JPH084051B2 - Insulating oil Direct circulation type abutting iron core type oil filled transformer or abutting iron core type oil filled reactor - Google Patents

Insulating oil Direct circulation type abutting iron core type oil filled transformer or abutting iron core type oil filled reactor

Info

Publication number
JPH084051B2
JPH084051B2 JP60000864A JP86485A JPH084051B2 JP H084051 B2 JPH084051 B2 JP H084051B2 JP 60000864 A JP60000864 A JP 60000864A JP 86485 A JP86485 A JP 86485A JP H084051 B2 JPH084051 B2 JP H084051B2
Authority
JP
Japan
Prior art keywords
iron core
oil
core type
abutting
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60000864A
Other languages
Japanese (ja)
Other versions
JPS61160913A (en
Inventor
徹 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP60000864A priority Critical patent/JPH084051B2/en
Publication of JPS61160913A publication Critical patent/JPS61160913A/en
Publication of JPH084051B2 publication Critical patent/JPH084051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 本発明は、絶縁油直接循環式衝合鉄心形油入変圧器又
は衝合鉄心形油入リアクトルに関し、さらに詳細に言え
ば、衝合鉄心形油入変圧器あるいは衝合鉄心形油入リア
クトルの導体最高温度と熱交換器油温度との温度差を小
さくして、熱交換効率を向上させる絶縁油直接循環式の
機器に関する。
Description: TECHNICAL FIELD The present invention relates to an insulating oil direct circulation type abutting iron core type oil-filled transformer or an abutting iron core type oil-filled reactor, and more specifically, an abutting iron core type oil-filled transformer or an impulse type. The present invention relates to an insulating oil direct circulation type device that improves the heat exchange efficiency by reducing the temperature difference between the conductor maximum temperature of a synthetic iron core type oil-filled reactor and the heat exchanger oil temperature.

従来一般に使用されている油入変圧器およびリアクト
ルは、絶縁油によって機器本体は電気絶縁されており、
また、この機器本体は絶縁油を熱媒体として冷却され
る。而して、冷却の方式には、絶縁油入り自冷式冷却と
絶縁油強制循環式冷却がある。自冷式冷却は、機器タン
クと熱交換器とが直結されて、その間を絶縁油が温度差
により循環するもので、絶縁物に覆われた巻線導体は自
然対流によって緩やかに流れる機器タンク中の絶縁油の
中に浸漬されているだけである。従って、巻線導体から
の絶縁油への熱抵抗は大きく、熱交換効率は極めて低
い。また強制循環式冷却は、自冷式冷却における機器タ
ンクと熱交換器との間に循環ポンプを設けて接続しただ
けのもので、絶縁油は温度差を超えて強制的に循環され
るが、絶縁油の流れは速いものの、所詮は絶縁物を介在
させての伝熱となり、巻線導体からの絶縁油への熱抵抗
はやはり大きく、巻線全体が均一に冷却され難いと言う
問題がある。
Conventionally generally used oil-filled transformers and reactors, the equipment body is electrically insulated by insulating oil,
Further, this device body is cooled by using insulating oil as a heat medium. Thus, cooling methods include self-cooling cooling with insulating oil and forced cooling with insulating oil. In self-cooling type cooling, the equipment tank and heat exchanger are directly connected, and the insulating oil circulates between them due to the temperature difference, and the winding conductor covered with the insulator is in the equipment tank that gently flows by natural convection. It is only immersed in the insulating oil of. Therefore, the thermal resistance from the winding conductor to the insulating oil is large, and the heat exchange efficiency is extremely low. Further, the forced circulation type cooling is only one in which a circulation pump is provided between the equipment tank and the heat exchanger in the self-cooling type cooling, and the insulating oil is forcedly circulated beyond the temperature difference, Although the flow of insulating oil is fast, after all it becomes a heat transfer through the interposition of an insulator, and the thermal resistance from the winding conductor to the insulating oil is still large, and it is difficult to cool the entire winding uniformly. .

本願発明者は、このような問題点を解消するために鋭
意研究の結果、機器本体の巻線導体を中空にし、絶縁油
をこの導体の中空部に強制的に循環させれば、絶縁物の
介在なく、しかも高速の油が流れることになり、熱交換
効率も高くなり、さらに導体の一端から他端までの全長
にわたり絶縁油が通ることになって全域を均一に冷却す
ることができることに想到し、この知見に基づいて本願
発明の中空導体と衝合鉄心とから成る機器本体を有する
衝合鉄心形油入変圧器又は衝合鉄心形油入リアクトルに
おいて、機器本体の中空導体から成る巻線の一端は一方
の電気端子に接続すると共に機器タンクの中に開口し、
機器タンクは熱交換器の入口と連通し、機器本体の中空
導体から成る巻線の他端は他方の電気端子に接続すると
共に絶縁パイプに連通し、ポンプを介して熱交換器の出
口に連通して構成され、絶縁油をポンプによって機器タ
ンク、熱交換器、ポンプ、絶縁パイプ及び中空導体に循
環せしめるように絶縁油直接循環式衝合鉄心形油入変圧
器又は衝合鉄心形油入リアクトルを発明するに至った。
The inventor of the present application, as a result of earnest research to solve such a problem, hollows the winding conductor of the device body and forcibly circulates the insulating oil in the hollow portion of this conductor High-speed oil flows without any interposition, heat exchange efficiency is also improved, and insulating oil passes through the entire length from one end to the other end of the conductor, which makes it possible to uniformly cool the entire area. However, based on this finding, in an abutting iron core type oil-filled transformer or an abutting iron core type oil-filled reactor having a device body composed of a hollow conductor and an abutting iron core of the present invention, a winding consisting of the hollow conductor of the device body. One end of is connected to one electrical terminal and opens into the equipment tank,
The equipment tank communicates with the inlet of the heat exchanger, the other end of the winding made of the hollow conductor of the equipment body is connected to the other electric terminal and also communicates with the insulating pipe, and communicates with the outlet of the heat exchanger via the pump. Insulation oil direct circulation type abutting iron core type oil-filled transformer or abutting iron core type oil-filling reactor so that the insulating oil can be circulated to the equipment tank, heat exchanger, pump, insulating pipe and hollow conductor by a pump. Came to invent.

ここに、機器本体のコイル導体は、絶縁紙によって電
気絶縁されて、このコイル導体相互間には絶縁紙を介在
させて、その間を絶縁油が流通する構成であり、各部の
温度は次の順序を有するものとされる。
Here, the coil conductor of the device main body is electrically insulated by the insulating paper, the insulating paper is interposed between the coil conductors, and the insulating oil flows between the coil conductors. It is assumed to have.

コイル導体上限温度>コイル導体平均温度 >コイル導体の接触する絶縁油温度 >平均の絶縁油温度 >熱交換器の絶縁油温度 一般に、熱交換器で放熱される熱量Qは、次の式
(1)で示される。
Coil conductor upper limit temperature> Coil conductor average temperature> Insulating oil temperature in contact with coil conductor> Average insulating oil temperature> Insulating oil temperature of heat exchanger Generally, the heat quantity Q radiated by a heat exchanger is calculated by the following equation (1) ).

Q=KSθ ……(1) ここに、K 熱交換定数 S 熱交換器放熱面積 θ熱交換器の絶縁油温度と周囲温度との温度差 式(1)において、温度差θが大きいときは、当然
放熱される熱量Qは大きくなる。
Q = KS θ A (1) where K heat exchange constant S heat radiating area of heat exchanger θ A temperature difference between insulating oil temperature and ambient temperature of heat exchanger In equation (1), the temperature difference θ A is large. In this case, the amount Q of heat radiated is naturally large.

絶縁種別で分類された絶縁物の許容上限温度をMS、そ
して実際の使用状態における導体の最高温度をMとし、
Mと熱交換器の絶縁油との温度差をθ、周囲温度をθ
とすると、次の式(2)が得られる。
Let M S be the allowable upper limit temperature of the insulators classified by insulation type, and M be the maximum temperature of the conductor in the actual usage state.
The temperature difference between M and the insulating oil of the heat exchanger is θ C , and the ambient temperature is θ
When set to 0 , the following equation (2) is obtained.

θ+θ+θ=M≦MS ……(2) 式(2)において、MSは規格値であるから一定の値で
ある。Mは使用状態によって変化するが、Mおよび周囲
温度θが変化しても、θを大きくとること、即ち導
体の熱を効率良く絶縁油に移すことが変圧器、或いはリ
アクトルの効率を上げることに他ならないのである。
θ 0 + θ A + θ C = M ≦ M S (2) In the formula (2), M S is a standard value and is therefore a constant value. Although M changes depending on the usage conditions, even if M and the ambient temperature θ C change, it is necessary to increase θ A , that is, to efficiently transfer the heat of the conductor to the insulating oil to improve the efficiency of the transformer or reactor. It is nothing more than that.

因みに、一般に電気機器は、導電部に使用される絶縁
物の耐熱温度により、絶縁種別と称する分類法があり、
絶縁物に許容の上限温度が規定されており、その絶縁物
を使用する機器についても温度上昇限度が定められてい
る。本願発明における油入変圧器についても、巻線(コ
イル導体)は最高許容温度の上限が95℃に規定されてい
る。
Incidentally, in general, electrical equipment has a classification method called insulation type according to the heat resistant temperature of the insulator used for the conductive part,
The allowable upper limit temperature is specified for the insulator, and the temperature rise limit is also specified for the equipment that uses the insulator. Also in the oil-filled transformer of the present invention, the maximum allowable temperature of the winding (coil conductor) is specified to be 95 ° C.

導体温度は電流値によって変化するが、定格電流(機
器の容量性能により定められた電流)における温度上昇
が規定温度の95℃以下であればよいので、設計時点で
は、この定格電流時について温度上昇値が計算される。
Although the conductor temperature changes depending on the current value, the temperature rise at the rated current (current determined by the capacity performance of the equipment) need only be 95 ° C or less, which is the specified temperature. The value is calculated.

実施例 第1図において、機器タンク1の内部には、第2図に
示す絶縁された中空導体5と衝合鉄心とから成る機器本
体2が設置されている。この機器本体2は、中空の絶縁
パイプ6により、ポンプ4を経て、機器タンク1とは別
体の熱交換器3の出口にに接続される。絶縁油は、機器
タンク1より熱交換器3を経て絶縁パイプ6に至り、こ
の途中において、ポンプ4によって、油は直接に熱交換
器3より機器本体2の中空導体5を通過し、この中空導
体5より油は機器タンク1に放出される。
Embodiment In FIG. 1, an equipment body 2 composed of an insulated hollow conductor 5 and an abutting iron core shown in FIG. 2 is installed inside an equipment tank 1. The device body 2 is connected to an outlet of a heat exchanger 3 separate from the device tank 1 via a pump 4 by a hollow insulating pipe 6. The insulating oil reaches the insulating pipe 6 from the equipment tank 1 via the heat exchanger 3, and in the middle of this, the oil directly passes from the heat exchanger 3 to the hollow conductor 5 of the equipment main body 2 by the pump 4, Oil is discharged from the conductor 5 to the equipment tank 1.

換言すれば、本願発明においては、機器タンク内の油
は、ポンプを介して変圧器の中空導体に圧送、循環さ
れ、中空導体から熱を奪い、その後再び機器タンク内に
放流される。
In other words, in the present invention, the oil in the equipment tank is pumped and circulated through the hollow conductor of the transformer via the pump, takes heat from the hollow conductor, and is then discharged again into the equipment tank.

因みに、従来のこの種の油入り変圧器の巻線温度は平
均60℃程度で、冷却効果の低い部分は通常90℃程度で、
機器内の温度のムラがある。
By the way, the winding temperature of this type of conventional oil-filled transformer is about 60 ℃ on average, and the low cooling effect is usually about 90 ℃.
There is uneven temperature inside the device.

これに対し、本願発明においては、巻線の導体を中空
にし、中空部に絶縁油を循環させるものであるから、絶
縁物のごとき介在物の存在がなく、直接接触し、直接的
な伝熱が得られ、且つ大きな流速が得られるので、局部
的温度上昇がなく機器内の温度ムラがなく、温度差θ
は極めて小さい値となり、したがってθの値が大きく
なり、最も効率良く冷却されることになる。
On the other hand, in the present invention, since the conductor of the winding is hollow and the insulating oil is circulated in the hollow portion, there is no inclusion such as an insulating material, and there is direct contact to directly transfer heat. And a large flow velocity, there is no local temperature rise, there is no temperature unevenness inside the equipment, and the temperature difference θ C
Becomes a very small value, and therefore the value of θ A becomes large, and the cooling is most efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本願発明の絶縁油直接循環式衝合鉄心形油入
変圧器又は衝合鉄心形油入リアクトルの一実施例の構成
の概略を示す図である。 第2図は、第1図の実施例の構成における機器本体の概
略説明図である。 図において、 1……機器タンク 2……機器本体 3……熱交換器 4……ボンプ 5……中空導体 6……絶縁パイプ
FIG. 1 is a diagram showing a schematic configuration of an embodiment of an insulating oil direct circulation type abutting iron core type oil-filled transformer or an abutting iron core type oil-filled reactor of the present invention. FIG. 2 is a schematic explanatory diagram of a device body in the configuration of the embodiment of FIG. In the figure, 1 ... Equipment tank 2 ... Equipment body 3 ... Heat exchanger 4 ... Bomb 5 ... Hollow conductor 6 ... Insulation pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中空導体と衝合鉄心とから成る機器本体を
有する絶縁油直接循環式衝合鉄心形油入変圧器又は衝合
鉄心形油入リアクトルにおいて、機器本体の中空導体か
ら成る巻線の一端は一方の電気端子に接続すると共に機
器タンクの中に開口し、機器タンクは熱交換器の入口と
連通し、機器本体の中空導体から成る巻線の他端は他方
の電気端子に接続すると共に絶縁パイプに連通し、ポン
プを介して熱交換器の出口に連通して構成され、絶縁油
をポンプによって機器タンク、熱交換器、ポンプ、絶縁
パイプ及び中空導体に循環せしめるようにした絶縁油直
接循環式衝合鉄心形油入変圧器又は衝合鉄心形油入リア
クトル。
Claim: What is claimed is: 1. An insulating oil direct circulation abutment iron core oil-filled transformer or an abutment iron core oil-filled reactor having a device body composed of a hollow conductor and an abutting iron core. Has one end connected to one electrical terminal and opened into the equipment tank, the equipment tank communicates with the inlet of the heat exchanger, and the other end of the winding consisting of the hollow conductor of the equipment body is connected to the other electrical terminal. Insulation that communicates with the insulation pipe and communicates with the outlet of the heat exchanger through the pump, and allows the insulating oil to be circulated by the pump to the equipment tank, the heat exchanger, the pump, the insulation pipe and the hollow conductor. Oil direct circulation type impact iron core type oil filled transformer or impact iron core type oil filled reactor.
JP60000864A 1985-01-09 1985-01-09 Insulating oil Direct circulation type abutting iron core type oil filled transformer or abutting iron core type oil filled reactor Expired - Lifetime JPH084051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000864A JPH084051B2 (en) 1985-01-09 1985-01-09 Insulating oil Direct circulation type abutting iron core type oil filled transformer or abutting iron core type oil filled reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000864A JPH084051B2 (en) 1985-01-09 1985-01-09 Insulating oil Direct circulation type abutting iron core type oil filled transformer or abutting iron core type oil filled reactor

Publications (2)

Publication Number Publication Date
JPS61160913A JPS61160913A (en) 1986-07-21
JPH084051B2 true JPH084051B2 (en) 1996-01-17

Family

ID=11485535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000864A Expired - Lifetime JPH084051B2 (en) 1985-01-09 1985-01-09 Insulating oil Direct circulation type abutting iron core type oil filled transformer or abutting iron core type oil filled reactor

Country Status (1)

Country Link
JP (1) JPH084051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355373A (en) * 2015-12-04 2016-02-24 网为电气(邳州)有限公司 Amorphous alloy transformer structure capable of effectively reducing temperature rise and improving overload capacity
CN112103042A (en) * 2020-10-23 2020-12-18 国网湖南省电力有限公司 High overload capacity oil-immersed distribution transformer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118613A (en) * 1981-01-16 1982-07-23 Kansai Electric Power Co Inc:The Refrigerant cooling equipment for electric machine coil

Also Published As

Publication number Publication date
JPS61160913A (en) 1986-07-21

Similar Documents

Publication Publication Date Title
EP1060484B1 (en) Transformer cooling method and apparatus therefor
US2722616A (en) Evaporative cooling system for dynamo-electric machines
US1804072A (en) Apparatus for electric cooling
CN113474969A (en) Electric machine winding with improved cooling
CN102682961B (en) Shell-type transformer with improved heat dissipation performance
JPH084051B2 (en) Insulating oil Direct circulation type abutting iron core type oil filled transformer or abutting iron core type oil filled reactor
US4588428A (en) Control method for a liquid cooled cable installation
CN115441665A (en) Heat radiation structure and dull and stereotyped linear electric motor based on I type soaking board
US3287580A (en) Electrical machines
CN106653365A (en) Thin film capacitor
US12009732B2 (en) Electrical machine winding having improved cooling
US2714709A (en) Transformer cooling means
US4308420A (en) Electrical apparatus with convectively cooled bushing connector
CN218124504U (en) Heat radiation structure and dull and stereotyped linear electric motor based on I type soaking board
CN212724900U (en) Fireproof transformer
JPH0669048A (en) Transformer connecting-lead-wire device
CN2212250Y (en) Transformer with hot-tube cooling device
JP2553157B2 (en) Stationary induction equipment
SU1050047A1 (en) Electric machine stator
AU678191B2 (en) Division of current between different strands of a superconducting winding
US3668584A (en) Electrical power apparatus
JP3274241B2 (en) Cooling structure for static induction equipment windings
JPS5940508A (en) Electromagnetic induction apparatus
Stephens Lightweight aircraft transformers
CN1123950A (en) Heat releasing apparatus with heat exchanging tube of transformer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term