JPH083733A - Production of thin film and device therefor - Google Patents

Production of thin film and device therefor

Info

Publication number
JPH083733A
JPH083733A JP13429094A JP13429094A JPH083733A JP H083733 A JPH083733 A JP H083733A JP 13429094 A JP13429094 A JP 13429094A JP 13429094 A JP13429094 A JP 13429094A JP H083733 A JPH083733 A JP H083733A
Authority
JP
Japan
Prior art keywords
thin film
vacuum container
voltage
substrate
evaporation crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13429094A
Other languages
Japanese (ja)
Inventor
Koji Takei
弘次 武井
Masakatsu Senda
正勝 千田
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13429094A priority Critical patent/JPH083733A/en
Publication of JPH083733A publication Critical patent/JPH083733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce the cost of production while adopting an ion accelerating structure. CONSTITUTION:Film formation is carried out while impressing voltage for accelerating ions between an evaporating crucible 2 and a vacuum vessel 1 for vapor deposition by heating with electron beams. By this method, ions are accelerated and a thin film is produced on a substrate 5 without insulating a substrate holding mechanism 6 from the vacuum vessel 1. The attachment structure of the substrate holding mechanism 6 can be simplified and the objective thin film having more satisfactory crystallinity is produced as compared with the conventional vacuum deposition method while reducing the cost of production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子ビーム加熱蒸着に
よる薄膜製造において、結晶性の良好な薄膜を製造する
ための薄膜製造方法および薄膜製造装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus for manufacturing a thin film having good crystallinity in thin film manufacturing by electron beam heating vapor deposition.

【0002】[0002]

【従来の技術】電子ビーム加熱蒸着法は金属、半導体、
絶縁体等、原料の種類を問わず多種多様の薄膜を製造で
きるために広範囲に利用されている。この種の従来の薄
膜製造装置を図4によって説明する。
2. Description of the Related Art Electron beam heating vapor deposition is used for metals, semiconductors,
It is widely used because a wide variety of thin films can be produced regardless of the type of raw material such as an insulator. A conventional thin film manufacturing apparatus of this type will be described with reference to FIG.

【0003】図4は電子ビーム加熱蒸着型の従来の薄膜
製造装置を示す構成図で、同図において、1は真空容
器、2は蒸発原料Aを保持するための蒸発ルツボ、3は
電子ビームを発生する電子銃、4は前記電子ビーム3に
給電すると共に電子ビームを加速する高圧電源としての
電子銃用電源である。この電子銃用電源4は数キロボル
ト〜十数キロボルトの電圧を印加することができるよう
に構成されている。
FIG. 4 is a block diagram showing an electron beam heating vapor deposition type conventional thin film manufacturing apparatus. In FIG. 4, 1 is a vacuum container, 2 is an evaporation crucible for holding an evaporation source A, and 3 is an electron beam. The generating electron guns 4 are power supplies for the electron guns as high-voltage power supplies that supply the electron beams 3 and accelerate the electron beams. The power source 4 for the electron gun is configured to be able to apply a voltage of several kilovolts to ten and several kilovolts.

【0004】5は被薄膜製造物としての基板で、この基
板5は基板保持機構6によって真空容器1内における蒸
発ルツボ2と対向する位置に配置されている。7は真空
容器1内を減圧させるための排気口である。
Reference numeral 5 denotes a substrate as a thin film product to be manufactured, and the substrate 5 is arranged by a substrate holding mechanism 6 at a position facing the evaporation crucible 2 in the vacuum container 1. Reference numeral 7 denotes an exhaust port for reducing the pressure inside the vacuum container 1.

【0005】このように構成された従来の薄膜製造装置
では、高電圧で加速された電子ビームの衝撃により蒸発
ルツボ2内の原料を加熱・蒸発させることによって、こ
の蒸発ルツボ2と対向する位置に配置された基板5上に
薄膜が形成される。
In the conventional thin-film manufacturing apparatus having the above-mentioned structure, the material in the evaporation crucible 2 is heated and evaporated by the impact of the electron beam accelerated by a high voltage, so that the evaporation crucible 2 is located at a position opposite to the evaporation crucible 2. A thin film is formed on the arranged substrate 5.

【0006】このとき、蒸発物の一部がイオン化するこ
と、さらに膜形成時にこれらのイオンを加速して基板に
入射させると堆積膜の結晶性が大幅に改善されることが
知られていた。このため、従来では、基板5と真空容器
1との間に一定の電圧を印加することによりイオンを加
速するという手法が採られていた。
At this time, it has been known that a part of the evaporated material is ionized, and further, the crystallinity of the deposited film is greatly improved by accelerating these ions and making them enter the substrate during film formation. Therefore, conventionally, a method of accelerating the ions by applying a constant voltage between the substrate 5 and the vacuum container 1 has been adopted.

【0007】イオンを加速させる構造の従来の薄膜製造
装置の構成を図5に示す。図5において符号8はイオン
加速用電源である。このイオン加速用電源8は基板5を
保持する基板保持機構6を介して基板5に電気的に接続
されていた。そして、基板保持機構6と真空容器1との
間には絶縁ガイシ9が介装されていた。
FIG. 5 shows the configuration of a conventional thin film manufacturing apparatus having a structure for accelerating ions. In FIG. 5, reference numeral 8 is an ion acceleration power source. The ion acceleration power source 8 was electrically connected to the substrate 5 via the substrate holding mechanism 6 that holds the substrate 5. The insulating insulator 9 was interposed between the substrate holding mechanism 6 and the vacuum container 1.

【0008】[0008]

【発明が解決しようとする課題】しかるに、基板5に電
圧を印加するためには基板保持機構6と真空容器1とが
予め電気的に絶縁されている必要があるため、基板温度
制御装置や基板搬送装置等を組み込むに当たって装置が
複雑になってしまう。これは、基板の加熱、回転、移送
等の機構を基板保持機構6に構成するに当たり、基板5
と同電位になる部材は全て真空容器1に対して絶縁しな
ければならないからである。このため、製造コストが大
幅に上昇するという欠点があった。
However, in order to apply a voltage to the substrate 5, the substrate holding mechanism 6 and the vacuum container 1 need to be electrically insulated in advance. The device becomes complicated when a carrier device or the like is incorporated. This is to configure the substrate holding mechanism 6 with a mechanism for heating, rotating, transferring, etc. of the substrate.
This is because all the members having the same electric potential must be insulated from the vacuum container 1. Therefore, there is a drawback that the manufacturing cost is significantly increased.

【0009】さらに、蒸発物が導電性物質である場合に
は、その回り込み付着によって絶縁不良が発生し、基板
に電圧を印加できなくなるという障害が頻発するという
欠点もあった。
Further, when the evaporative substance is a conductive substance, there is a drawback that insulation defects are generated due to the wraparound and adhesion of the substance, which often causes a failure that a voltage cannot be applied to the substrate.

【0010】本発明はこのような問題点を解消するため
になされたもので、イオンを加速する構成を採ったとし
ても製造コストを低く抑えられ、しかも、絶縁不良障害
を回避できるようにすることを目的とする。
The present invention has been made in order to solve such a problem, and it is possible to keep the manufacturing cost low even if the structure for accelerating the ions is adopted, and to avoid the faulty insulation. With the goal.

【0011】[0011]

【課題を解決するための手段】本発明に係る薄膜製造方
法は、蒸発ルツボと真空容器との間にイオン加速用電圧
を印加しながら膜形成を行うものである。
The thin film manufacturing method according to the present invention forms a film while applying an ion acceleration voltage between the evaporation crucible and the vacuum container.

【0012】本発明に係る薄膜製造装置は、蒸発ルツボ
を真空容器とは電気的に絶縁し、この蒸発ルツボと真空
容器とにこれら両者間にイオン加速用電圧を印加する電
圧発生器を接続したものである。また、別の発明の薄膜
製造装置は、前記薄膜製造装置において、蒸発ルツボの
底部と真空容器との間に絶縁材を介装することによって
これら両者どうしを絶縁したものである。
In the thin film manufacturing apparatus according to the present invention, the evaporation crucible is electrically insulated from the vacuum container, and the evaporation crucible and the vacuum container are connected to a voltage generator for applying an ion acceleration voltage therebetween. It is a thing. A thin film manufacturing apparatus of another invention is the thin film manufacturing apparatus of the above thin film manufacturing apparatus, wherein an insulating material is interposed between the bottom of the evaporation crucible and the vacuum container to insulate the two from each other.

【0013】[0013]

【作用】本発明によれば、被薄膜製造物を保持する保持
機構を真空容器に対して絶縁させなくてもイオンを加速
させて薄膜を製造できる。また、蒸発ルツボの底部側に
は蒸発物が飛散し難いので、蒸発ルツボと真空容器との
間に介装された絶縁材に蒸発物が付着し難い。
According to the present invention, the thin film can be manufactured by accelerating the ions even if the holding mechanism for holding the thin film product is not insulated from the vacuum container. Further, since the evaporated material is less likely to scatter on the bottom side of the evaporation crucible, the evaporated material is less likely to adhere to the insulating material interposed between the evaporation crucible and the vacuum container.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1ないし図3に
よって詳細に説明する。図1は本発明に係る薄膜製造方
法を実施するに当たり使用する薄膜製造装置の構成図、
図2は薄膜製造装置の要部を拡大して示す斜視図、図3
は本発明に係る薄膜製造方法によって製造したコバルト
・クロム薄膜の(022)面に対するX線回析強度とル
ツボ電圧との関係を示すグラフである。これらの図にお
いて前記図4および図5で説明したものと同一もしくは
同等部材については、同一符号を付し詳細な説明は省略
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a configuration diagram of a thin film manufacturing apparatus used for carrying out the thin film manufacturing method according to the present invention,
2 is an enlarged perspective view showing a main part of the thin film manufacturing apparatus, and FIG.
3 is a graph showing the relationship between the X-ray diffraction intensity and the crucible voltage for the (022) plane of the cobalt-chromium thin film manufactured by the thin film manufacturing method according to the present invention. In these figures, the same or equivalent members as those described in FIGS. 4 and 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0015】図1〜図3において、符号11はイオン加
速用電源で、このイオン加速用電源11は、蒸発ルツボ
2と真空容器1とに接続され、これら両者の間に一定の
電圧を印加するように構成されている。なお、電圧につ
いては後述する。
1 to 3, reference numeral 11 denotes an ion acceleration power source, which is connected to the evaporation crucible 2 and the vacuum container 1 and applies a constant voltage between them. Is configured. The voltage will be described later.

【0016】図2において符号12は電子ビーム偏向用
磁石で、これは電子銃3の構成部品である。13は蒸発
ルツボ2に電圧を印加するための電極である。この電極
13は本実施例では2本設けられており、その上端に蒸
発ルツボ2が接続されている。そして、この電極13の
下部は、真空容器1の底部となる真空フランジ14を貫
通して真空容器1外に導出され、前記イオン加速用電源
11に接続されている。
In FIG. 2, reference numeral 12 is an electron beam deflecting magnet, which is a component of the electron gun 3. Reference numeral 13 is an electrode for applying a voltage to the evaporation crucible 2. In this embodiment, two electrodes 13 are provided, and the evaporation crucible 2 is connected to the upper end thereof. The lower part of the electrode 13 penetrates the vacuum flange 14 that is the bottom of the vacuum container 1 and is led out of the vacuum container 1 to be connected to the ion acceleration power supply 11.

【0017】また、この電極13が真空フランジ14を
貫通する部分には、電極13の外面と真空フランジ14
との間に位置して絶縁ガイシ15が介装されている。さ
らに、本実施例では、この電極13は蒸発ルツボ2に冷
却水を流すための冷却水導入管を兼ねている。
The outer surface of the electrode 13 and the vacuum flange 14 are provided at the portion where the electrode 13 penetrates the vacuum flange 14.
An insulating insulator 15 is interposed between and. Further, in this embodiment, the electrode 13 also serves as a cooling water introducing pipe for flowing cooling water to the evaporation crucible 2.

【0018】なお、基板5を真空容器1内に保持する基
板保持機構6は、真空容器1とは同電位になっている。
The substrate holding mechanism 6 for holding the substrate 5 in the vacuum container 1 has the same potential as the vacuum container 1.

【0019】次に、上述したように構成された薄膜製造
装置を用いて本発明に係る薄膜製造方法を説明する。先
ず、基板保持機構6に基板5を保持させると共に蒸発ル
ツボ2内に蒸発原料Aを装填した状態で真空容器1内を
所定の圧力に減圧させる。そして、電子銃用電源4を用
いて蒸発ルツボ2と電子銃3との間に高電圧を印加す
る。このとき、電子銃3が発する電子ビームは、この高
電圧により加速されると共に電子ビーム偏向用磁石12
が発する磁界の作用で偏向され、蒸発ルツボ2に配置さ
れた蒸発原料に衝突する。これにより蒸発ルツボ2内の
原料は加熱され、蒸発するようになる。
Next, a thin film manufacturing method according to the present invention will be described using the thin film manufacturing apparatus configured as described above. First, the substrate holding mechanism 6 holds the substrate 5 and the inside of the vacuum container 1 is depressurized to a predetermined pressure while the evaporation raw material A is loaded in the evaporation crucible 2. Then, a high voltage is applied between the evaporation crucible 2 and the electron gun 3 using the electron gun power source 4. At this time, the electron beam emitted by the electron gun 3 is accelerated by this high voltage, and the electron beam deflection magnet 12
Is deflected by the action of the magnetic field generated by the gas and collides with the evaporation raw material arranged in the evaporation crucible 2. As a result, the raw material in the evaporation crucible 2 is heated and evaporated.

【0020】一方、この操作とは別に、イオン加速用電
源11を用いて真空容器1と蒸発ルツボ2との間に一定
の電圧を印加する。その結果、蒸発物に含まれるイオン
は真空容器1と蒸発ルツボ2の間に印加された電圧の値
に応じて加速され、基板5に到達する。
On the other hand, apart from this operation, a constant voltage is applied between the vacuum container 1 and the evaporation crucible 2 by using the ion acceleration power source 11. As a result, the ions contained in the evaporated material are accelerated according to the value of the voltage applied between the vacuum container 1 and the evaporation crucible 2 and reach the substrate 5.

【0021】したがって、基板5に電圧を印加すること
なく蒸発物に含まれるイオンを加速することができる。
すなわち、基板保持機構6を真空容器1に対して絶縁さ
せなくてもイオンを加速させて薄膜を製造することがで
きる。
Therefore, the ions contained in the evaporated material can be accelerated without applying a voltage to the substrate 5.
That is, the thin film can be produced by accelerating the ions without insulating the substrate holding mechanism 6 from the vacuum container 1.

【0022】図3は本実施例の薄膜製造装置によって製
造したコバルト・クロム合金薄膜(Co80 Cr2
0) の(002)面に対するX線回析強度と蒸発ルツ
ボ2に印加した電圧(ルツボ電圧)との関係を示したグ
ラフである。このとき、電子銃3に印加した電圧および
電流は4KV,200mAで一定に保った。また、基板5の
材質は石英ガラスで、真空容器1とは導通状態のステン
レス製ホルダ(基板保持機構6)によって保持した。
FIG. 3 shows a cobalt-chromium alloy thin film (Co80 Cr2) manufactured by the thin film manufacturing apparatus of this embodiment.
3 is a graph showing the relationship between the X-ray diffraction intensity for the (002) plane of (0) and the voltage applied to the evaporation crucible 2 (crucible voltage). At this time, the voltage and current applied to the electron gun 3 were kept constant at 4 KV and 200 mA. The substrate 5 was made of quartz glass and held by a stainless steel holder (substrate holding mechanism 6) in electrical connection with the vacuum container 1.

【0023】膜形成時の真空度は2×10-7Torr、堆積
速度は毎分30nm、基板温度は25℃とし、膜厚250
nmのコバルト・クロム合金薄膜を製造した。図3には、
適度なルツボ電圧を印加することによりX線回析強度が
顕著に増大することが示されている。ルツボ電圧を約1
KVに設定した場合、X線回析強度はルツボに電圧を印加
しない場合に比べて約15倍にまで増大した。なお、特
定のルツボ電圧(本実施例においては約1KV)において
薄膜の結晶性が顕著に改善されるという現象は、基板に
電圧を印加する従来法においても見られるものであり、
適度なイオン加速電圧のもとで結晶性が最も顕著に改善
され得ることを示している。この現象は次のように理解
されている。
When forming the film, the degree of vacuum is 2 × 10 −7 Torr, the deposition rate is 30 nm / min, the substrate temperature is 25 ° C., and the film thickness is 250.
A cobalt-chromium alloy thin film of nm was manufactured. In Figure 3,
It has been shown that the X-ray diffraction intensity remarkably increases by applying an appropriate crucible voltage. Crucible voltage about 1
When set to KV, the X-ray diffraction intensity increased up to about 15 times as compared with the case where no voltage was applied to the crucible. The phenomenon that the crystallinity of the thin film is remarkably improved at a specific crucible voltage (about 1 KV in this embodiment) is also seen in the conventional method of applying a voltage to the substrate,
It is shown that the crystallinity can be most significantly improved under a moderate ion acceleration voltage. This phenomenon is understood as follows.

【0024】すなわち、加速されたイオンが堆積膜面に
入射したときの作用として、 (1)表面に付着する不純物の除去 (2)イオンが薄膜結晶内に潜り込むことによる原子配
列規則度の低下 がある。ここで、(1)の作用はイオン加速電圧が大き
いほど強く、したがってイオン加速電圧の増加と共に結
晶性が向上するという現象をもたらす。しかし、イオン
加速電圧があまりに大きくなると、(2)の作用がより
強く働くようになり、今度はイオン加速電圧の増加と共
に結晶性が低下するようになる。こうして、特定のイオ
ン加速電圧のもとで結晶性が最も顕著に改善されるとい
う現象が生じるわけである。
That is, when the accelerated ions are incident on the surface of the deposited film, (1) removal of impurities adhering to the surface (2) reduction of the atomic arrangement regularity due to the ions sneaking into the thin film crystal is there. Here, the action of (1) is stronger as the ion acceleration voltage is higher, and thus brings about a phenomenon that the crystallinity is improved as the ion acceleration voltage is increased. However, when the ion accelerating voltage becomes too large, the action of (2) becomes stronger, and this time the crystallinity decreases as the ion accelerating voltage increases. Thus, the phenomenon that the crystallinity is most remarkably improved under a specific ion acceleration voltage occurs.

【0025】このように、本実施例が、基板に電圧を印
加して膜形成を行う従来の方法と同様に、顕著なイオン
加速機能を有し、その結果として薄膜の結晶性改善に顕
著な効果をもつことは明らかである。
As described above, this embodiment has a remarkable ion accelerating function as in the conventional method of forming a film by applying a voltage to the substrate, and as a result, it is remarkable in improving the crystallinity of the thin film. It has obvious effects.

【0026】また、従来法では基板に電圧を印加するた
めに基板保持機構と真空容器とが絶縁材を介して機械的
に接続されていた。しかし、蒸発物の一部がこの絶縁材
表面に回り込み付着するために、蒸発物が導電性物質で
ある場合には数回の蒸着操作で基板保持部材と真空容器
とが電気的に導通状態となってしまい、基板に電圧を印
加できなくなった。これに対し、本発明の手法を採る
と、基板保持部材6が真空容器1と同電位であること
と、真空容器1と蒸発ルツボ2とを電気的に絶縁してい
る絶縁ガイシ15は蒸発物が飛散する方向とは全く逆の
位置に設置された構造であることにより、少なくとも5
0回以上の繰り返し蒸着操作後もなんら絶縁不良障害を
起こすことなく、正常に動作した。
Further, in the conventional method, the substrate holding mechanism and the vacuum container are mechanically connected via an insulating material in order to apply a voltage to the substrate. However, since a part of the vaporized material goes around and adheres to the surface of the insulating material, when the vaporized material is a conductive substance, the substrate holding member and the vacuum container are brought into an electrically conductive state by several vapor deposition operations. It became impossible to apply voltage to the substrate. On the other hand, when the method of the present invention is adopted, the substrate holding member 6 has the same potential as the vacuum container 1, and the insulating insulator 15 that electrically insulates the vacuum container 1 and the evaporation crucible 2 is an evaporated material. At least 5 due to the structure installed in the position completely opposite to the direction in which
It operated normally without any failure of insulation failure even after repeated vapor deposition operations zero or more times.

【0027】[0027]

【発明の効果】以上説明したように本発明に係る薄膜製
造方法は、蒸発ルツボと真空容器との間にイオン加速用
電圧を印加しながら膜形成を行うものであり、本発明に
係る薄膜製造装置は、蒸発ルツボを真空容器とは電気的
に絶縁し、この蒸発ルツボと真空容器とにこれら両者間
にイオン加速用電圧を印加する電圧発生器を接続したも
のであるため、被薄膜製造物を保持する保持機構を真空
容器に対して絶縁させなくてもイオンを加速させて薄膜
を製造できる。
As described above, the thin film manufacturing method according to the present invention forms a film while applying an ion acceleration voltage between the evaporation crucible and the vacuum container. Since the apparatus electrically isolates the evaporation crucible from the vacuum container and connects the evaporation crucible and the vacuum container with a voltage generator for applying an ion acceleration voltage between them, the thin film product The thin film can be manufactured by accelerating the ions without insulating the holding mechanism for holding the film from the vacuum container.

【0028】したがって、基板保持機構を真空容器に取
付けるに当たり取付部が単純な構造で済むから、製造コ
ストを低く抑えながらも通常の真空蒸着法に比べて結晶
性の良好な薄膜を製造することができる。
Therefore, when the substrate holding mechanism is attached to the vacuum container, the attachment portion need only have a simple structure. Therefore, it is possible to produce a thin film having better crystallinity than the conventional vacuum vapor deposition method while keeping the production cost low. it can.

【0029】また、蒸発ルツボの底部と真空容器との間
に絶縁材を介装してこれら両者どうしを絶縁すると、蒸
発ルツボの底部側には蒸発物が飛散し難いので、蒸発ル
ツボと真空容器との間に介装された絶縁材に蒸発物が付
着し難くなる。このため、蒸発物の回り込み付着による
絶縁不良障害も発生し難い。
If an insulating material is interposed between the bottom of the evaporation crucible and the vacuum container to insulate the two from each other, it is difficult for the evaporated material to scatter on the bottom side of the evaporation crucible, so the evaporation crucible and the vacuum container. It becomes difficult for the vaporized material to adhere to the insulating material interposed between and. For this reason, it is difficult for an insulation failure to occur due to the wraparound of the evaporated material.

【0030】したがって本発明によれば、特性の良好な
磁気記録用薄膜テープの製造や、耐久性の高いLSI配
線電極膜の形成等の応用分野において、簡便かつ実用的
な薄膜形成手段を提供することができる。
Therefore, according to the present invention, a simple and practical thin film forming means is provided in the application fields such as the production of a magnetic recording thin film tape having excellent characteristics and the formation of a highly durable LSI wiring electrode film. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る薄膜製造方法を実施するに当た
り使用する薄膜製造装置の構成図である。
FIG. 1 is a configuration diagram of a thin film manufacturing apparatus used for carrying out a thin film manufacturing method according to the present invention.

【図2】 薄膜製造装置の要部を拡大して示す斜視図で
ある。
FIG. 2 is an enlarged perspective view showing a main part of a thin film manufacturing apparatus.

【図3】 本発明に係る薄膜製造方法によって製造した
コバルト・クロム薄膜の(022)面に対するX線回析
強度とルツボ電圧との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the X-ray diffraction intensity and the crucible voltage with respect to the (022) plane of the cobalt-chromium thin film manufactured by the thin film manufacturing method according to the present invention.

【図4】 電子ビーム加熱蒸着型の従来の薄膜製造装置
を示す構成図である。
FIG. 4 is a block diagram showing an electron beam heating vapor deposition type conventional thin film manufacturing apparatus.

【図5】 イオンを加速させる構造の従来の薄膜製造装
置を示す構成図である。
FIG. 5 is a configuration diagram showing a conventional thin film manufacturing apparatus having a structure for accelerating ions.

【符号の説明】[Explanation of symbols]

1…真空容器、2…蒸発ルツボ、3…電子銃、5…基
板、6…基板保持機構、11…イオン加速用電源、13
…電極、14…真空フランジ、15…絶縁ガイシ、A…
蒸発原料。
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Evaporating crucible, 3 ... Electron gun, 5 ... Substrate, 6 ... Substrate holding mechanism, 11 ... Ion acceleration power supply, 13
… Electrodes, 14… Vacuum flanges, 15… Insulation insulators, A…
Evaporative raw material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子ビーム加熱蒸着による薄膜製造方法
において、蒸発ルツボと真空容器との間にイオン加速用
電圧を印加しながら膜形成を行うことを特徴とする薄膜
製造方法。
1. A method of manufacturing a thin film by electron beam heating vapor deposition, wherein a film is formed while applying an ion acceleration voltage between an evaporation crucible and a vacuum container.
【請求項2】 電子ビーム加熱蒸着による薄膜製造装置
において、蒸発ルツボを真空容器とは電気的に絶縁し、
この蒸発ルツボと真空容器とにこれら両者間にイオン加
速用電圧を印加する電圧発生器を接続したことを特徴と
する薄膜製造装置。
2. A thin film manufacturing apparatus by electron beam heating vapor deposition, wherein an evaporation crucible is electrically insulated from a vacuum container,
A thin-film manufacturing apparatus characterized in that a voltage generator for applying an ion acceleration voltage is connected between the evaporation crucible and the vacuum container.
【請求項3】 請求項2記載の薄膜製造装置において、
蒸発ルツボの底部と真空容器との間に絶縁材を介装する
ことによってこれら両者どうしを絶縁したことを特徴と
する薄膜製造装置。
3. The thin film manufacturing apparatus according to claim 2,
A thin film manufacturing apparatus characterized in that an insulating material is interposed between the bottom of an evaporation crucible and a vacuum container to insulate the two from each other.
JP13429094A 1994-06-16 1994-06-16 Production of thin film and device therefor Pending JPH083733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13429094A JPH083733A (en) 1994-06-16 1994-06-16 Production of thin film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13429094A JPH083733A (en) 1994-06-16 1994-06-16 Production of thin film and device therefor

Publications (1)

Publication Number Publication Date
JPH083733A true JPH083733A (en) 1996-01-09

Family

ID=15124829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13429094A Pending JPH083733A (en) 1994-06-16 1994-06-16 Production of thin film and device therefor

Country Status (1)

Country Link
JP (1) JPH083733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699152B2 (en) 2001-04-18 2004-03-02 Teijin Seiki Co., Ltd. Speed reduction gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699152B2 (en) 2001-04-18 2004-03-02 Teijin Seiki Co., Ltd. Speed reduction gear

Similar Documents

Publication Publication Date Title
US3329601A (en) Apparatus for coating a cathodically biased substrate from plasma of ionized coatingmaterial
US5112466A (en) Apparatus for forming a thin film
US4982696A (en) Apparatus for forming thin film
US4876984A (en) Apparatus for forming a thin film
US4854265A (en) Thin film forming apparatus
JPH0813143A (en) Plasma treatment and treating device
JP2834797B2 (en) Thin film forming equipment
JPH0456761A (en) Thin film forming device
JPH083733A (en) Production of thin film and device therefor
US4966095A (en) Apparatus for forming a thin film
JP2768960B2 (en) Thin film forming equipment
JPH0214426B2 (en)
JP3174313B2 (en) Thin film forming equipment
JPH04221066A (en) Thin film vapor-depositing device
JPS6199670A (en) Ion plating device
JP2774541B2 (en) Thin film forming equipment
JPS616271A (en) Method and device for bias ion plating
JP2812517B2 (en) Ion plating method and apparatus
JPS63192862A (en) Thin film forming device
JPH01177365A (en) Thin film forming device
JPH01177366A (en) Thin film forming device
JPH03291372A (en) Thin film forming device
JPH04247868A (en) Thin film forming device
JPH03271368A (en) Thin film forming device
JPS63192861A (en) Thin film forming device