JPH083582B2 - Driving method for ferroelectric liquid crystal cell - Google Patents

Driving method for ferroelectric liquid crystal cell

Info

Publication number
JPH083582B2
JPH083582B2 JP26991286A JP26991286A JPH083582B2 JP H083582 B2 JPH083582 B2 JP H083582B2 JP 26991286 A JP26991286 A JP 26991286A JP 26991286 A JP26991286 A JP 26991286A JP H083582 B2 JPH083582 B2 JP H083582B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
cell
ferroelectric liquid
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26991286A
Other languages
Japanese (ja)
Other versions
JPS63124036A (en
Inventor
秀行 河岸
豊 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26991286A priority Critical patent/JPH083582B2/en
Publication of JPS63124036A publication Critical patent/JPS63124036A/en
Publication of JPH083582B2 publication Critical patent/JPH083582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディスプレイ等に応用される強誘電性液晶セ
ルの駆動方法に関し、更に詳しくは、長時間放置後の閾
値の差や双安定性の低下の問題が生じない強誘電性液晶
セルの駆動方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for driving a ferroelectric liquid crystal cell applied to a display or the like, and more specifically, to a difference in threshold value or bistability after being left for a long time. The present invention relates to a method for driving a ferroelectric liquid crystal cell, which does not cause the problem of deterioration.

(従来の技術) 従来、液晶を一対の対向電極間に挟持させてなる種々
の液晶セルが提案されているが、DSM(Dynamic Scatter
ing Mode)型の液晶セル以外については、液晶層中のナ
トリウムイオン等のプラスイオンや塩素イオン等のマイ
ナスイオン等の荷電体をコントロールする必要はあまり
認められていない。
(Prior Art) Conventionally, various liquid crystal cells in which a liquid crystal is sandwiched between a pair of opposing electrodes have been proposed. However, DSM (Dynamic Scatter)
ing Mode) type liquid crystal cells, except for positive ions such as sodium ions and negative ions such as chlorine ions in the liquid crystal layer is not required to be controlled.

その理由は、現在普及しているTN(Twisted Nemati
c)型液晶セル〔例えば、M.SchadtとW.Helfrich著、“A
pplied Physics Letters"、Vol.18,No.4(1971.2.1
5)、P.127〜128の“Voltage Dependent Optical Activ
ity of a Twisted Nematic Liquid Crystal"参照〕にお
いては、 (1)過度のイオン流が液晶分子の配列を乱す。
The reason is that TN (Twisted Nemati), which is currently popular.
c) type liquid crystal cell [eg M. Schadt and W. Helfrich, “A
pplied Physics Letters ", Vol.18, No.4 (1971.2.1
5), P.127-128, “Voltage Dependent Optical Activ
In "ity of a Twisted Nematic Liquid Crystal"], (1) excessive ion flow disturbs the alignment of liquid crystal molecules.

(2)液晶材料の耐久性を低下させる。(2) The durability of the liquid crystal material is reduced.

(3)液晶層にかかる電圧の時定数が短くなる。(3) The time constant of the voltage applied to the liquid crystal layer becomes short.

等の影響がイオン等の導電性物質によって引き起される
ことが考えられたが、実際には液晶を適当に精製するこ
とによって液晶の体積抵抗を109Ωcm以上に上げたり、
セルの構成過程で液晶の汚染防止を効果的にする等の手
段により前述の(1)および(2)の問題は十分対応可
能であり、一方駆動方式においては、交流駆動体、リフ
レッシュ、蓄積型が基本となるため、前記(3)の点も
深刻な問題とはならなかったことによる。
It was thought that the effects such as the above might be caused by conductive substances such as ions, but in reality, by appropriately refining the liquid crystal, the volume resistance of the liquid crystal could be increased to 10 9 Ωcm or more,
The above-mentioned problems (1) and (2) can be sufficiently dealt with by means such as effective prevention of liquid crystal contamination in the process of constructing the cell, while the drive system is an AC drive, refresh, storage type. This is because the above point (3) did not become a serious problem because it is the basis.

これに対して、近年世界的に開発が進んでいる強誘電
性液晶セルの場合には、液晶層中のイオン等の荷電粒子
の挙動が、強誘電性液晶セルの特性に重大な影響を与え
ることが明らかにされている。
On the other hand, in the case of a ferroelectric liquid crystal cell that has been developed worldwide in recent years, the behavior of charged particles such as ions in the liquid crystal layer has a significant influence on the characteristics of the ferroelectric liquid crystal cell. It has been revealed.

例えば、クラークとラガヴァル等の提案した強誘電性
液晶セルの構成においては、第4図に示されるように液
晶層内で各液晶分子の双極子の方向が揃い、液晶の自発
分極が生じている。
For example, in the structure of the ferroelectric liquid crystal cell proposed by Clark and Lagavar, the directions of the dipoles of each liquid crystal molecule are aligned in the liquid crystal layer as shown in FIG. 4, and spontaneous polarization of the liquid crystal occurs. .

この自発分極の存在は、強誘電性液晶セルのスイッチ
ング特性の条件であるため、この自発分極による電荷の
片寄りは、SSFLCD(Surface Stabilized Ferroelectric
Liquid Crystal Display)においては不可避なもので
ある。
Since the existence of this spontaneous polarization is a condition for the switching characteristics of the ferroelectric liquid crystal cell, the deviation of the charge due to this spontaneous polarization is caused by the SSFLCD (Surface Stabilized Ferroelectric).
Liquid Crystal Display) is inevitable.

(発明が解決使用としている問題) 以上の如き強誘電性液晶セルにおける液晶分子の自発
分極は必然的なものであるが、この分極電荷の影響によ
って、セルの非駆動時(すなわち、メモリー状態)にお
いて液晶層の双安定性を損なうような変化が生じるとい
う問題があることが判明した。
(Problems to be solved and used by the invention) Spontaneous polarization of liquid crystal molecules in a ferroelectric liquid crystal cell as described above is inevitable, but due to the effect of this polarization charge, the cell is not driven (that is, in a memory state). It was found that there is a problem in that a change that impairs the bistability of the liquid crystal layer occurs.

すなわち、セル内にはITO電極等の透明電極が存在
し、その上に誘電体および配向膜を介して液晶層に接す
る構成が一般的であるが、その場合にメモリー状態(印
加電圧=0)でも、液晶層内には液晶分子の分極電荷に
よって生じる電界が存在して、この電界によって液晶層
内に存在しているイオン性不純物が泳動して、イオンの
不均一な偏在が生じる。このイオンの偏在によって、逆
に液晶分子が拘束を受けるため、液晶分子のスイッチン
グ状態での双安定が乱され、更にはセルのメモリー性自
体の消滅をも誘引するという重大な問題が生じ、現在の
強誘電性液晶セルをディスプレイとして考えた場合大き
な障害となっている。
That is, a structure in which a transparent electrode such as an ITO electrode is present in the cell and is in contact with a liquid crystal layer through a dielectric and an alignment film is generally used, but in that case, a memory state (applied voltage = 0) However, an electric field generated by the polarization charge of the liquid crystal molecules exists in the liquid crystal layer, and the ionic impurities existing in the liquid crystal layer migrate due to the electric field, resulting in uneven distribution of ions. The uneven distribution of the ions, on the contrary, constrains the liquid crystal molecules, disturbing the bistable state of the liquid crystal molecules in the switching state, and further causing a serious problem of erasing the memory property of the cell itself. This is a major obstacle when considering the ferroelectric liquid crystal cell as a display.

従って、強誘電性液晶セルにおいては液晶層内に存在
するイオンによる問題を解決することが要望されてい
る。
Therefore, in the ferroelectric liquid crystal cell, it is desired to solve the problem caused by the ions existing in the liquid crystal layer.

(問題点を解決するための手段) 本発明者は上記の如き従来技術の問題点を解決すべく
鋭意研究の結果、本発明を完成した。
(Means for Solving Problems) The present inventor has completed the present invention as a result of earnest research to solve the above-mentioned problems of the prior art.

すなわち、本発明は、電極および配向膜を有する2枚
の対向した電極基板間に、電界に対して双安定性を有す
る強誘電性液晶層を挟持してなる強誘電性液晶セルにお
いて、該セルの非表示時に液晶分子の自発分極Psによる
反電界に大きさが略等しく且つ方向が反対の電界を外部
から印加することを特徴とする強誘電性液晶セルの駆動
方法である。
That is, the present invention provides a ferroelectric liquid crystal cell in which a ferroelectric liquid crystal layer having bistability against an electric field is sandwiched between two opposing electrode substrates each having an electrode and an alignment film. Is a method of driving a ferroelectric liquid crystal cell, which is characterized in that an electric field whose magnitude is approximately equal to and opposite to a counter electric field due to the spontaneous polarization Ps of liquid crystal molecules is applied from the outside during non-display.

次に本発明を更に詳しく説明する。 Next, the present invention will be described in more detail.

本発明で使用する強誘電性液晶セルは、従来公知のい
ずれの強誘電性液晶セルでもよく、いずれのセルにも本
発明を適用できるものである。
The ferroelectric liquid crystal cell used in the present invention may be any conventionally known ferroelectric liquid crystal cell, and the present invention can be applied to any cell.

