aqueous solution of iron compound and barium compound 2 Tank containing aqueous solution of alkaline substance 3 Pure water tank 4 High pressure pulseless pump 5 High pressure pulseless pump 6 High pressure pulseless pump 7 High pressure pulseless Flow pump 8 Sheath heater for liquid feed line 9 Sheath heater for liquid feed line 10 Thermometer for reaction solution mixing section 11 Thermometer for 1st step rapid temperature rise section 12 Thermometer for 2nd step rapid temperature rise section 13 Reaction Tube sheath heater 14 Reaction tube 15 Thermometer at the outlet of the reaction tube 16 External water-cooled cooler 17 Filter (switch between two) 18 Back pressure valve 19 Container for receiving the aqueous solution after collecting the product

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記の連続する(イ)工程、(ロ)工程
および(ハ)工程、 (イ)鉄化合物、バリウム化合物およびアルカリ性物質
の各水溶液を10〜60℃にて均一に混合して反応液を調製
する工程、次いで、 (ロ)流通型反応管内にて20〜50MPa の一定圧力で該反
応液を5 秒以内で250〜300 ℃に急速昇温させる工程、
次いで、および、 (ハ)5秒以内で350 〜450 ℃に急速昇温させ該温度に
て10〜1000秒の滞留時間で該反応液を流通させる工程、
からなることを特徴とするバリウムフェライト微粒子の
製造方法。
1. The following consecutive steps (a), (b) and (c), (a) an iron compound, a barium compound and an aqueous solution of an alkaline substance are uniformly mixed at 10 to 60 ° C. A step of preparing a reaction solution, and then (b) a step of rapidly raising the reaction solution to 250 to 300 ° C. within 5 seconds at a constant pressure of 20 to 50 MPa in a flow-type reaction tube,
And (c) a step of rapidly raising the temperature to 350 to 450 ° C. within 5 seconds and flowing the reaction solution at the temperature for a residence time of 10 to 1000 seconds,
A method for producing barium ferrite fine particles, which comprises:
【請求項2】 鉄化合物が硝酸鉄である請求項1記載の
バリウムフェライト微粒子の製造方法。
2. The method for producing barium ferrite fine particles according to claim 1, wherein the iron compound is iron nitrate.
【請求項3】 バリウム化合物が硝酸バリウムである請
求項1または請求項2記載のバリウムフェライト微粒子
の製造方法。
3. The method for producing fine barium ferrite particles according to claim 1, wherein the barium compound is barium nitrate.
【請求項4】 アルカリ性物質が水酸化カリウムおよび
/または水酸化ナトリウムである請求項1〜3のいずれ
か1項に記載のバリウムフェライト微粒子の製造方法。
4. The method for producing barium ferrite fine particles according to claim 1, wherein the alkaline substance is potassium hydroxide and / or sodium hydroxide.
【請求項5】 鉄化合物とバリウム化合物の合計の陰イ
オンに対するアルカリ性物質の水酸化物イオンのモル比
が1〜4となる水溶液を用いる請求項1〜4のいずれか
1項に記載のバリウムフェライト微粒子の製造方法。
5. The barium ferrite according to claim 1, wherein an aqueous solution having a molar ratio of hydroxide ion of an alkaline substance to 1 to 4 with respect to a total anion of an iron compound and a barium compound is used. Method for producing fine particles.
JP20018994A 1994-08-02 1994-08-02 Method for producing barium ferrite fine particles Expired - Fee Related JP3628354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20018994A JP3628354B2 (en) 1994-08-02 1994-08-02 Method for producing barium ferrite fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20018994A JP3628354B2 (en) 1994-08-02 1994-08-02 Method for producing barium ferrite fine particles

Publications (2)

Publication Number Publication Date
JPH0840723A true JPH0840723A (en) 1996-02-13
JP3628354B2 JP3628354B2 (en) 2005-03-09

Family

ID=16420282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20018994A Expired - Fee Related JP3628354B2 (en) 1994-08-02 1994-08-02 Method for producing barium ferrite fine particles

Country Status (1)

Country Link
JP (1) JP3628354B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658077A1 (en) * 1990-02-09 1991-08-16 Cohas Pascal Product for the chemico-biological treatment of animal excrements
FR2665638A2 (en) * 1990-08-10 1992-02-14 Cohas Pascal Product for chemical/biological treatment of animal excrement
KR20020007504A (en) * 2000-07-14 2002-01-29 손재익 Method for producing barium ferrite under supercritical conditions for water
KR100770691B1 (en) * 2006-06-15 2007-10-29 한국에너지기술연구원 Methods of producing barium ferrite in a consecutive way and decomposing carbon dioxide using the barium ferrite
JP2009084125A (en) * 2007-10-02 2009-04-23 Tdk Corp Method for manufacturing ferrite powder, ferrite powder, and magnetic recording medium
JP2010168253A (en) * 2009-01-23 2010-08-05 Kanto Denka Kogyo Co Ltd Method and apparatus for producing fine inorganic particle
US8836331B2 (en) 2004-03-25 2014-09-16 Dai Nippon Printing Co., Ltd. Volume hologram resin composition, surface relief hologram resin composition, and hologram layer, hologram transfer foil and brittle hologram label using the same
JP2014172775A (en) * 2013-03-07 2014-09-22 Tohoku Univ Method for producing powder
WO2014208731A1 (en) * 2013-06-28 2014-12-31 富士フイルム株式会社 Hexagonal ferrite magnetic powder for magnetic recording, method for producing hexagonal ferrite magnetic particles, and magnetic recording medium
WO2015000491A1 (en) * 2013-07-05 2015-01-08 Aarhus Universitet A permanent magnetic material
JP2015091747A (en) * 2013-09-30 2015-05-14 富士フイルム株式会社 Ferromagnetic hexagonal ferrite powder, method for producing the same, and magnetic recording medium
JP2015110521A (en) * 2015-01-30 2015-06-18 関東電化工業株式会社 Method for producing inorganic fine particles, and apparatus for producing the inorganic fine particles
JP2015127985A (en) * 2013-12-27 2015-07-09 富士フイルム株式会社 Magnetic powder for magnetic recording, magnetic recording medium, and method of producing magnetic powder for magnetic recording
JP2015127984A (en) * 2013-12-27 2015-07-09 富士フイルム株式会社 Magnetic powder for magnetic recording, magnetic recording medium, and method of producing magnetic powder for magnetic recording
JP2015201632A (en) * 2014-03-31 2015-11-12 富士フイルム株式会社 Method of manufacturing hexagonal ferrite powder, hexagonal ferrite powder, and magnetic recording medium
US9454983B2 (en) 2013-12-27 2016-09-27 Fujifilm Corporation Magnetic powder for magnetic recording, magnetic recording medium, and method of manufacturing magnetic powder for magnetic recording

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658077A1 (en) * 1990-02-09 1991-08-16 Cohas Pascal Product for the chemico-biological treatment of animal excrements
FR2665638A2 (en) * 1990-08-10 1992-02-14 Cohas Pascal Product for chemical/biological treatment of animal excrement
KR20020007504A (en) * 2000-07-14 2002-01-29 손재익 Method for producing barium ferrite under supercritical conditions for water
US8836331B2 (en) 2004-03-25 2014-09-16 Dai Nippon Printing Co., Ltd. Volume hologram resin composition, surface relief hologram resin composition, and hologram layer, hologram transfer foil and brittle hologram label using the same
KR100770691B1 (en) * 2006-06-15 2007-10-29 한국에너지기술연구원 Methods of producing barium ferrite in a consecutive way and decomposing carbon dioxide using the barium ferrite
JP2009084125A (en) * 2007-10-02 2009-04-23 Tdk Corp Method for manufacturing ferrite powder, ferrite powder, and magnetic recording medium
JP2010168253A (en) * 2009-01-23 2010-08-05 Kanto Denka Kogyo Co Ltd Method and apparatus for producing fine inorganic particle
JP2014172775A (en) * 2013-03-07 2014-09-22 Tohoku Univ Method for producing powder
WO2014208731A1 (en) * 2013-06-28 2014-12-31 富士フイルム株式会社 Hexagonal ferrite magnetic powder for magnetic recording, method for producing hexagonal ferrite magnetic particles, and magnetic recording medium
JP5916952B2 (en) * 2013-06-28 2016-05-11 富士フイルム株式会社 Hexagonal ferrite magnetic powder for magnetic recording, method for producing hexagonal ferrite magnetic particles, and magnetic recording medium
WO2015000491A1 (en) * 2013-07-05 2015-01-08 Aarhus Universitet A permanent magnetic material
JP2015091747A (en) * 2013-09-30 2015-05-14 富士フイルム株式会社 Ferromagnetic hexagonal ferrite powder, method for producing the same, and magnetic recording medium
JP2015127985A (en) * 2013-12-27 2015-07-09 富士フイルム株式会社 Magnetic powder for magnetic recording, magnetic recording medium, and method of producing magnetic powder for magnetic recording
JP2015127984A (en) * 2013-12-27 2015-07-09 富士フイルム株式会社 Magnetic powder for magnetic recording, magnetic recording medium, and method of producing magnetic powder for magnetic recording
US9454983B2 (en) 2013-12-27 2016-09-27 Fujifilm Corporation Magnetic powder for magnetic recording, magnetic recording medium, and method of manufacturing magnetic powder for magnetic recording
US9589585B2 (en) 2013-12-27 2017-03-07 Fujifilm Corporation Magnetic powder for magnetic recording, magnetic recording medium, and method of manufacturing magnetic powder for magnetic recording
US9589584B2 (en) 2013-12-27 2017-03-07 Fujifilm Corporation Magnetic powder for magnetic recording, magnetic recording medium, and method of manufacturing magnetic powder for magnetic recording
JP2015201632A (en) * 2014-03-31 2015-11-12 富士フイルム株式会社 Method of manufacturing hexagonal ferrite powder, hexagonal ferrite powder, and magnetic recording medium
JP2015110521A (en) * 2015-01-30 2015-06-18 関東電化工業株式会社 Method for producing inorganic fine particles, and apparatus for producing the inorganic fine particles

Also Published As

Publication number Publication date
JP3628354B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP2777044B2 (en) Method for producing barium ferrite fine particles
JPH0840723A (en) Production of barium ferrite fine particle
JP6517166B2 (en) Hexagonal ferrite powder and magnetic recording medium
US5480630A (en) Process for producing fine metal oxide particles
Hu et al. Continuous aspect‐ratio tuning and fine shape control of monodisperse α‐Fe2O3 nanocrystals by a programmed microwave–hydrothermal method
JP6419071B2 (en) Method for producing nano-sized iron phosphate particles
JP5383623B2 (en) High purity iron oxide and its uses
US5057299A (en) Method for making beta cobaltous hydroxide
JP4027590B2 (en) Rapid production method for crystalline ferrite fine powder
EP3725744B1 (en) Method for preparing cathode active material precursor for secondary battery, and preparation apparatus using same
JPH1095614A (en) Production of crystalline cerium (iv) oxide
CN115159568A (en) Continuous production method and device of nano zirconia
JPH05502011A (en) Method for producing activated zinc oxide powder and obtained powder
JPH01259108A (en) Manufacture of copper super fine powder
JP2007254267A (en) Method for producing iron oxyhydroxide particle
Kumar et al. Controlled Design of Phase Specific Ni Nanoparticles from Different Precursors and Their Antibacterial Activities
KR100770691B1 (en) Methods of producing barium ferrite in a consecutive way and decomposing carbon dioxide using the barium ferrite
TWI783319B (en) Method for producing layered double hydroxide crystals
JP3884860B2 (en) Method for producing magnetic powder
KR20020007504A (en) Method for producing barium ferrite under supercritical conditions for water
JPH0751503A (en) Treatment of metal solution
CN115229176B (en) Preparation method of quasi-spherical cobalt oxalate particles
JPH07267645A (en) Method for producing ferrite powder
JPH11138004A (en) Copper catalyst for hydration of nitrile and production of copper catalyst
KR101439363B1 (en) Method for manufacturing nano-particles using ion exchange resin and liquid reducing process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees