JPH083754A - Production of piping - Google Patents

Production of piping

Info

Publication number
JPH083754A
JPH083754A JP13869194A JP13869194A JPH083754A JP H083754 A JPH083754 A JP H083754A JP 13869194 A JP13869194 A JP 13869194A JP 13869194 A JP13869194 A JP 13869194A JP H083754 A JPH083754 A JP H083754A
Authority
JP
Japan
Prior art keywords
cooling water
vacuum container
water hole
aluminum
alumina film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13869194A
Other languages
Japanese (ja)
Inventor
Kazuhisa Sunada
和久 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP13869194A priority Critical patent/JPH083754A/en
Publication of JPH083754A publication Critical patent/JPH083754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To keep the cooling efficiency in piping to a certain one over a long term. CONSTITUTION:In a stage 16, a cooling water pare 12 is filled with sulfuric acid (H2SO4) 19, and a DC power source 21 is connected thereto with a vacuum vessel 11 made of aluminum as the anode and lead (Pb) 20 as the cathode. Thus, the surface of the cooling water pore 12 of the vacuum vessel 11 is anodically oxidized to form a porous type alumina film 13. But, the porous type alumina film 13 just formed is in an active stage, and for changing its state into an inert and stable one, sealing treatment is executed in a stage 17. At the time of filling the cooling water pore 12 with boiling water 22 in the stage 17, the sealing treatment progresses to form the alumina film 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配管の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe manufacturing method.

【0002】[0002]

【従来の技術】近年、半導体製造装置の真空容器とし
て、アルミニウムやアルミニウム系合金が採用されるよ
うになってきている。
2. Description of the Related Art In recent years, aluminum and aluminum-based alloys have been adopted as a vacuum container for semiconductor manufacturing equipment.

【0003】以下図面を参照しながら、従来の真空容器
の一例について説明する。図5は従来の真空容器の断面
図である。図5において、1はアルミニウム製の真空容
器、2は冷却水孔、3は銅製の配管である。ここで、銅
製の配管3の内部の冷却水孔2に冷却水を流すことによ
り、真空容器1が冷却される。
An example of a conventional vacuum container will be described below with reference to the drawings. FIG. 5 is a sectional view of a conventional vacuum container. In FIG. 5, 1 is a vacuum container made of aluminum, 2 is a cooling water hole, and 3 is a pipe made of copper. Here, the vacuum vessel 1 is cooled by flowing cooling water into the cooling water hole 2 inside the copper pipe 3.

【0004】アルミニウムは熱伝導に優れているため
に、真空容器1材料に用いられているが、長期間冷却水
を流し続けると、アルミニウム製の真空容器1の冷却水
孔2の表面にアルミナ(Al23)が形成されるため、
冷却水配管の詰まりの原因になっていた。
Aluminum is used as a material for the vacuum container 1 because it has excellent heat conduction. However, when cooling water is kept flowing for a long period of time, alumina (alumina) is formed on the surface of the cooling water hole 2 of the aluminum vacuum container 1. Al 2 O 3 ) is formed,
It caused the clogging of the cooling water piping.

【0005】このため、従来はアルミニウム製の真空容
器1に、冷却水孔2を開口し、そこに銅製の配管3を埋
め込む構造としていた。
Therefore, conventionally, a structure has been adopted in which a cooling water hole 2 is opened in an aluminum vacuum container 1 and a copper pipe 3 is embedded therein.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、アルミニウム製の真空容器1に銅製の配
管3を埋め込むと、真空容器1の表面が曲面である場合
や、冷却水孔2が曲がりくねっている場合、銅製の配管
3を冷却水配管3として用いることが困難であった。こ
のため、銅製の配管3を用いずに、長期間にわたって冷
却水を流し続けると、冷却水孔2の表面でアルミニウム
と冷却水とが反応してアルミナ膜が生成される。このア
ルミナ膜が冷却水配管3内部に生成されると、冷却水流
量が低下し、真空容器1の冷却効率が低下するといった
問題点があった。
However, in the above structure, when the copper pipe 3 is embedded in the vacuum container 1 made of aluminum, when the surface of the vacuum container 1 is a curved surface or the cooling water hole 2 is bent. In this case, it was difficult to use the copper pipe 3 as the cooling water pipe 3. Therefore, if the cooling water is kept flowing for a long time without using the copper pipe 3, the aluminum and the cooling water react with each other on the surface of the cooling water hole 2 to form an alumina film. If this alumina film is formed inside the cooling water pipe 3, there is a problem that the cooling water flow rate is reduced and the cooling efficiency of the vacuum container 1 is reduced.

【0007】したがって、本発明の目的は、このような
問題点を解決し、冷却効率を長期間にわたって一定に保
つことのできる真空容器を提供することである。
Therefore, an object of the present invention is to solve the above problems and to provide a vacuum container capable of keeping the cooling efficiency constant for a long period of time.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の配管製造方法は、アルミニウム製の真空容器
の冷却水孔の表面に陽極酸化法でポーラス型のアルミニ
ウム酸化膜を形成し、前記アルミニウム酸化膜に封孔処
理を行う。
In order to achieve the above object, the pipe manufacturing method of the present invention comprises forming a porous aluminum oxide film on the surface of a cooling water hole of an aluminum vacuum container by an anodic oxidation method, A sealing process is performed on the aluminum oxide film.

【0009】また、アルミニウム製の真空容器の冷却水
孔の表面に無電解メッキ法で銅、ニッケル、亜鉛薄膜を
形成する。
Further, a copper, nickel, and zinc thin film is formed on the surface of the cooling water hole of the aluminum vacuum container by electroless plating.

【0010】[0010]

【作用】本発明の配管製造方法によれば、陽極酸化法と
封孔処理によって、曲がりくねった冷却水孔の表面に均
一に耐食性の強い、アルミナ膜を容易に、短時間で形成
することができる。
According to the pipe manufacturing method of the present invention, it is possible to easily and easily form an alumina film having strong corrosion resistance uniformly on the surface of the meandering cooling water hole in a short time by the anodic oxidation method and the sealing treatment. .

【0011】また、本発明の配管の製造方法によれば、
無電解メッキ法によって、曲がりくねった冷却水孔の表
面に均一に銅、ニッケル、亜鉛薄膜を容易に、短時間で
形成することができる。
Further, according to the method for manufacturing a pipe of the present invention,
By the electroless plating method, a copper, nickel, and zinc thin film can be easily and uniformly formed on the surface of the meandering cooling water hole in a short time.

【0012】[0012]

【実施例】本発明の第1の実施例について、図1および
図2を参照して説明する。図1は本実施例における真空
容器の断面図である。図1において、11はアルミニウ
ム製の真空容器、12は冷却水孔、13はアルミナ(A
23)膜である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of the vacuum container in this embodiment. In FIG. 1, 11 is a vacuum container made of aluminum, 12 is a cooling water hole, and 13 is alumina (A
1 2 O 3 ) film.

【0013】図2はこの実施例における真空容器11の
冷却水孔12の表面に、陽極酸化法でアルミナ膜13を
成膜する方法を説明するための図である。
FIG. 2 is a diagram for explaining a method of forming an alumina film 13 on the surface of the cooling water hole 12 of the vacuum container 11 by the anodizing method in this embodiment.

【0014】図2において、15は真空容器11に冷却
水孔12を開口する過程、16は冷却水孔12の表面に
ポーラス型のアルミナ膜13を形成する過程、17はポ
ーラス型のアルミナ膜13を封孔する過程、18は真空
容器11を切断する過程である。また、各過程におい
て、真空容器11と埋め込まれた冷却水孔12との接触
面の様子を同過程を示す図の右隣に示す。
In FIG. 2, reference numeral 15 is a process of opening the cooling water hole 12 in the vacuum container 11, 16 is a process of forming a porous type alumina film 13 on the surface of the cooling water hole 12, and 17 is a porous type alumina film 13. And 18 is a process of cutting the vacuum container 11. In each process, the state of the contact surface between the vacuum container 11 and the embedded cooling water hole 12 is shown on the right side of the figure showing the same process.

【0015】過程16において、冷却水孔12に硫酸
(H2SO4)19を満たし、真空容器11を正極、鉛
(Pb)20を負極となるように直流電源21を接続す
る。すると、真空容器11の冷却水孔12の表面が陽極
酸化されて、ポーラス型のアルミナ膜13が成膜される
こととなる。しかしながら、成膜されたばかりのポーラ
ス型のアルミナ膜13は活性な状態であり、不活性にし
て安定状態にするために、過程17で封孔処理を行う。
過程17において、冷却水孔12に沸騰水22を満たす
と、封孔処理が進み、アルミナ膜13が形成されること
となる。
In step 16, the cooling water hole 12 is filled with sulfuric acid (H 2 SO 4 ) 19, and the DC power source 21 is connected so that the vacuum container 11 serves as a positive electrode and the lead (Pb) 20 serves as a negative electrode. Then, the surfaces of the cooling water holes 12 of the vacuum container 11 are anodized, and the porous alumina film 13 is formed. However, the just-formed porous alumina film 13 is in an active state, and a sealing treatment is performed in step 17 in order to make it inactive and stable.
In step 17, when the cooling water hole 12 is filled with the boiling water 22, the sealing process proceeds and the alumina film 13 is formed.

【0016】このように、陽極酸化と封孔処理によっ
て、真空容器11の冷却水孔12表面に均一に耐食性の
強い、アルミナ膜13を容易に形成することができる。
このため、どのように曲がった冷却水孔12の表面にお
いても容易に、短時間でアルミナ膜を形成することがで
きる。
As described above, by the anodic oxidation and the sealing treatment, the alumina film 13 having uniform and strong corrosion resistance can be easily formed on the surface of the cooling water hole 12 of the vacuum container 11.
Therefore, it is possible to easily form the alumina film on the curved surface of the cooling water hole 12 in a short time.

【0017】なお、真空容器11はアルミニウム製であ
るが、アルミニウム合金製でもよい。
Although the vacuum container 11 is made of aluminum, it may be made of aluminum alloy.

【0018】また、陽極酸化の薬液に硫酸を用いている
が、臭酸、燐酸溶液などの二塩基酸を含む酸性水溶液で
あれば何でもよい。
Although sulfuric acid is used as a chemical solution for anodic oxidation, any acidic aqueous solution containing a dibasic acid such as a hydrobromic acid or phosphoric acid solution may be used.

【0019】以下本発明の第2の実施例について、図3
および図4を参照して説明する。図3は本実施例におけ
る真空容器の断面図である。図3において、31はアル
ミニウム製の真空容器、32は冷却水孔、33は銅(C
u)薄膜である。
A second embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIG. FIG. 3 is a sectional view of the vacuum container in this embodiment. In FIG. 3, 31 is an aluminum vacuum container, 32 is a cooling water hole, and 33 is copper (C
u) It is a thin film.

【0020】図4はこの実施例における真空容器31の
冷却水孔32の表面に無電解メッキ法で銅薄膜33を成
膜する方法を説明するための図である。図4において、
35は真空容器31に冷却水孔32を開口する過程、3
6は冷却水孔32の内壁に銅薄膜33を形成する過程、
37は真空容器31を切断する過程であり、図3に示す
ような真空容器31が得られる。過程36において、冷
却水孔32に硫酸銅(CuSO4)溶液34を満たす
と、イオン化傾向の大小により、アルミニウムは溶解し
てイオンとなり、逆に銅イオンはアルミニウム表面に金
属銅として析出する。
FIG. 4 is a view for explaining a method of forming a copper thin film 33 on the surface of the cooling water hole 32 of the vacuum container 31 by electroless plating in this embodiment. In FIG.
35 is a process of opening the cooling water hole 32 in the vacuum container 31;
6 is a process of forming the copper thin film 33 on the inner wall of the cooling water hole 32,
37 is a process of cutting the vacuum container 31, and the vacuum container 31 as shown in FIG. 3 is obtained. In step 36, when the cooling water hole 32 is filled with the copper sulfate (CuSO 4 ) solution 34, aluminum is dissolved into ions due to the magnitude of the ionization tendency, and conversely copper ions are deposited as metallic copper on the aluminum surface.

【0021】このように、無電解メッキ処理によって、
真空容器31の冷却水孔32表面に均一に銅薄膜33を
容易に形成することができる。このため、どのように曲
がった冷却水孔32の表面においても容易に、短時間で
銅薄膜を形成することができる。
As described above, by the electroless plating treatment,
The copper thin film 33 can be easily and uniformly formed on the surface of the cooling water hole 32 of the vacuum container 31. Therefore, the copper thin film can be easily formed in a short time on any curved surface of the cooling water hole 32.

【0022】なお、真空容器31はアルミニウム製であ
るが、アルミニウム合金製でもよい。
Although the vacuum container 31 is made of aluminum, it may be made of aluminum alloy.

【0023】また、ここでは無電解メッキ法で、銅薄膜
33を形成しているが、ニッケル、亜鉛薄膜でもよい。
Although the copper thin film 33 is formed by electroless plating here, it may be a nickel or zinc thin film.

【0024】[0024]

【発明の効果】本発明の真空容器によれば、陽極酸化と
封孔処理によって、真空容器の冷却水孔の表面に均一に
耐食性の強い、アルミナ膜を容易に形成することができ
るため、どのように曲がった冷却水孔の表面においても
容易に、短時間でアルミナ膜を形成することができる。
EFFECTS OF THE INVENTION According to the vacuum container of the present invention, it is possible to easily form an alumina film having high corrosion resistance uniformly on the surface of the cooling water holes of the vacuum container by anodizing and sealing treatment. The alumina film can be easily formed in a short time even on the curved surface of the cooling water hole.

【0025】また、真空容器によれば、無電解メッキ法
によって、真空容器の冷却水孔の表面に均一に銅薄膜を
容易に形成することができるため、どのように曲がった
冷却水孔の表面においても容易に、短時間で銅薄膜を形
成することができる。
Further, according to the vacuum container, a copper thin film can be easily and uniformly formed on the surface of the cooling water hole of the vacuum container by the electroless plating method. Also in this case, the copper thin film can be easily formed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における真空容器の断面
FIG. 1 is a sectional view of a vacuum container according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における真空容器の冷却
水孔の表面に陽極酸化法でアルミナ膜を形成する方法を
説明するための図
FIG. 2 is a view for explaining a method of forming an alumina film on the surface of cooling water holes of a vacuum container by the anodizing method in the first embodiment of the present invention.

【図3】本発明の第2の実施例における真空容器の断面
FIG. 3 is a sectional view of a vacuum container according to a second embodiment of the present invention.

【図4】本発明の第2の実施例における真空容器の冷却
水孔の表面に無電解メッキ法でで銅薄膜を形成する方法
を説明する図
FIG. 4 is a diagram illustrating a method of forming a copper thin film on the surface of a cooling water hole of a vacuum container by an electroless plating method according to a second embodiment of the present invention.

【図5】従来の真空容器の断面図FIG. 5 is a sectional view of a conventional vacuum container.

【符号の説明】[Explanation of symbols]

11 アルミニウム製の真空容器 12 冷却水孔 13 アルミナ膜 15 真空容器11に冷却水孔12を開口する過程 16 冷却水孔12の表面にポーラス型のアルミナ膜1
3を形成する過程 17 ポーラス型のアルミナ膜13を封孔する過程 18 真空容器11を切断する過程 19 硫酸 20 鉛 21 直流電源 22 沸騰水
11 Aluminum Vacuum Container 12 Cooling Water Hole 13 Alumina Film 15 Process of Opening Cooling Water Hole 12 in Vacuum Container 11 16 Porous Alumina Film 1 on the Surface of Cooling Water Hole 12
Step 3 of forming 3 17 Step of sealing the porous alumina film 13 18 Step of cutting the vacuum container 11 19 Sulfuric acid 20 Lead 21 DC power source 22 Boiling water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/316 T ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/316 T

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム製の真空容器の冷却水孔の
表面に陽極酸化法でポーラス型のアルミニウム酸化膜を
形成し、前記アルミニウム酸化膜に封孔処理を行うこと
を特徴とする配管の製造方法。
1. A method of manufacturing a pipe, characterized in that a porous aluminum oxide film is formed on a surface of a cooling water hole of an aluminum vacuum container by an anodic oxidation method, and the aluminum oxide film is sealed. .
【請求項2】 アルミニウム製の真空容器の冷却水孔の
表面に無電解メッキ法で銅、ニッケル、亜鉛薄膜を形成
することを特徴とする配管の製造方法。
2. A method of manufacturing a pipe, wherein a copper, nickel, and zinc thin film is formed on a surface of a cooling water hole of an aluminum vacuum container by an electroless plating method.
JP13869194A 1994-06-21 1994-06-21 Production of piping Pending JPH083754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13869194A JPH083754A (en) 1994-06-21 1994-06-21 Production of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13869194A JPH083754A (en) 1994-06-21 1994-06-21 Production of piping

Publications (1)

Publication Number Publication Date
JPH083754A true JPH083754A (en) 1996-01-09

Family

ID=15227868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13869194A Pending JPH083754A (en) 1994-06-21 1994-06-21 Production of piping

Country Status (1)

Country Link
JP (1) JPH083754A (en)

Similar Documents

Publication Publication Date Title
JP6004181B2 (en) Anodized film and method for producing the same
US4420367A (en) Method for etching a recrystallized aluminum foil for electrolytic capacitors
JPH05144680A (en) Electrolytic capacitor having cathode element wherein noble metal /base metal are commonly deposited and manufacture thereof
KR840003702A (en) Electrode coated with lead or lead alloy and its preparation
WO1986004618A1 (en) Process for forming composite aluminum film
JP2018090897A (en) Anodic oxide film and method for producing the same
US6048646A (en) Method for treating copper current collectors for Li-ion and/or Li-ion polymer batteries
WO2020177223A1 (en) Preparation method for calcium salt-based magnesium alloy surface corrosion-resistant self-repairing coating
CN103320799B (en) Method for restraining secondary electron yield on silver coating surface of microwave component
JPS5948876B2 (en) Heat sink surface treatment method
JPH083754A (en) Production of piping
US3007993A (en) Electrodes and cells containing them
JP3729013B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS5815550B2 (en) Method for manufacturing coated lead dioxide electrode
US6338196B1 (en) Method of forming heat sinks having fully anodized surfaces
JP2005163096A5 (en)
JP3566023B2 (en) Electrode for fluorine-containing liquid electrolysis
Saubestre Electroplating on Certain Transition Metals:(Groups IV, V, VI)
US4207149A (en) Gold electroplating solutions and processes
JP4252549B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
US2197632A (en) Electrical rectifier
JPH0421000B2 (en)
CN116497410A (en) Stainless steel soaking plate processing method and soaking plate
JPH09324299A (en) Bottomed cylindrical body, its production and device therefor
CN114214671A (en) Method for eliminating gas retained in part groove cavity in electrochemical process