すなわち、従来技術で使用される強誘電性液晶は、加
えられる電界に応じて第一の光学的安定状態と第二の光
学的安定状態とのいずれかを取るもの、すなわち、電界
に対して双安定性を有する液晶物質である。
That is, the ferroelectric liquid crystal used in the prior art has one of a first optical stable state and a second optical stable state depending on an applied electric field, that is, a ferroelectric liquid crystal that has a two-dimensional structure with respect to the electric field. It is a liquid crystal substance having stability.

以上の如き双安定性を有する強誘電性液晶としては、
強誘電性を有するカイラルスメクティック液晶が好まし
く、そのうちでは特にカイラルスメクティックC相(Sm
C)またはH相(SmH)の液晶が適している。これら
の強誘電性液晶は、“LE JOURNAL DE PHYSIOUE LETTER
S"36(L−69)1975、「Ferroelectric Liquid Crystal
s」;Applied Physics Letters"36(11)1980、「Submic
ro Second Bistable Electrooptic Switching in Liqui
d Crystals」;“固体物理"16(141)1981「液晶」等に
記載されており、より具体的には、例えば、デシロキシ
ベンジリデン−P′−アミノ−2−メチルブチルシンナ
メート(DOBAMBC)、ヘキシルオキシベンジリデン−
P′−アミノ−2−クロロプロピルシンナメート(HOBA
CPC)および4−o−(2−メチル)−ブチルレゾルシ
リデン−4′−オクチルアニリン(MBRA8)等が挙げら
れる。
As a ferroelectric liquid crystal having bistability as described above,
A chiral smectic liquid crystal having ferroelectricity is preferable, and among them, a chiral smectic C phase (Sm
C * ) or H-phase (SmH * ) liquid crystals are suitable. These ferroelectric liquid crystals are based on the "LE JOURNAL DE PHYSIOUE LETTER
S " 36 (L-69) 1975," Ferroelectric Liquid Crystal
s "; Applied Physics Letters" 36 (11) 1980, "Submic
ro Second Bistable Electrooptic Switching in Liqui
d Crystals ”;“ Solid State Physics ”16 (141) 1981“ Liquid Crystal ”and the like, and more specifically, for example, desiloxybenzylidene-P′-amino-2-methylbutylcinnamate (DOBAMBC), Hexyloxybenzylidene-
P'-amino-2-chloropropyl cinnamate (HOBA
CPC) and 4-o- (2-methyl) -butylresorcylidene-4'-octylaniline (MBRA8).

第5図示の例は、従来技術の強誘電性液晶セルの1例
を模式的に示すものであり、図中の1と1′はIn2O3、S
nO2あるいはITO(Indium−Tin Oxide)等の透明電極が
コートされた基板(例えばガラス板)であり、これらの
一対の基板の少なくとも一方には配向膜(図示なし)が
設けられ、これらの配向膜の間に前記の如き液晶からな
る液晶層2が、基板面に垂直になるように配向したSmC
相の液晶として封入されている。
The fifth example shown schematically shows one example of a ferroelectric liquid crystal cell of the prior art, and 1 and 1'in the figure are In 2 O 3 , S.
A substrate (for example, a glass plate) coated with a transparent electrode such as nO 2 or ITO (Indium-Tin Oxide), and an alignment film (not shown) is provided on at least one of the pair of substrates. A liquid crystal layer 2 made of liquid crystal as described above between the films is oriented to be perpendicular to the substrate surface.
* Enclosed as phase liquid crystal.

太線で示した線3が液晶分子を表わしており、この液
晶分子3はその分子に直交した方向に双極子モーメント
(P⊥)4を有している。
A thick line 3 represents a liquid crystal molecule, and the liquid crystal molecule 3 has a dipole moment (P⊥) 4 in a direction orthogonal to the molecule.

このような強誘電性液晶セルの基板1と1′上の電極
間に一定の閾値以上の電圧を印加すると、液晶分子3の
らせん構造がほどけ、双極子モーメント(P⊥)4がす
べて電界方向に向くように液晶分子3の配向方向を変え
ることができる。
When a voltage above a certain threshold is applied between the electrodes on the substrates 1 and 1'of such a ferroelectric liquid crystal cell, the helical structure of the liquid crystal molecules 3 is unraveled, and the dipole moment (P⊥) 4 is all in the electric field direction. The alignment direction of the liquid crystal molecules 3 can be changed so that the liquid crystal molecules 3 face each other.

液晶分子3は細長い形状を有しており、その長軸方向
と短軸方向で屈折率の異方性を示し、従って、例えば、
基板面の上下に互いにクロスニコルの位置関係に配置し
た偏光子を置けば、電圧印加極性によって光学特性が変
化する液晶光学変調セルとなることは容易に理解され
る。
The liquid crystal molecule 3 has an elongated shape and exhibits anisotropy of refractive index in the major axis direction and the minor axis direction thereof, and therefore, for example,
It is easily understood that a liquid crystal optical modulation cell whose optical characteristics change depending on the polarity of voltage application can be easily obtained by disposing polarizers arranged in a crossed Nicol positional relationship above and below the substrate surface.

更に液晶セルの厚さを充分に薄くした場合(例えば1
μm)には、第6図に示すように電界を印加していない
状態でも液晶分子のらせん構造はほどけ(非らせん構
造)、その双極子モーメントPまたはP′は上向き(4
a)または下向き(4b)のいずれかの状態をとる。この
ようなセルに第6図に示す如く一定の閾値以上の極性の
異なる電界EまたはE′を所定時間付与すると、双極子
モーメントは電界EまたはE′の電界ベクトルに対応し
て上向き4aまたは下向き4bと向きを変え、それに応じて
液晶分子は第1の配向状態5かあるいは第二の配向状態
5′の何れか一方に配向する。このような強誘電性液晶
セルを光学変調セルとして用いることの利点は2つあ
る。
If the liquid crystal cell is made sufficiently thin (for example, 1
As shown in FIG. 6, the helical structure of the liquid crystal molecule is unwound (non-helical structure), and its dipole moment P or P ′ is upward (4 μm).
Take either a) or downward (4b). As shown in FIG. 6, when an electric field E or E'having a polarity different from a certain threshold value is applied to such a cell for a predetermined time, the dipole moment is directed upward 4a or downward depending on the electric field vector of the electric field E or E '. 4b, and the liquid crystal molecules are aligned in either the first alignment state 5 or the second alignment state 5 'accordingly. There are two advantages of using such a ferroelectric liquid crystal cell as an optical modulation cell.

第1には、応答速度が極めて速いこと、第2に液晶分
子の配向が双安定性状態を有することである。第2の点
を例えば第6図によって説明すると、電界Eを印加する
と液晶分子は第1の配向状態5に配向するが、この状態
では電界を切っても安定である。また、逆向きの電界
E′を印加すると、液晶分子は第2の配向状態5′に配
向してその分子の向きを変えるが、やはり電界を切って
もこの状態に留まっている。また、与える電界Eが一定
の閾値を越えない限り、それぞれの配向状態にやはり維
持されている。このような応答速度の速さと、双安定性
が有効に実現されるには、セルとしてできるだけ薄い方
が好ましく、一般的には0.5〜20μm、特に1〜5μm
が適している。この種の強誘電性液晶を用いるマトリッ
クス電極構造を有する強誘電性液晶セルは、例えば、ク
ラークとラガバルにより、米国特許第4367924号明細書
に提案されている。
Firstly, the response speed is extremely fast, and secondly, the alignment of the liquid crystal molecules has a bistable state. Explaining the second point with reference to FIG. 6, for example, the liquid crystal molecules are aligned in the first alignment state 5 when the electric field E is applied, but in this state, it is stable even when the electric field is cut off. When a reverse electric field E'is applied, the liquid crystal molecules are oriented in the second alignment state 5'to change the orientation of the molecules, but they remain in this state even when the electric field is cut off. Further, as long as the applied electric field E does not exceed a certain threshold value, the respective alignment states are also maintained. In order to effectively realize such a high response speed and bistability, it is preferable that the cell is as thin as possible, generally 0.5 to 20 μm, and particularly 1 to 5 μm.
Is suitable. A ferroelectric liquid crystal cell having a matrix electrode structure using a ferroelectric liquid crystal of this kind has been proposed by Clarke and Lagabal in US Pat. No. 4,367,924.

以上は従来公知の強誘電性液晶セルの構成の1例であ
るが、これらの従来の強誘電性液晶セルは前述の如く、
液晶層内に存在するイオンによって種々の問題を生じる
ものであった。
The above is one example of the configuration of a conventionally known ferroelectric liquid crystal cell. However, these conventional ferroelectric liquid crystal cells are as described above.
Ions present in the liquid crystal layer cause various problems.

本発明者はこのような問題点を解決すべく鋭意研究の
結果、セルの非表示時に液晶層内の液晶分子の自発分極
Psによる反電界に大きさが略等しく且つ方向が反対の電
界を印加することによって、イオンの偏在およびそれに
よる液晶分子への悪影響がなくなり、セルを長時間放置
後の閾値の差や液晶分子の双安定性の低下といった従来
技術の問題点が解決されることを知見したものである。
As a result of earnest research aimed at solving such problems, the present inventor has found that the spontaneous polarization of liquid crystal molecules in the liquid crystal layer when the cell is not displayed.
By applying an electric field whose magnitude is approximately equal to and opposite in direction to the counter electric field due to Ps, the uneven distribution of ions and the adverse effect on the liquid crystal molecules are eliminated, and the difference in threshold value after leaving the cell for a long time and the liquid crystal molecule The inventors have found that the problems of the prior art such as the decrease of bistability can be solved.

次に本発明を本発明の実施例を示す添付図面を参照し
て更に具体的に説明する。
Next, the present invention will be described more specifically with reference to the accompanying drawings showing an embodiment of the present invention.

第1図は、本発明の実施例を図解的に示す図である。 FIG. 1 is a diagram schematically showing an embodiment of the present invention.

本発明の駆動方法は、電極12および配向膜13を有する
基板11を上下対向させ、電界印加時の分子軸方向が無電
界時の分子軸方向と略等しい強誘電性液晶層14を挟持し
てなるセルにおいて、外部から電圧V0をセルに印加し
て、液晶分子の自発分極Ps15による反電界16を打ち消す
ことを特徴とする強誘電性液晶セルの駆動方法である。
In the driving method of the present invention, the substrate 12 having the electrode 12 and the alignment film 13 is vertically opposed to each other, and the ferroelectric liquid crystal layer 14 is sandwiched between the direction of the molecular axis when an electric field is applied and the direction of the molecular axis when no electric field is applied. In this cell, a voltage V 0 is externally applied to the cell to cancel the counter electric field 16 due to the spontaneous polarization Ps15 of the liquid crystal molecules, which is a method for driving a ferroelectric liquid crystal cell.

以下、外部から電圧V0を印加したときの各層12〜14の
電界について説明する。
Hereinafter, the electric fields of the layers 12 to 14 when the voltage V 0 is applied from the outside will be described.

今、第2図のように各層の比誘電率を∈、∈およ
び層厚をd1、d2および電界をE1、E2、E3および電束密度
をD1、D2、D3と仮定する。また、自発分極Psの方向は正
電荷が移動した方向と決め、ここでは第2図のように下
から上へとする。この時、Psによる反電界は、上から下
に発生している。また、14の液晶層の誘電率は、自発分
極Psを除き、その他の誘電分極による効果を含むものと
した。このとき、各層の電束密度は次のように表現され
る。
Now, as shown in FIG. 2, the relative permittivity of each layer is ε 1 , ε 2, the layer thickness is d 1 , d 2 and the electric field is E 1 , E 2 , E 3 and the electric flux density is D 1 , D 2 , Assume D 3 . Further, the direction of the spontaneous polarization Ps is determined to be the direction in which the positive charges have moved, and here, from the bottom to the top as shown in FIG. At this time, the demagnetizing field due to Ps is generated from top to bottom. In addition, the dielectric constants of the 14 liquid crystal layers were assumed to include the effects of other dielectric polarizations, except for the spontaneous polarization Ps. At this time, the electric flux density of each layer is expressed as follows.

D1=∈1E1 (1) D2=∈2E2+Ps (2) D3=∈1E3 (3) ここで∈は真空の誘電率である。D 1 = ∈ 01 E 1 (1) D 2 = ∈ 02 E 2 + Ps (2) D 3 = ∈ 01 E 3 (3) where ∈ 0 is the dielectric constant of the vacuum.

電束密度の垂直成分の連続、すなわち、D1=D2=D3
り、式(1)〜(3)は次のようになる。
From the continuation of the vertical component of the electric flux density, that is, D 1 = D 2 = D 3 , equations (1) to (3) are as follows.

1E1=∈2E2+Ps (4) E1=E3 (5) 一方、外部から電圧V0を印加したことより、次式が成
り立つ。
Ε 0 ε 1 E 1 = ε 0 ε 2 E 2 + Ps (4) E 1 = E 3 (5) On the other hand, since the voltage V 0 is applied from the outside, the following formula is established.

E3d1+E2d2+E1d1=V0 (6) 但し、V0は上電極から下電極への電位差で、第2図に
示したV0の方向を正とした。
E 3 d 1 + E 2 d 2 + E 1 d 1 = V 0 (6) However, V 0 is the potential difference from the upper electrode to the lower electrode, and the direction of V 0 shown in FIG. 2 is positive.

(4)〜(6)式より各層の電界は次式のようにな
る。
From the expressions (4) to (6), the electric field of each layer is as follows.

従って、(8)式により、外部より なる電圧を印加することによって、自発分極Psによる反
電界は打ち消される。この時、電圧は高電位側から低電
位側への方向がPsの方向と一致するように印加する。
今、例えば とすると V0=0.45 [V] の電圧を印加すればよい。
Therefore, from equation (8), By applying this voltage, the demagnetizing field due to the spontaneous polarization Ps is canceled. At this time, the voltage is applied so that the direction from the high potential side to the low potential side matches the Ps direction.
Now for example Then, a voltage of V 0 = 0.45 [V] may be applied.

これに対して上電極と下電極を短絡した場合の液晶層
の電界E2は、(8)式においてV0=0とすれば、 となる。今、例えば、(9)式の条件の他に、 d2=1×10-6[m] ∈=5 とすれば、 E2=−3.4×105[V/m] (11) の電界が自発分極に起因して液晶層内部に存在する。
On the other hand, the electric field E 2 of the liquid crystal layer when the upper electrode and the lower electrode are short-circuited is given by V 0 = 0 in the equation (8), Becomes Now, for example, if d 2 = 1 × 10 −6 [m] ∈ 2 = 5 in addition to the condition of equation (9), then E 2 = −3.4 × 10 5 [V / m] (11) An electric field exists inside the liquid crystal layer due to spontaneous polarization.

上述のように液晶層内部に電界があると、様々な問題
を引き起こす。特に、長時間放置した場合に常に同じ方
向に電界があるために、イオンの動きが無視できない。
同方向の電界によって液晶層中に含まれるプラスイオン
とマイナスイオンとは、電界によってそれぞれ反対の境
界方向へ移動し分離する。このプラスイオンとマイナス
イオンとの分離によって発生する電界によって、Psによ
る反電界は次第に打ち消されるが、このようなイオンの
分離は、液晶層中のイオンがすべて液晶配向膜境界に移
動するか、Psによる反電界が完全に打ち消されるまで続
く。従って長時間放置すると境界面にプラスまたはマイ
ナスのイオンが貼りついた状態になる。
As described above, the electric field inside the liquid crystal layer causes various problems. In particular, when left for a long time, since the electric field always exists in the same direction, the movement of ions cannot be ignored.
Due to the electric field in the same direction, the positive ions and the negative ions contained in the liquid crystal layer move toward the opposite boundary directions and are separated by the electric field. The electric field generated by the separation of the positive ions and the negative ions gradually cancels the de-electric field due to Ps.However, such separation of the ions is caused by the fact that all the ions in the liquid crystal layer move to the liquid crystal alignment film boundary or Ps. It continues until the de-electric field due to is completely canceled. Therefore, if left for a long time, positive or negative ions are attached to the boundary surface.

このため、長時間放置した後に液晶分子の第一の安定
状態と第二の安定状態との間でスイッチングをする時に
閾値に差がでる。境界面に貼りついたイオンによって内
部に生じる電界をEion、外部電圧による電圧をEexとす
ると、同じ電圧を印加したとしても、印加方向によって
一方はEex+Eion、他方はEex−Eionなる電界となる。つ
まり、2Eion分の電界に相当する外部電圧が閾値の差と
なって現れる。このように第一の安定状態から第二の安
定状態への液晶分子の反転と、第二の安定状態から第一
の安定状態への液晶分子の反転に関して閾値に差が生
じ、しかもその差が放置時間によって変化すると、強誘
電性液晶セルの駆動にとって大きな障害となる。なぜな
ら、液晶層の閾値は本来パルス幅ΔTと電圧Vに依存
し、クロストークによる画素の反転を防ぐために、その
閾値Vthと関係した大きさの適当な駆動法をとる必要が
あるからである。また、特にEionが大きな時には液晶分
子の双安定は実現できなくなる。
Therefore, there is a difference in the threshold value when switching between the first stable state and the second stable state of the liquid crystal molecules after leaving for a long time. Assuming that the electric field generated inside by the ions attached to the boundary surface is Eion and the voltage due to the external voltage is Eex, even if the same voltage is applied, one becomes Eex + Eion and the other becomes Eex−Eion depending on the application direction. That is, the external voltage corresponding to the electric field of 2 Eion appears as a difference in threshold. In this way, there is a difference in threshold between the inversion of the liquid crystal molecules from the first stable state to the second stable state and the inversion of the liquid crystal molecules from the second stable state to the first stable state. If it changes depending on the standing time, it becomes a great obstacle to driving the ferroelectric liquid crystal cell. This is because the threshold value of the liquid crystal layer originally depends on the pulse width ΔT and the voltage V, and in order to prevent pixel inversion due to crosstalk, it is necessary to adopt an appropriate driving method having a magnitude related to the threshold value Vth. In addition, especially when Eion is large, the bistability of liquid crystal molecules cannot be realized.

以上説明したように、セルに対する電気的対処には、
大別して(1)上下電極の開放、(2)上下電極の短絡
(V0=0)、(3)上下電極への電圧印加(V0≠0)の
3種類があるが、(1)および(2)では、Psによる反
電界のために液晶層の内部に電界が生じ問題が生じる。
ここで(1)および(2)は従来それほど意識せずに実
施されている。一方(3)は本発明に該当する。特にV0
=2d1Ps/∈程度の電圧をPsによる反電界を打ち消
すように印加することによって、セルの長時間放置後の
閾値の差や双安定性の低下の問題を改善することができ
た。
As explained above, the electrical measures for the cell are:
There are three main types: (1) open upper and lower electrodes, (2) short circuit between upper and lower electrodes (V 0 = 0), and (3) apply voltage to upper and lower electrodes (V 0 ≠ 0). In the case of (2), an electric field is generated inside the liquid crystal layer due to a counter electric field due to Ps, which causes a problem.
Here, (1) and (2) have heretofore been carried out without much consideration. On the other hand, (3) corresponds to the present invention. Especially V 0
By applying a voltage of about = 2d 1 Ps / ∈ 01 so as to cancel the de-electric field due to Ps, it is possible to improve the problem of the difference in threshold value and the decrease of bistability after leaving the cell for a long time. It was

ここまでは、基板上にSiO2膜等の絶縁層がなく、対称
的な配向膜を有するセルについて示した。しかし、実際
には電極間の短絡を防ぐためにSiO2等の絶縁膜を電極12
と配向膜13との間に設ける場合が多い。また、配向状態
を良くするために非対称な配向膜を設けることもある。
Up to this point, a cell having a symmetrical alignment film without an insulating layer such as a SiO 2 film on the substrate has been shown. However, in practice, an insulating film such as SiO 2 is used to prevent short circuit between the electrodes.
It is often provided between and the alignment film 13. In addition, an asymmetric alignment film may be provided to improve the alignment state.

しかし、このような場合にも一般に電極間に電界印加
時の分子幅方向が無電界時の分子軸方向と略等しい強誘
電性液晶を挟持したセルにおいて、外部から適当な電圧
をセルに印加して、自発分極Psによる反電界を打ち消す
ことによって、長時間放置後の閾値の差や双安定性の低
下の問題を改善できる。
However, even in such a case, generally, in a cell in which a ferroelectric liquid crystal is sandwiched between electrodes, the molecular width direction when an electric field is applied is approximately the same as the molecular axis direction when no electric field is applied, an appropriate voltage is externally applied to the cell. Then, by canceling the anti-electric field due to the spontaneous polarization Ps, it is possible to solve the problems of the difference in threshold value and the decrease of bistability after being left for a long time.

第3図は、電極間の誘電率がそれぞれ∈′、
′、∈′、∈′、∈′、厚さがd1′、d2′、
d3′、d4′、d5′なる媒質を挟持したセルに、外部電圧
V0を印加した場合を示す。各媒質の電界をE1′、E2′、
E3′、E4′、E5′とし、電束密度をD1′、D2′、D3′、
D4′、D5′とすると、前と同様にして強誘電性液晶層に
おける電界E3′を次のように表現できる。
FIG. 3 shows that the permittivity between electrodes is ε 1 ′,
Ε 2 ′, ε 3 ′, ε 4 ′, ε 5 ′, thicknesses d 1 ′, d 2 ′,
An external voltage is applied to the cell sandwiching the media d 3 ′, d 4 ′ and d 5 ′.
The case where V 0 is applied is shown. Let the electric fields of each medium be E 1 ′, E 2 ′,
E 3 ′, E 4 ′, E 5 ′, and the electric flux density is D 1 ′, D 2 ′, D 3 ′,
Assuming D 4 ′ and D 5 ′, the electric field E 3 ′ in the ferroelectric liquid crystal layer can be expressed as follows in the same manner as above.

従って、(16)式より なる外部電圧をセルに印加して自発分極Psによる反電界
を打ち消すことによって、長時間放置後の閾値の差や双
安定性の低下の問題を改善できる。
Therefore, from equation (16) By applying the following external voltage to the cell and canceling the anti-electric field due to the spontaneous polarization Ps, it is possible to improve the problem of the difference in threshold value and the decrease of bistability after being left for a long time.

また、以上から、もし必要があれば、自発分極Psによ
る反電界を打ち消すための適当な外部電圧V0は、更に一
般的な場合についても同様に示すことができるのは明ら
かである。
Also, from the above, it is clear that, if necessary, an appropriate external voltage V 0 for canceling the demagnetizing field due to the spontaneous polarization Ps can be similarly shown in a more general case.

(作用・効果) 以上の如き本発明によれば、従来の強誘電性液晶セル
において、セルの非表示時に、液晶分子の自発分極Psに
よる反電界に大きさが略等しく且つ方向が反対の電界を
外部から印加することによって、セルを長時間放置して
も、閾値の差や双安定性の低下がなく、セルを有効に駆
動することができる。
(Operation / Effect) According to the present invention as described above, in the conventional ferroelectric liquid crystal cell, when the cell is not displayed, an electric field whose magnitude is approximately equal to and opposite to the demagnetizing field due to the spontaneous polarization Ps of the liquid crystal molecules. By externally applying, even if the cell is left for a long time, the cell can be effectively driven without a difference in threshold value and a decrease in bistability.

【図面の簡単な説明】 第1〜3図は本発明の強誘電性液晶セルの駆動方法を図
解的に示す図であり、第4図は強誘電性液晶セルの液晶
分子の分極の二つの状態を図解的に示す図であり、第5
図および第6図は、従来公知の強誘電性液晶セルの例を
図解的に示す図である。 1、1′、11……基板 2、14……液晶層 3……液晶分子 4……双極子モーメント 5、5′……配向状態 12……電極 13……配向膜 15……自発分極Ps 16……Psによる反電界 V0……外部電圧
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are diagrams schematically showing a driving method of a ferroelectric liquid crystal cell of the present invention, and FIG. 4 is a diagram showing two methods of polarization of liquid crystal molecules of the ferroelectric liquid crystal cell. It is a figure which shows a state diagrammatically, and
FIG. 6 and FIG. 6 are diagrams schematically showing an example of a conventionally known ferroelectric liquid crystal cell. 1, 1 ', 11 ... substrate 2, 14 ... liquid crystal layer 3 ... liquid crystal molecule 4 ... dipole moment 5, 5' ... alignment state 12 ... electrode 13 ... alignment film 15 ... spontaneous polarization Ps 16 …… Ps demagnetization field V 0 …… External voltage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電極および配向膜を有する2枚の対向した
電極基板間に、電界に対して双安定性を有する強誘電性
液晶層を挟持してなる強誘電性液晶セルにおいて、該セ
ルの非表示時に液晶分子の自発分極Psによる反電界に大
きさが略等しく且つ方向が反対の電界を外部から印加す
ることを特徴とする強誘電性液晶セルの駆動方法。
1. A ferroelectric liquid crystal cell in which a ferroelectric liquid crystal layer having bistability against an electric field is sandwiched between two facing electrode substrates each having an electrode and an alignment film. A method for driving a ferroelectric liquid crystal cell, characterized in that an electric field having substantially the same magnitude and opposite direction is applied from the outside to a repulsive electric field due to spontaneous polarization Ps of liquid crystal molecules during non-display.
JP26991286A 1986-11-14 1986-11-14 Driving method for ferroelectric liquid crystal cell Expired - Fee Related JPH083582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26991286A JPH083582B2 (en) 1986-11-14 1986-11-14 Driving method for ferroelectric liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26991286A JPH083582B2 (en) 1986-11-14 1986-11-14 Driving method for ferroelectric liquid crystal cell

Publications (2)

Publication Number Publication Date
JPS63124036A JPS63124036A (en) 1988-05-27
JPH083582B2 true JPH083582B2 (en) 1996-01-17

Family

ID=17478951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26991286A Expired - Fee Related JPH083582B2 (en) 1986-11-14 1986-11-14 Driving method for ferroelectric liquid crystal cell

Country Status (1)

Country Link
JP (1) JPH083582B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468312A (en) * 1990-07-10 1992-03-04 Canon Inc Method and device for driving ferroelectric liquid crystal device
US5490000A (en) * 1992-12-07 1996-02-06 Casio Computer Co., Ltd. Deformed helix ferroelectric liquid crystal display device and method of driving

Also Published As

Publication number Publication date
JPS63124036A (en) 1988-05-27

Similar Documents

Publication Publication Date Title
JPH05265016A (en) Liquid crystal device
EP0508227B1 (en) Optical modulation element
US4846560A (en) Liquid crystal device with ferroelectric liquid crystal oriented at non-pixel portions
JPH0711637B2 (en) Ferroelectric liquid crystal element
EP0389211B1 (en) Liquid crystal display device
JP2769879B2 (en) Chiral smectic liquid crystal device
JPH083582B2 (en) Driving method for ferroelectric liquid crystal cell
US4601542A (en) Nematic liquid crystal storage display device
JPH052209B2 (en)
JPH0448368B2 (en)
US5539553A (en) Liquid crystal device with an electrically neutral interface between the liquid crystal and orientation layer
JPH0711632B2 (en) Voltage application method for chiral smectic liquid crystal device
JPH0557568B2 (en)
JP2707074B2 (en) Liquid crystal element
JPS63163426A (en) Ferroelectric liquid crystal element
KR100412489B1 (en) ferroelectric liquid crystal display
JPH0833560B2 (en) Liquid crystal element
JP2851500B2 (en) Liquid crystal display
JP3176079B2 (en) Optical modulator
JPH0792562B2 (en) Driving method for liquid crystal display device
JP2568508B2 (en) Ferroelectric matrix liquid crystal display
GB2129151A (en) Liquid crystal display cells and methods of switching same
JPS63123017A (en) Liquid crystal element
JPH0695612A (en) Voltage applying and driving method for ferroelectric liquid crystal element
KR20030058091A (en) Method of manufacturing Liquid Crystal Display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees