JPH0838424A - Ophthalmological measuring device - Google Patents
Ophthalmological measuring deviceInfo
- Publication number
- JPH0838424A JPH0838424A JP6176670A JP17667094A JPH0838424A JP H0838424 A JPH0838424 A JP H0838424A JP 6176670 A JP6176670 A JP 6176670A JP 17667094 A JP17667094 A JP 17667094A JP H0838424 A JPH0838424 A JP H0838424A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- projection system
- eye
- compensating
- compensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は眼科測定装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ophthalmologic measuring device.
【0002】[0002]
【従来の技術】従来より眼科測定装置では、内部に精密
な光学系を配置している。このため一旦装置を組み立て
た後は、実際に装置が使用されるユーザー先の温度や湿
度等の使用環境、装置への長時間通電による内部温度の
上昇などにより、内部部品の熱変形や光学系配置の微妙
なずれが生じ、それが測定値の誤差となって現れる可能
性があった。この様な測定値の誤差が生じるのを防止あ
るいは軽減するために熱膨張率の小さい材料を部品とし
て使用したり、光学部品に加わる熱応力を軽減する様な
固定方法、例えばバネの様な弾力性を持つ部材で固定し
たりしていた。または、装置内部に温度センサーを設置
して、測定するときに装置内の温度を検出し、この検出
結果で測定値を補正することも知られている。2. Description of the Related Art Conventionally, in an ophthalmic measuring apparatus, a precise optical system is arranged inside. For this reason, once the device is assembled, internal components may undergo thermal deformation or optical system changes due to the operating environment such as temperature and humidity of the user who actually uses the device, or the internal temperature rising due to long-time energization of the device. There is a possibility that a slight displacement of the arrangement may occur, which may appear as an error in the measured value. In order to prevent or reduce such an error in the measured value, a material with a small coefficient of thermal expansion is used as a component, or a fixing method that reduces the thermal stress applied to the optical component, such as elasticity like a spring. It was fixed with a member that has a property. Alternatively, it is known that a temperature sensor is installed inside the device, the temperature inside the device is detected at the time of measurement, and the measured value is corrected by the detection result.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、熱膨張
率の小さい材料を使用したり光学部品の固定方法を工夫
して、温度変化による測定値の誤差を抑制する従来例で
は、光学部品を固定する部品が複雑になったり、部品点
数が多くなったり、光学部品を含めて部品の材料に高価
な材料を使用しなければならないので高コストになった
りという問題があった。また、このような部品の使用や
固定の工夫を行っても、部品製作のばらつきや組立のば
らつきで、光学部品に加わる熱応力の大きさが様々にな
り、期待する測定値の変動が許容差の中に納まらない装
置が出てくる虞があった。However, in the conventional example in which the error of the measured value due to the temperature change is suppressed by using the material having a small coefficient of thermal expansion or devising the fixing method of the optical component, the optical component is fixed. There have been problems that the parts are complicated, the number of parts is large, and expensive materials are required for the materials of the parts including the optical parts, resulting in high cost. Even if such components are used or fixed, the thermal stress applied to the optical components will vary due to variations in component manufacturing and assembly, and the expected variation in measured values will be within tolerance. There was a danger that some devices would not fit inside.
【0004】また、温度センサーを装置内部に設置し
て、検出温度により測定値に補正を加える従来例では、
温度センサー及び関連制御回路など高価な部品を使用す
ることになり、高コストになった。またこの様な温度セ
ンサーでは、通常1点での温度測定となるので、測定点
での温度変化が環境温度により装置全体、光学系全体の
均一な温度変化である保証はなく、装置への通電による
部分的な温度変化が発生した場合などでは、温度センサ
ーの検出した温度だけでは測定値の補正が一義的に決ま
らず、測定値の精度が維持できない可能性があった。Further, in the conventional example in which a temperature sensor is installed inside the apparatus and the measured value is corrected by the detected temperature,
High cost has come because expensive components such as a temperature sensor and related control circuits are used. Also, with such a temperature sensor, the temperature is usually measured at one point, so there is no guarantee that the temperature change at the measurement point will be a uniform temperature change of the entire device and optical system due to the ambient temperature, and the power to the device will not be applied. When a partial temperature change occurs due to, the correction of the measured value cannot be uniquely determined only by the temperature detected by the temperature sensor, and the accuracy of the measured value may not be maintained.
【0005】本発明の第1の目的は、光学系の部品、固
定方法、温度センサー等に高額なコストをかけることな
く、また温度変化等の環境変化による光学系の変動によ
っても測定値の誤差発生を防止可能な、高精度な眼科測
定装置を提供することである。A first object of the present invention is to eliminate errors in measured values without incurring high costs for optical system parts, fixing methods, temperature sensors and the like, and also due to fluctuations in the optical system due to environmental changes such as temperature changes. An object of the present invention is to provide a highly accurate ophthalmologic measuring device capable of preventing occurrence.
【0006】本発明の第2の目的は更に、環境変化によ
る測定光学系の光学部材いずれの変動による測定値の誤
差発生をも防止可能な高精度な眼科測定装置を提供する
ことである。A second object of the present invention is to provide a highly accurate ophthalmologic measuring device capable of preventing the occurrence of an error in the measured value due to any change in the optical members of the measuring optical system due to environmental changes.
【0007】本発明の第3の目的は更に、補償用投影系
自身の温度変化による変動の影響を少なくした、より高
精度な眼科測定装置を提供することである。A third object of the present invention is to provide a more highly accurate ophthalmologic measuring apparatus in which the influence of fluctuations due to temperature changes of the compensating projection system itself is reduced.
【0008】本発明の第4の目的は更に、補償用光束を
測定光学系に導くことによる測定光量の減少を少なくし
た高精度な眼科測定装置を提供することにある。A fourth object of the present invention is to provide a highly accurate ophthalmologic measuring device in which the decrease of the measuring light quantity caused by guiding the compensating light beam to the measuring optical system is suppressed.
【0009】本発明の第5の目的は更に、色収差の問題
を発生する波長の違いを用いることなく補償用光束を測
定光学系に導くことができる高精度な眼科測定装置を提
供することにある。A fifth object of the present invention is to provide a highly accurate ophthalmologic measuring device which can guide the compensating light beam to the measuring optical system without using the wavelength difference which causes the problem of chromatic aberration. .
【0010】本発明の第6の目的は更に、角膜反射像と
補償用投影系からの光束の光検出の結果を同様の演算処
理回路またはプログラムで処理できる様にして構成を容
易にした高精度な眼科測定装置を提供することにある。A sixth object of the present invention is that the result of light detection of the corneal reflection image and the light beam from the compensating projection system can be processed by a similar arithmetic processing circuit or program, thereby facilitating the construction and high precision. To provide a simple ophthalmic measuring device.
【0011】[0011]
【課題を解決するための手段】前述第1の目的を達成す
るための第1発明は、被検眼に測定用光束を投影する測
定用投影系と、該測定用光束の被検眼からの反射光を光
検出手段に投影する測定用光学系と、該光検出器の反射
光検出に基づいて被検眼の眼特性を算出する算出手段
と、補償用光束を前記測定用光学系の少なくとも一部を
介して前記光検出器へ投影する補償用投影系と、該光検
出器の補償用光束検出に基づいて前記算出手段による眼
特性算出の測定値補正用データを形成する手段とを有す
ることを特徴とする眼科測定装置である。A first invention for achieving the above-mentioned first object is to provide a measuring projection system for projecting a measuring light beam onto an eye to be inspected, and a reflected light of the measuring light beam from the eye to be inspected. Measuring optical system for projecting on the light detecting means, a calculating means for calculating the eye characteristics of the eye to be inspected based on the reflected light detection of the light detector, and a compensating light flux for at least a part of the measuring optical system. And a means for forming measurement value correction data for eye characteristic calculation by the calculating means based on the compensating light beam detection by the photodetector. It is an ophthalmologic measuring device.
【0012】前述第2の目的を達成するための第2発明
は、上述構成において、前記補償用投影系は、補償用光
束を前記測定用光学系に導くための光路合成部材を有
し、該光路合成部材は前記補償用光束が前記測定用光学
系全体を介して前記光検出器に投影される位置に設けら
れていることを特徴とする。According to a second aspect of the invention for achieving the above-mentioned second object, in the above-mentioned structure, the compensation projection system has an optical path synthesizing member for guiding a compensation light beam to the measurement optical system. The optical path combining member is provided at a position where the compensating light beam is projected onto the photodetector through the entire measuring optical system.
【0013】前述第3の目的を達成するための第3発明
は、上述構成において、前記測定用投影系と前記補償用
投影系は共に投影用の指標を有し、前記補償用投影系は
補償用光束を前記測定用光学系に導くための光路合成部
材を有し、更に前記補償用投影系の指標は、前記光路分
割部材に関して前記測定用投影系の指標の被検眼の測定
部位による反射像形成位置と略等価な位置に配置されて
いることを特徴とする。In a third aspect of the present invention for achieving the third object, the measurement projection system and the compensation projection system both have a projection index, and the compensation projection system compensates. An optical path synthesizing member for guiding the use light beam to the measuring optical system, and the index of the compensating projection system is a reflection image of the index of the measuring projection system with respect to the optical path dividing member by a measurement site of an eye to be inspected. It is characterized in that it is arranged at a position substantially equivalent to the formation position.
【0014】前述第4の目的を達成するための第4発明
は、上述構成において、前記補償用投影系は、補償用光
束を前記測定用光学系に導くための波長選択性を有する
光路合成部材を有することを特徴とする。A fourth invention for achieving the above-mentioned fourth object has the above-mentioned structure, wherein the compensating projection system has an optical path combining member having wavelength selectivity for guiding a compensating light beam to the measuring optical system. It is characterized by having.
【0015】前述第5の目的を達成するための第5発明
は、上述構成において、前記補償用投影系は、補償用光
束を前記測定用光学系に導くための該測定用光学系に挿
脱自在な可動ミラーを有することを特徴とする。A fifth aspect of the invention for attaining the fifth object has the above-mentioned structure, wherein the compensating projection system is inserted into and removed from the measuring optical system for guiding the compensating light beam to the measuring optical system. It is characterized by having a freely movable mirror.
【0016】前述第6の目的を達成するための第6発明
は、上述構成において、前記測定用投影系と前記補償用
投影系は共に同形状の投影用の指標を有することを特徴
とする。A sixth aspect of the invention for attaining the sixth object is characterized in that, in the above-mentioned configuration, both the measurement projection system and the compensation projection system have projection indicators of the same shape.
【0017】[0017]
【実施例】図1は本発明の第1実施例に係る角膜形状測
定装置の構成図である。1 is a block diagram of a corneal shape measuring apparatus according to a first embodiment of the present invention.
【0018】図中、1は装置の測定ユニットであり、検
者が不図示のジョイスティック等の位置合わせ操作手段
により被検眼Eとこの測定ユニット1の位置合わせを行
う。In the figure, reference numeral 1 is a measuring unit of the apparatus, and an examiner aligns the eye E with the measuring unit 1 by a positioning operation means such as a joystick (not shown).
【0019】2は被検眼Eの角膜EC に投影される角膜
形状測定用の指標であり、図2に示す様に測定光軸O1
を中心とするリング状の光源となっている。この測定用
光源は対物レンズ3の回りに、被検眼Eに対向する様に
配置されていて、所定の波長、例えばλ=780nmの
光で発光し、リング状の指標を被検眼角膜EC に投影す
る。また本実施例では、測定用光源を被検眼の位置合わ
せ用の指標にも兼用している。[0019] 2 is an index for corneal shape measurement is projected onto the cornea E C of the eye E, the measurement optical axis O 1 as shown in FIG. 2
It is a ring-shaped light source centered on. The light source for measurement is arranged around the objective lens 3 so as to face the eye E to be inspected, emits light of a predetermined wavelength, for example, λ = 780 nm, and a ring-shaped index is formed on the eye cornea E C to be inspected. To project. In this embodiment, the measuring light source is also used as an index for aligning the eye to be inspected.
【0020】4は光分割部材、5はレンズ系、6は光検
出手段、7は絞り、8は絞りの回動軸、9は制御手段、
10は記憶手段、11はモニター等の表示手段、12は
後述する補償用指標、13は光源である。Reference numeral 4 is a light splitting member, 5 is a lens system, 6 is light detecting means, 7 is a diaphragm, 8 is a rotation axis of the diaphragm, 9 is control means,
Reference numeral 10 is a storage means, 11 is a display means such as a monitor, 12 is a compensation index described later, and 13 is a light source.
【0021】被検眼Eの位置合わせをする場合、測定用
光源2を点灯させ、被検眼角膜ECによって反射された
光束を、レンズ3、光分割部材4、レンズ系5を経由し
て、光検出手段6の撮像素子上に結像させる。ここで、
光検出手段6はいわゆる2次元CCDの様な2次元撮像
素子である。光検出手段6には表示手段11が接続され
ており、被検眼Eの位置合せを行なう際には被検眼Eの
前眼部像を表示できるようになっている。検者は光検出
手段6からの撮像信号を受けて表示手段11に映し出さ
れたリング状の測定用指標2の角膜反射像を見ながら、
リング状の角膜反射像が撮像素子上の所定位置、例えば
中心に位置する様に、またこの角膜反射像のピントが合
う様に、測定ユニット1の位置を操作する。この様に位
置合わせの際には測定用指標2を位置合わせ用の指標と
して用いる。When aligning the eye E to be inspected, the light source 2 for measurement is turned on, and the light flux reflected by the cornea E C of the eye to be inspected is passed through the lens 3, the light splitting member 4, and the lens system 5 to the light beam. An image is formed on the image pickup device of the detection means 6. here,
The light detecting means 6 is a two-dimensional image pickup device such as a so-called two-dimensional CCD. A display unit 11 is connected to the light detection unit 6 so that an anterior segment image of the eye E can be displayed when the eye E is aligned. The examiner receives the image pickup signal from the light detection means 6 and looks at the corneal reflection image of the ring-shaped measurement index 2 displayed on the display means 11,
The position of the measuring unit 1 is operated so that the ring-shaped corneal reflection image is located at a predetermined position on the image sensor, for example, at the center, and the corneal reflection image is in focus. In this way, the measurement index 2 is used as an index for alignment during alignment.
【0022】図3はこの光検出手段6により撮像された
被検眼角膜EC による測定用指標2の角膜反射像IE の
一例である。この角膜反射像は、被検眼角膜EC の状
態、例えば角膜乱視や円錐角膜等の状態によって角膜像
が円になったり、楕円になったり、あるいは不定形状に
なったりする。本装置では、この角膜反射像IE の大き
さや形状を算出することにより、被検眼角膜EC の形状
測定を行う。FIG. 3 is an example of a corneal reflection image I E of the measurement index 2 by the cornea E C of the eye to be inspected, which is imaged by the light detecting means 6. The corneal reflection image may be a circle, an ellipse, or an indefinite shape depending on the state of the cornea E C of the eye to be examined, for example, the state of corneal astigmatism or keratoconus. The present apparatus measures the shape of the cornea E C of the eye to be inspected by calculating the size and shape of this corneal reflection image I E.
【0023】図4は、被検眼Eの位置合わせが終了し、
角膜形状を測定する際の本装置の状態を示す図である。
本状態では絞り7が軸8を中心に回動され、測定光学系
の光路中に挿入されている。この状態では絞り7はいわ
ゆるテレセントリック絞りであり、ピント方向の被検眼
Eの位置誤差があっても、角膜反射像の大きさが変化し
ない様になっている。この絞り7は図5に示す様に、光
軸O1 を中心に開口部7aを有している。軸8は不図示
のステッピングモーター等の回転駆動部材に取りつけら
れており、位置合わせや測定を司る制御手段9の制御に
よって、位置合わせの際には絞り7を図1の様に測定光
路外に退避させ、測定の際には絞り7をテレセントリッ
ク絞りの働きをする様に測定光路内に位置させる様に、
回転駆動する。In FIG. 4, the alignment of the eye E to be examined is completed,
It is a figure which shows the state of this apparatus at the time of measuring a cornea shape.
In this state, the diaphragm 7 is rotated around the axis 8 and inserted in the optical path of the measuring optical system. In this state, the diaphragm 7 is a so-called telecentric diaphragm, and the size of the corneal reflection image does not change even if there is a positional error of the eye E to be examined in the focus direction. As shown in FIG. 5, the diaphragm 7 has an opening 7a centered on the optical axis O 1 . The shaft 8 is attached to a rotation driving member such as a stepping motor (not shown), and the control means 9 that controls the alignment and the measurement controls the diaphragm 7 to bring the diaphragm 7 out of the measurement optical path as shown in FIG. Evacuate and place the diaphragm 7 in the measurement optical path so that it works as a telecentric diaphragm during measurement.
Drive to rotate.
【0024】制御手段9は光検出手段6及びフレームメ
モリー等で構成される記憶手段10に接続されており、
以下の測定制御も司る。まず位置合せの終了した状態で
光検出手段6によって得られた角膜反射像IE の撮像信
号を一旦記憶手段10に映像情報として記憶させる。こ
の記憶された映像情報を用いて、制御手段9により後述
する温度等の補償情報によって補正しながら記憶した角
膜反射像IE の形状、大きさ等の情報を演算することに
よって、被検眼角膜EC の形状を算出する構成となって
いる。The control means 9 is connected to the light detection means 6 and a storage means 10 composed of a frame memory and the like,
It also controls the following measurement controls. First, the image pickup signal of the corneal reflection image I E obtained by the light detecting means 6 in the state where the alignment is completed is temporarily stored in the storage means 10 as video information. By using the stored image information, the control unit 9 calculates the information such as the shape and size of the corneal reflection image I E which is stored while being corrected by the compensation information such as the temperature to be described later, and the cornea E of the eye to be inspected E is calculated. It is configured to calculate the shape of C.
【0025】光分割部材4は本実施例ではダイクロイッ
クミラー等のビームスプリツターであり、波長780n
m付近の光は透過させ、それ以外の光は反射するような
光学的特性を有している。この光分割部材4の反射方向
の光路O2 には、図6に示す補償用の視標12と、それ
を後方から照明する光源13が図1ないし4のように配
置されている。この光源13には、例えば発光波長λ=
860nmのLED等を用いて光分割部材4で反射され
るように構成されている。The light splitting member 4 is a beam splitter such as a dichroic mirror in this embodiment, and has a wavelength of 780n.
It has an optical characteristic that light near m is transmitted and other light is reflected. In the optical path O 2 in the reflection direction of the light splitting member 4, the compensating target 12 shown in FIG. 6 and the light source 13 for illuminating the target 12 from the rear are arranged as shown in FIGS. The light source 13 has, for example, an emission wavelength λ =
The light splitting member 4 is configured to be reflected by using an 860 nm LED or the like.
【0026】この光源13が点灯することにより、補償
用指標12が後方から照明される。この指標12を通過
した光束は、光分割部材4によって反射され、レンズ系
5を通過して、前述の絞り7を介して光検出手段6の撮
像素子上に結像するようになっている。When the light source 13 is turned on, the compensation index 12 is illuminated from behind. The light flux that has passed through the index 12 is reflected by the light splitting member 4, passes through the lens system 5, and forms an image on the image pickup device of the light detection means 6 through the diaphragm 7.
【0027】図7は、光検出手段6で撮像されたこの補
償用指標12の像IC の例である。FIG. 7 shows an example of an image I C of the compensation index 12 picked up by the light detecting means 6.
【0028】次に具体的な測定動作を説明する。Next, a specific measurement operation will be described.
【0029】被検眼Eの位置合せが終了した後、不図示
の測定スイツチを検者が押すことにより測定が開始され
る。この測定スイツチが押されると、制御手段9は、測
定用指標2を点灯させ、前述のように被検眼角膜EC に
よる角膜反射像IE を光検出手段6により撮像して、記
憶手段10に映像情報として取り込む。After the alignment of the eye E to be inspected is completed, the examiner pushes a measurement switch (not shown) to start the measurement. When this measurement switch is pressed, the control means 9 turns on the measurement index 2, the corneal reflection image I E by the cornea E C of the eye to be inspected is picked up by the light detection means 6, and stored in the storage means 10, as described above. Capture as video information.
【0030】ここでは説明を簡単にするために、被検眼
角膜EC が角膜乱視を持たない略完全球面であった場合
で考えると、角膜反射像IE は図8に示すような半径R
E の円環として記憶手段10に記憶されていることにな
る。Here, in order to simplify the explanation, considering that the cornea E C of the eye to be inspected is a substantially perfect spherical surface having no corneal astigmatism, the corneal reflection image I E has a radius R as shown in FIG.
It is stored in the storage means 10 as an E ring.
【0031】次に制御手段9は測定用指標2を消灯し、
光源13を点灯させて上述のように補償用指標12の像
IC を光検出手段6の撮像素子上に投影する。図9はそ
の時の補償用指標12の像IC を表しており、その半径
はRC である。Next, the control means 9 turns off the measuring index 2,
The light source 13 is turned on and the image I C of the compensation index 12 is projected on the image pickup device of the light detecting means 6 as described above. FIG. 9 shows an image I C of the compensation index 12 at that time, and its radius is R C.
【0032】制御手段9は、本装置の組立時、つまり本
装置の測定値の校正を行なった時に、その装置温度での
補償用指標12の像IC0の半径RC0を記憶している。こ
の半径RC0と記憶手段10に記憶されている現在の測定
時の補償用指標12の像ICの半径RC とを比較し
て、以下のような形で測定時の角膜反射像IE の温度に
よる光学系の変化の補正を行なう。The control means 9 stores the radius R C0 of the image I C0 of the compensation index 12 at the device temperature when the device is assembled, that is, when the measured values of the device are calibrated. This radius R C0 is compared with the radius R C of the image I C of the compensation index 12 currently stored in the storage means 10, and the corneal reflection image I E during measurement is measured in the following manner. The change in the optical system due to the temperature is corrected.
【0033】即ち、上述した測定時の角膜反射像IE の
半径RE 、その時の補償用指標12の像IC の半径R
C 、校正時の補償用指標12の像IC0の半径RC0とか
ら、装置の校正を行なった時と、実際に測定を行なった
時との温度等環境変化による光学系の誤差の影響を是正
した真の角膜反射像IE ’の半径RE ’は、 RE ’=(RC0/RC )RE として表すことができる。従って、制御手段9は、記憶
手段10に記憶された角膜反射像IE の映像情報を、こ
の式に基づいて各径線毎に半径補正することにより全体
形状を補正し、この補正された角膜反射像IE ’の解析
を周知の手法で行なって被検眼Eの角膜形状を算出す
る。円環状角膜反射像を解析して被検眼角膜形状を算出
する方法については、各種周知であり、ここでは具体的
な説明を省略する。或は、前述式を用いて角膜反射像I
E の特定径線上での半径を補正し、この特定径線上半径
を用いて周知の手法で被検眼Eの角膜形状を算出するよ
うにしても良い。That is, the radius R E of the corneal reflection image I E at the time of the above-described measurement, the radius R of the image I C of the compensation index 12 at that time
C , the radius R C0 of the image I C0 of the compensation index 12 at the time of calibration, the influence of the error of the optical system due to the environmental change such as temperature between when the device is calibrated and when the actual measurement is performed. The radius R E ′ of the corrected true corneal reflection image I E ′ can be expressed as R E ′ = (R C0 / R C ) R E. Therefore, the control unit 9 corrects the entire shape by correcting the image information of the corneal reflection image I E stored in the storage unit 10 for each radial line based on this equation, and corrects the entire shape of the cornea. The reflected image I E 'is analyzed by a known method to calculate the corneal shape of the eye E to be examined. Various methods are known for calculating the corneal shape of the eye to be examined by analyzing the annular corneal reflection image, and a detailed description thereof will be omitted here. Alternatively, the corneal reflection image I is calculated by using the above formula.
The radius of E on the specific radial line may be corrected, and the corneal shape of the eye E to be examined may be calculated by a known method using the radius on the specific radial line.
【0034】このような形で補正を行なって測定を実行
することにより、温度変動等の環境変動があって装置内
のレンズ系5等に誤差要因が発生した場合も、この誤差
要因を補償した形で測定を行なうことができ、環境変動
によらない角膜形状測定が可能になる。Even if an error factor occurs in the lens system 5 and the like in the apparatus due to environmental changes such as temperature changes, the error factor is compensated by performing the correction in this manner and performing the measurement. The shape of the cornea can be measured, and the corneal shape can be measured independently of environmental changes.
【0035】本実施例では、制御手段9中に、装置の校
正時の補償用指標12の像情報の記憶手段と、被検眼の
測定時に光検出手段6に投影された温度補正用指標12
の像情報と前記制御手段9内の記憶手段に記憶された補
償用指標12の像情報とを比較して上述のような補正を
行なった上で被検眼角膜形状の各種測定値を演算する補
正演算手段とが含まれている。In this embodiment, in the control means 9, the image information storage means of the compensation index 12 at the time of calibration of the apparatus and the temperature correction index 12 projected on the light detecting means 6 at the time of measuring the eye to be inspected.
Correction of calculating various measured values of the corneal shape of the eye to be inspected after comparing the image information of No. 1 with the image information of the compensation index 12 stored in the storage unit in the control unit 9 and performing the above-described correction. And computing means are included.
【0036】図10は本発明の第2実施例に係る角膜形
状測定装置の構成図である。第1実施例と同様の部材に
は同じ符番を冠してある。FIG. 10 is a block diagram of a corneal shape measuring apparatus according to the second embodiment of the present invention. The same members as those in the first embodiment have the same reference numerals.
【0037】本実施例では第1実施例とは異なり、最も
被検眼に近いレンズ15よりも更に被検眼に近い側、即
ち被検眼Eに対向する光学部材として光分割部材14が
配置されている。そしてこの光分割部材14の反射方向
の光路O3 に第1実施例と同様の補償用指標12とその
照明用光源13が配置されている。測定用指標2と光源
13の発光波長はそれぞれ第1の実施例と同じであり、
また光分割部材14の波長分離特性等の光学的特性は第
1の実施例の光分割部材4と同じである。In this embodiment, unlike the first embodiment, the light splitting member 14 is arranged as an optical member facing the eye E closer to the eye E than the lens 15 closest to the eye E, that is, facing the eye E. . The compensation index 12 and its illuminating light source 13 similar to those of the first embodiment are arranged on the optical path O 3 in the reflection direction of the light splitting member 14. The emission wavelengths of the measurement index 2 and the light source 13 are the same as those in the first embodiment,
The optical characteristics such as the wavelength separation characteristic of the light splitting member 14 are the same as those of the light splitting member 4 of the first embodiment.
【0038】被検眼角膜EC の形状測定の手順は、補償
用指標12の像IC による角膜反射像IE の補正も含め
て第1の実施例と同じである。The procedure for measuring the shape of the cornea E C of the eye to be examined is the same as that of the first embodiment, including the correction of the corneal reflection image I E by the image I C of the compensation index 12.
【0039】本実施例では、光分割部材14以降の光学
部材、即ちレンズ15、5、絞り7、光検出部材6等が
すべて測定光路O1 で補償用の光路と共通となっている
こと、即ち補償用指標12からの光が測定光路O1 の光
学部材すべてを経由していることで、測定光路O1 の光
学部材すべての温度変化等環境変化による誤差が補正さ
れることになり、より精度が高い測定が可能となる。In this embodiment, the optical members after the light splitting member 14, that is, the lenses 15, 5, the diaphragm 7, the light detecting member 6 and the like are all common to the measuring optical path O 1 and the compensating optical path. that is, by light from the compensation index 12 is through all optical components of the measuring optical path O 1, will be the error is corrected by the optical member all temperature change environmental changes in the measured optical path O 1, more Highly accurate measurement is possible.
【0040】また、本実施例では、補償用視標12が光
分割部材14に関して測定用指標2の被検眼角膜EC に
よる角膜反射像形成位置と略等価な位置に配置されてい
るので、補償用指標12の像IC も角膜反射像IE もボ
ケの影響が少なくなるという効果も有する。Further, in this embodiment, the compensating optotype 12 is arranged at a position substantially equivalent to the cornea reflection image forming position by the cornea E C of the eye to be inspected of the measuring index 2 with respect to the light splitting member 14, so that the compensation target 12 is compensated. Both the image I C of the target index 12 and the corneal reflection image I E also have the effect of reducing the influence of blurring.
【0041】上述各実施例においては、補償用指標12
に測定用指標2と同形の円環指標を用いて、その画像解
析に角膜反射像IE と補償用指標像IC とで同じ画像処
理・プログラムが使用できるようにした。しかしなが
ら、画像解析において異なる画像処理・プログラムを使
用するのであれば、図11に示すように、補償用指標1
2を例えば4点のスポットにして、そのスポット間距離
l1 、l2 や4点のスポットの位置関係を構成時の指標
と比較することにより、測定値の補正を行なっても良
い。In each of the above embodiments, the compensation index 12
A circular index having the same shape as that of the measurement index 2 was used for the image analysis so that the same image processing / program can be used for the corneal reflection image I E and the compensation index image I C. However, if different image processing / programs are used in the image analysis, as shown in FIG.
It is also possible to correct the measured value by setting 2 to, for example, 4 spots, and comparing the inter-spot distances l 1 and l 2 and the positional relationship of the 4 spots with the index used in the configuration.
【0042】また上述各実施例では、補償用指標12を
測定光学系を介して光検出手段6に投影する光路分割部
材にダイクロイックミラー等の光分割部材4及び14を
用いた。しかしながら、被検眼角膜EC の測定用指標2
を撮像する時には測定光路O1 から退避し、補償用指標
12を光検出手段6に投影して撮像する際には測定光路
O1 に挿入される可動ミラーを用いても良い。この場合
は測定用指標2と補償用指標12を照明するための光源
13の光波長を同じにしても良く、光波長を同じにすれ
ば光学系の波長により結像位置の差がなくなる。また、
可動ミラーを用いれば必要な時のみ光がミラーに照射さ
れる形になるので、光分割部材の熱変形の影響も少なく
なり、より高精度な補正が可能になる。Further, in each of the above-mentioned embodiments, the light splitting members 4 and 14 such as dichroic mirrors are used as the light path splitting members for projecting the compensation index 12 onto the light detecting means 6 through the measuring optical system. However, the index 2 for measuring the cornea E C of the eye to be examined
It is also possible to use a movable mirror which is retracted from the measurement optical path O 1 when the image is captured, and is inserted into the measurement optical path O 1 when the compensation index 12 is projected onto the photodetection means 6 to capture the image. In this case, the light wavelengths of the light source 13 for illuminating the measurement index 2 and the compensation index 12 may be the same, and if the light wavelengths are the same, there is no difference in image forming position due to the wavelength of the optical system. Also,
If the movable mirror is used, the mirror is irradiated with light only when necessary, so that the influence of thermal deformation of the light splitting member is reduced and more accurate correction can be performed.
【0043】更に、上述各実施例では、本発明を角膜形
状測定装置に適用した例を挙げたが、眼屈折系等の他の
眼科測定装置にも、適用が可能である。即ち被検眼から
の測定光を受光し、受光位置や受光画像に基づいて被検
眼の測定を行なう装置において、測定光学系の少なくと
も一部を介して補償用指標を受光手段上へ投影し、この
補償用指標の受光手段上での投影像の位置または画像の
校正時との違いに基づいて前述測定光の受光位置や受光
画像を補正する形にすれば、同様に温度変化等の環境変
動を補償した形で正確な測定を行なうことが可能にな
る。Further, in each of the above-mentioned embodiments, the example in which the present invention is applied to the corneal shape measuring apparatus is described, but it is also applicable to other ophthalmologic measuring apparatuses such as an eye refraction system. That is, in the device that receives the measurement light from the eye to be inspected and measures the eye to be inspected based on the light receiving position and the light receiving image, the compensation index is projected onto the light receiving means via at least a part of the measurement optical system, If the compensation position of the measurement light and the received light image are corrected based on the position of the projected image on the light receiving means of the compensation index or the difference between when the image is calibrated, environmental fluctuations such as temperature changes will also occur. It is possible to make accurate measurements in a compensated form.
【0044】[0044]
【発明の効果】以上第1発明によれば、光学系の部品、
固定方法、温度センサー等に高額なコストをかけること
なく、また温度変化等の環境変化による光学系の変動に
よっても測定値の誤差発生を防止可能な、高精度な眼科
測定装置が達成される。As described above, according to the first invention, a component of an optical system,
A highly accurate ophthalmologic measuring device can be achieved which does not require expensive costs for a fixing method, a temperature sensor, and the like, and can prevent an error in a measurement value from occurring due to a change in an optical system due to an environmental change such as a temperature change.
【0045】また第2発明によれば更に、環境変化によ
る測定光学系の光学部材いずれの変動による測定値の誤
差発生をも防止可能な高精度な眼科測定装置が達成され
る。Further, according to the second aspect of the invention, it is possible to achieve a highly accurate ophthalmologic measuring device capable of preventing the occurrence of an error in the measured value due to the fluctuation of any optical member of the measuring optical system due to the environmental change.
【0046】また第3発明によれば更に、補償用投影系
自身の温度変化による変動の影響を少なくした、より高
精度な眼科測定装置が達成される。Further, according to the third aspect of the present invention, a more highly accurate ophthalmologic measuring device can be achieved in which the influence of the fluctuation due to the temperature change of the compensation projection system itself is reduced.
【0047】また第4発明によれば更に、補償用光束を
測定光学系に導くことによる測定光量の減少を少なくし
た高精度な眼科測定装置が達成される。Further, according to the fourth aspect of the invention, it is possible to achieve a highly accurate ophthalmologic measuring apparatus in which the decrease of the measuring light quantity due to the guiding of the compensating light beam to the measuring optical system is suppressed.
【0048】また第5発明によれば更に、色収差の問題
を発生する波長の違いを用いることなく補償用光束を測
定光学系に導くことができる高精度な眼科測定装置が達
成される。Further, according to the fifth aspect of the invention, a highly accurate ophthalmologic measuring device can be achieved which can guide the compensating light beam to the measuring optical system without using the difference in wavelength which causes the problem of chromatic aberration.
【0049】また第6発明によれば更に、角膜反射像と
補償用投影系からの光束の光検出の結果を同様の演算処
理回路またはプログラムで処理できる様にして構成を容
易にした高精度な眼科測定装置が達成される。According to the sixth aspect of the invention, the result of light detection of the corneal reflection image and the light beam from the compensating projection system can be processed by the same arithmetic processing circuit or program, thereby facilitating the construction and achieving high precision. An ophthalmic measurement device is achieved.
【図1】本発明の第1実施例に係る角膜形状測定装置の
構成説明図。FIG. 1 is a structural explanatory view of a corneal shape measuring apparatus according to a first embodiment of the present invention.
【図2】測定用指標の説明図。FIG. 2 is an explanatory diagram of a measurement index.
【図3】被検眼角膜による測定用指標の角膜反射像の例
を示す図。FIG. 3 is a diagram showing an example of a corneal reflection image of a measurement index by the cornea of the eye to be examined.
【図4】第1実施例に係る角膜形状測定装置の構成説明
図。FIG. 4 is a structural explanatory view of a corneal shape measuring apparatus according to the first embodiment.
【図5】絞りの説明図。FIG. 5 is an explanatory diagram of a diaphragm.
【図6】補償用指標の説明図。FIG. 6 is an explanatory diagram of a compensation index.
【図7】補償用指標の光検出手段上での像を説明する
図。FIG. 7 is a diagram illustrating an image of a compensation index on a light detection unit.
【図8】測定時の角膜反射像と補正後の角膜反射像の説
明図。FIG. 8 is an explanatory diagram of a corneal reflection image during measurement and a corrected corneal reflection image.
【図9】測定時の補償用指標の像と構成時の補償用指標
の像の説明図。FIG. 9 is an explanatory diagram of an image of a compensation index during measurement and an image of a compensation index during configuration.
【図10】本発明の第2の実施例に係る角膜形状測定装
置の構成説明図。FIG. 10 is a structural explanatory view of a corneal shape measuring apparatus according to a second embodiment of the present invention.
【図11】補償用指標の他の例を示す図。FIG. 11 is a diagram showing another example of a compensation index.
2 測定用指標 4 光分割部材 6 光検出手段 9 制御手段 10 記憶手段 12 補償用指標 13 照明光源 14 光分割部材 2 measurement index 4 light splitting member 6 light detecting means 9 control means 10 storage means 12 compensation index 13 illumination light source 14 light splitting member
Claims (6)
影系と、該測定用光束の被検眼からの反射光を光検出手
段に投影する測定用光学系と、該光検出器の反射光検出
に基づいて被検眼の眼特性を算出する算出手段と、補償
用光束を前記測定用光学系の少なくとも一部を介して前
記光検出器へ投影する補償用投影系と、該光検出器の補
償用光束検出に基づいて前記算出手段による眼特性算出
の測定値補正用データを形成する手段とを有することを
特徴とする眼科測定装置。1. A measurement projection system for projecting a measurement light beam onto an eye to be inspected, a measurement optical system for projecting reflected light of the measurement light beam from the eye to be detected onto a light detecting means, and a reflection from the photodetector. Calculation means for calculating the eye characteristic of the eye to be inspected based on light detection, a compensation projection system for projecting a compensation light beam onto the photodetector through at least a part of the measurement optical system, and the photodetector And a means for forming measurement value correction data for the eye characteristic calculation by the calculating means based on the compensation light flux detection.
測定用光学系に導くための光路合成部材を有し、該光路
合成部材は前記補償用光束が前記測定用光学系全体を介
して前記光検出器に投影される位置に設けられているこ
とを特徴とする請求項1に記載の眼科測定装置。2. The compensating projection system has an optical path synthesizing member for guiding the compensating light beam to the measuring optical system, wherein the optical path synthesizing member allows the compensating light beam to pass through the entire measuring optical system. The ophthalmologic measuring apparatus according to claim 1, wherein the ophthalmologic measuring apparatus is provided at a position where it is projected onto the photodetector.
共に投影用の指標を有し、前記補償用投影系は補償用光
束を前記測定用光学系に導くための光路合成部材を有
し、更に前記補償用投影系の指標は、前記光路分割部材
に関して前記測定用投影系の指標の被検眼の測定部位に
よる反射像形成位置と略等価な位置に配置されているこ
とを特徴とする請求項1に記載の眼科測定装置。3. The measuring projection system and the compensating projection system both have a projection index, and the compensating projection system has an optical path combining member for guiding a compensating light beam to the measuring optical system. Further, the index of the compensation projection system is arranged at a position substantially equivalent to the reflection image forming position by the measurement site of the eye to be inspected with respect to the optical path splitting member of the index of the measurement projection system. The ophthalmologic measuring apparatus according to claim 1.
測定用光学系に導くための波長選択性を有する光路合成
部材を有することを特徴とする請求項1に記載の眼科測
定装置。4. The ophthalmologic measuring apparatus according to claim 1, wherein the compensating projection system includes an optical path combining member having wavelength selectivity for guiding the compensating light beam to the measuring optical system.
測定用光学系に導くための該測定用光学系に挿脱自在な
可動ミラーを有することを特徴とする請求項1に記載の
眼科測定装置。5. The compensation projection system according to claim 1, further comprising a movable mirror that can be inserted into and removed from the measurement optical system for guiding the compensation light beam to the measurement optical system. Ophthalmic measuring device.
共に同形状の投影用の指標を有することを特徴とする請
求項1に記載の眼科測定装置。6. The ophthalmologic measuring apparatus according to claim 1, wherein the measurement projection system and the compensation projection system both have projection indices of the same shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17667094A JP3459685B2 (en) | 1994-07-28 | 1994-07-28 | Ophthalmic measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17667094A JP3459685B2 (en) | 1994-07-28 | 1994-07-28 | Ophthalmic measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0838424A true JPH0838424A (en) | 1996-02-13 |
JP3459685B2 JP3459685B2 (en) | 2003-10-20 |
Family
ID=16017670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17667094A Expired - Fee Related JP3459685B2 (en) | 1994-07-28 | 1994-07-28 | Ophthalmic measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3459685B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003024278A (en) * | 2001-06-19 | 2003-01-28 | Canon Inc | Corneal shape measuring apparatus |
KR100897736B1 (en) * | 2007-02-21 | 2009-05-15 | 주식회사 휴비츠 | Eye examining apparatus having temperature variation compensating member |
JP2019195378A (en) * | 2018-05-07 | 2019-11-14 | キヤノン株式会社 | Optical interference tomographic apparatus |
-
1994
- 1994-07-28 JP JP17667094A patent/JP3459685B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003024278A (en) * | 2001-06-19 | 2003-01-28 | Canon Inc | Corneal shape measuring apparatus |
KR100897736B1 (en) * | 2007-02-21 | 2009-05-15 | 주식회사 휴비츠 | Eye examining apparatus having temperature variation compensating member |
JP2019195378A (en) * | 2018-05-07 | 2019-11-14 | キヤノン株式会社 | Optical interference tomographic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3459685B2 (en) | 2003-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6575573B2 (en) | Method and apparatus for measuring a corneal profile of an eye | |
US4637700A (en) | Method and an apparatus for determining refraction of the human eye | |
US4787734A (en) | Stereoscopic microscope | |
JP2007078593A (en) | Light wave interference device | |
JP3016499B2 (en) | Corneal shape measuring device | |
JP4630126B2 (en) | Ophthalmic optical characteristic measuring device | |
JP3459685B2 (en) | Ophthalmic measurement device | |
JPH0618363A (en) | Lens meter | |
JP2000245698A (en) | Instrument for measuring eye refractivity | |
JPH0554771B2 (en) | ||
JP2009281980A (en) | Method and apparatus for measuring eccentricity | |
JPH1089935A (en) | Device for measuring aspherical interference | |
JP3206936B2 (en) | Eye refractometer | |
JP2004257854A (en) | Interferometer device and aberration measuring method | |
JPH0626834A (en) | Method and apparatus for measuring radius of curvature | |
JP2001231753A (en) | Opthalmometer | |
JP3085679B2 (en) | Eye refractometer | |
JPH0994225A (en) | Ophthalogical measuring apparatus | |
KR20130094245A (en) | Ophthalmic apparatus, method for controlling ophthalmic apparatus, and storage medium | |
JPH0943100A (en) | Lens meter | |
JPH04174639A (en) | Cornea curvature measuring device | |
JP2707337B2 (en) | Corneal shape measuring device | |
JP2686146B2 (en) | Interferometer | |
JP3396676B2 (en) | Lens meter | |
JPH03267039A (en) | Eye refractometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030722 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |