JPH0840397A - High-speed flight vehicle - Google Patents

High-speed flight vehicle

Info

Publication number
JPH0840397A
JPH0840397A JP17670794A JP17670794A JPH0840397A JP H0840397 A JPH0840397 A JP H0840397A JP 17670794 A JP17670794 A JP 17670794A JP 17670794 A JP17670794 A JP 17670794A JP H0840397 A JPH0840397 A JP H0840397A
Authority
JP
Japan
Prior art keywords
shock wave
jet
tip
air current
fuselage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17670794A
Other languages
Japanese (ja)
Inventor
Mitsuo Ishiguro
満津夫 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17670794A priority Critical patent/JPH0840397A/en
Publication of JPH0840397A publication Critical patent/JPH0840397A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To change the shape of a shock wave generated from the tip of a fuselage and moved outward so at to avoid incidence of the shock wave by installing a jet nozzle for spouting a jet in the direction opposite to an air current of an airframe in a high-speed flight vehicle such as a space shuttle or the like. CONSTITUTION:In a space shuttle having main wings 3 fitted to the right and left of a fuselage 2, jet nozzles 5 for spouting jets 6 bilateral-symmetrically obliquely forward in the direction opposite to an air current 1 are fitted to the root parts of the respective main wings 3. When the space shuttle receives an air current 1 in the condition of making a flight at the hypersonic speed at the time of re-entry to the atmosphere, a shock wave 4 is generated from the vicinity of the tip of the fuselage 2. When the shock wave enters the main wing 3, high aerodynamic heating is caused at the front edge thereof. In order to avoid the above, the shape of the shock wave is changed outward by spouting a jet 6 in the direction opposite to an air current from the nozzle 5 so that the shock wave is forced to bypass the wing tip 8 of the main wing 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速飛行時の空力加熱
を軽減することができるようにした宇宙往還機等の高速
飛行体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed flight vehicle such as a space shuttle, which can reduce aerodynamic heating during high-speed flight.

【0002】[0002]

【従来の技術】従来の有翼の宇宙往還機では、図3に示
すように、再空入時に、胴体2先端部から発生する衝撃
波4が主翼3に入射することにより入射部分で大きな空
力加熱9が発生する。これを軽減するために、従来、主
翼3の前縁部の曲率半径を大きくすることにより対処す
る受動的な方法と、主翼前縁等を内部から冷却する能動
的な方法が用いられている。
2. Description of the Related Art In a conventional winged space shuttle, as shown in FIG. 3, a shock wave 4 generated from the tip of the body 2 is incident on the main wing 3 during re-entry, so that large aerodynamic heating occurs at the incident part. 9 is generated. In order to mitigate this, conventionally, a passive method of dealing by increasing the radius of curvature of the leading edge of the main wing 3 and an active method of cooling the leading edge of the main wing from the inside have been used.

【0003】[0003]

【発明が解決しようとする課題】前記の従来の技術にお
いて、主翼前縁半径を大きくすると、空力加熱が問題と
なる極超音速域以外の速度域における空力特性を悪化さ
せる。また、内部からの冷却を行なう場合には、冷却系
統の機構を搭載することにより宇宙往還機の機体重量が
増加するため、打ち上げ重量の制限からペイロードが減
少することになる。
In the above-mentioned conventional technique, if the leading edge radius of the main wing is increased, aerodynamic characteristics are deteriorated in a velocity range other than the hypersonic range where aerodynamic heating is a problem. Further, when cooling from the inside, since the weight of the space vehicle is increased by mounting the mechanism of the cooling system, the payload is reduced due to the limitation of the launch weight.

【0004】本発明は、従来の技術における以上のよう
な問題点を解消させ、空力形状に影響を与えることなし
に、また、複雑な機構を必要とすることなしに空力加熱
を軽減することができる高速飛行体を提供しようとする
ものである。
The present invention solves the above problems in the prior art and reduces aerodynamic heating without affecting the aerodynamic shape and without requiring a complicated mechanism. The aim is to provide a high-speed flying vehicle that can.

【0005】[0005]

【課題を解決するための手段】本発明の高速飛行体は、
機体の気流に逆らう方向にジェットを吹き出すジェット
ノズルを取り付け衝撃波形状を制御するようにしたこと
を特徴とする。
The high speed aircraft of the present invention comprises:
It is characterized in that a jet nozzle that blows out a jet in a direction against the air flow of the airframe is attached to control the shape of the shock wave.

【0006】[0006]

【作用】本発明では、機体に取り付けられたジェットノ
ズルから気流に逆らう方向にジェットを噴き出すことに
より、胴体先端から発生した衝撃波の形状が変化して外
側方向に移動する。これにより、主翼前縁での空力加熱
増加の原因となっていた衝撃波の入射を回避することが
でき、空力加熱が軽減される。
In the present invention, the shape of the shock wave generated from the tip of the fuselage changes and moves outward by ejecting a jet from the jet nozzle attached to the machine body in a direction against the air flow. As a result, it is possible to avoid the incidence of shock waves, which has been the cause of increased aerodynamic heating at the leading edge of the main wing, and reduce aerodynamic heating.

【0007】[0007]

【実施例】本発明の第1の実施例を、図1によって説明
する。2は宇宙往還機の胴体であり、3は胴体2の左右
に取り付けられた2枚の主翼である。各主翼3の翼根部
には、斜め前方へ気流1に逆らう方向にジェット6を左
右対称に吹き出すジェットノズル5が取り付けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. Reference numeral 2 is a fuselage of the space vehicle, and reference numeral 3 is two main wings attached to the left and right of the fuselage 2. At the root of each main wing 3, a jet nozzle 5 is attached that blows out a jet 6 symmetrically in a direction diagonally forward and against the air flow 1.

【0008】宇宙往還機が再空入時に極超音速で飛行を
している状態で気流1を受けていると、極超音速流中を
飛行しているために宇宙往還機の胴体2の先端付近から
衝撃波4が発生する。この衝撃波が主翼3に入射すると
その前縁で高い空力加熱が生ずる。本実施例では、これ
を回避するため、主翼3の翼根部に取り付けたノズル5
よりジェット6を気流に逆らう方向に噴出することによ
り衝撃波形状が外側に曲がり、符号7で示すように主翼
3の翼端8をう回する。これにより衝撃波4の主翼8へ
の入射を回避し、空力加熱を軽減することができる。
When the space vehicle receives the air flow 1 while flying at hypersonic speed during re-entry, the tip of the body 2 of the space vehicle is flying because it is flying in the hypersonic flow. Shock wave 4 is generated from the vicinity. When this shock wave enters the main wing 3, high aerodynamic heating occurs at its leading edge. In the present embodiment, in order to avoid this, the nozzle 5 attached to the blade root portion of the main wing 3
By ejecting the jet 6 in a direction counter to the air flow, the shape of the shock wave bends outward, and the tip end 8 of the main wing 3 is circumvented as indicated by reference numeral 7. This prevents the shock wave 4 from entering the main wing 8 and reduces aerodynamic heating.

【0009】また、本実施例では左右2枚の主翼3の翼
根部から左右対称にジェット6が吹き出されているの
で、宇宙往還機の横方向の特性へ影響を与えることを回
避することができる。
Further, in this embodiment, since the jets 6 are blown out symmetrically from the blade roots of the two left and right main wings 3, it is possible to avoid affecting the lateral characteristics of the space shuttle. .

【0010】本発明の第2の実施例を、図2によって説
明する。本第2の実施例では、ジェットノズル5を左右
に2枚の主翼3を有する宇宙往還機の胴体2の先端付近
の澱み点位置に取り付け、ジェット6を気流1に逆らう
前方に向って吹き出すようにしている。
A second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the jet nozzle 5 is attached to the stagnation point position near the tip of the body 2 of the space shuttle having two main wings 3 on the left and right, and the jet 6 is blown out in the forward direction against the air flow 1. I have to.

【0011】このように、胴体2の先端付近の澱み点位
置のジェットノズル5から気流に逆らう前方に向ってジ
ェット6を吹き出すことによって、衝撃波4が発生する
位置が胴体2より遠くなり、全体として衝撃波4の形状
が外側へ広がり、主翼3の翼端8をう回することにな
る。これにより、衝撃波の主翼への入射を回避し、空力
加熱を軽減することができる。
As described above, by ejecting the jet 6 from the jet nozzle 5 at the stagnation point near the tip of the body 2 toward the front against the air flow, the position where the shock wave 4 is generated becomes farther from the body 2, and as a whole. The shape of the shock wave 4 spreads to the outside and bypasses the wing tip 8 of the main wing 3. As a result, it is possible to avoid the shock wave from entering the main wing and reduce aerodynamic heating.

【0012】また、本実施例では、ジェットノズル5を
胴体2の先端付近の澱み点位置に取り付けて前方に向っ
てジェット6を吹き出すようにしているために、一般に
宇宙往還機の空力加熱が最も高くなる胴体先端付近の澱
み点の空力加熱を軽減することもできると共に、宇宙往
還機の横方向の特性へ影響を与えることを回避すること
ができる。
Further, in this embodiment, since the jet nozzle 5 is attached to the stagnation point position near the tip of the body 2 so as to blow the jet 6 forward, generally, the aerodynamic heating of the space shuttle is the most important. It is possible to reduce the aerodynamic heating of the stagnation point near the tip of the fuselage, which is high, and to avoid affecting the lateral characteristics of the space shuttle.

【0013】なお、前記第1及び第2の実施例は宇宙往
還機に係るものであるが、本発明は有翼のスペースプレ
ーン、飛しょう体等の高速飛行体に広く適用することが
できる。
Although the first and second embodiments are related to the space shuttle, the present invention can be widely applied to high-speed flying vehicles such as winged space planes and flying vehicles.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば宇
宙往還機等の高速飛行体の空力加熱を内部冷却システム
や機体の空力形状の変更なしに軽減することができる。
したがって、重量や空力特性の大きなペナルティなし
に、高速飛行体の空力加熱を軽減して安全な運行を実現
することができる。
As described above, according to the present invention, aerodynamic heating of a high-speed flight vehicle such as a space shuttle can be reduced without changing the internal cooling system or the aerodynamic shape of the airframe.
Therefore, aerodynamic heating of the high-speed flying object can be reduced and safe operation can be realized without a large penalty in weight and aerodynamic characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の概念図である。FIG. 1 is a conceptual diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施例の概念図である。FIG. 2 is a conceptual diagram of a second embodiment of the present invention.

【図3】従来の宇宙往還機の概念図である。FIG. 3 is a conceptual diagram of a conventional space shuttle.

【符号の説明】[Explanation of symbols]

1 気流 2 胴体 3 主翼 4 衝撃波 5 ジェットノズル 6 ジェット 7 曲げられた衝撃波 8 主翼の翼端 9 衝撃波入射による空力加熱 1 Airflow 2 Body 3 Main Wing 4 Shock Wave 5 Jet Nozzle 6 Jet 7 Bent Shock Wave 8 Wing Tip of Main Wing 9 Aerodynamic Heating by Injecting Shock Wave

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機体の気流に逆らう方向にジェットを吹
き出すジェットノズルを取り付け衝撃波形状を制御する
ようにしたことを特徴とする高速飛行体。
1. A high-speed flying object, characterized in that a jet nozzle that blows out a jet in a direction against the air flow of the airframe is attached to control the shape of a shock wave.
JP17670794A 1994-07-28 1994-07-28 High-speed flight vehicle Withdrawn JPH0840397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17670794A JPH0840397A (en) 1994-07-28 1994-07-28 High-speed flight vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17670794A JPH0840397A (en) 1994-07-28 1994-07-28 High-speed flight vehicle

Publications (1)

Publication Number Publication Date
JPH0840397A true JPH0840397A (en) 1996-02-13

Family

ID=16018354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17670794A Withdrawn JPH0840397A (en) 1994-07-28 1994-07-28 High-speed flight vehicle

Country Status (1)

Country Link
JP (1) JPH0840397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037177A (en) * 2012-08-13 2014-02-27 Mitsubishi Heavy Ind Ltd Jet interaction actuator and atmospheric re-entry vehicle including the same
CN107368661A (en) * 2017-07-27 2017-11-21 中国空气动力研究与发展中心计算空气动力研究所 A kind of coupling calculation of hypersonic aircraft thermographic curve characteristic
CN112065603A (en) * 2020-08-31 2020-12-11 南京航空航天大学 Adopt receipts of shock wave bypass structure to expand spray tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037177A (en) * 2012-08-13 2014-02-27 Mitsubishi Heavy Ind Ltd Jet interaction actuator and atmospheric re-entry vehicle including the same
CN107368661A (en) * 2017-07-27 2017-11-21 中国空气动力研究与发展中心计算空气动力研究所 A kind of coupling calculation of hypersonic aircraft thermographic curve characteristic
CN112065603A (en) * 2020-08-31 2020-12-11 南京航空航天大学 Adopt receipts of shock wave bypass structure to expand spray tube
CN112065603B (en) * 2020-08-31 2021-11-23 南京航空航天大学 Adopt receipts of shock wave bypass structure to expand spray tube

Similar Documents

Publication Publication Date Title
EP0329211B1 (en) Mounting assembly for unducted prop engine
US3355125A (en) Flap systems for aircraft
US6969028B2 (en) Scarf nozzle for a jet engine and method of using the same
US5114097A (en) Aircraft
US3881669A (en) Method and apparatus for elimination of airfoil trailing vortices
CN110182266B (en) Air guide device for a motor vehicle body
US5072894A (en) Apparatus and method for increasing the angle of attack operating range of an aircraft
US2562227A (en) Flow profile for reduced drag
US4449681A (en) Aerodynamically contoured, low drag wing, engine and engine nacelle combination
US5961068A (en) Aerodynamic control effector
US6152404A (en) Apparatus for influencing a wing root airflow in an aircraft
JP2009527405A (en) Aircraft aerodynamic flap with appliances affecting the flap vortex
US5366180A (en) High-lift device for aircraft
WO2010123423A1 (en) Arrangement for storing and launching payloads
US5655737A (en) Split rudder control system aerodynamically configured to facilitate closure
CN107458583B (en) Course control device of flying-wing layout aircraft based on active flow control technology
US3613827A (en) Device for attenuating noise emitted by the jet of a jet engine
US2991961A (en) Jet aircraft configuration
US2805032A (en) Supersonic flight control device
KR20020079835A (en) Passive aerodynamic sonic boom suppression for supersonic aircraft
JPH0840397A (en) High-speed flight vehicle
US5263661A (en) Sonic boom attenuator
GB2051706A (en) Aircraft wings
EP0052360B1 (en) Air aspiration device of aircraft-mounted gas-turbine engine
US3067971A (en) Super drag flap

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002