JPH0834929A - Polymeric solid electrolyte - Google Patents

Polymeric solid electrolyte

Info

Publication number
JPH0834929A
JPH0834929A JP6192226A JP19222694A JPH0834929A JP H0834929 A JPH0834929 A JP H0834929A JP 6192226 A JP6192226 A JP 6192226A JP 19222694 A JP19222694 A JP 19222694A JP H0834929 A JPH0834929 A JP H0834929A
Authority
JP
Japan
Prior art keywords
polymer
solid electrolyte
phase
polarity
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6192226A
Other languages
Japanese (ja)
Inventor
Toshihiro Ichino
敏弘 市野
Yukitoshi Takeshita
幸俊 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6192226A priority Critical patent/JPH0834929A/en
Publication of JPH0834929A publication Critical patent/JPH0834929A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a polymeric solid electrolyte having ionic conductivity and a high mechanical strength. CONSTITUTION:This polymeric solid electrolyte comprises a low polar polymeric phase having a cross-linked structure, further a polymeric component of the low polar polymeric phase having double bonds and intramolecular or intermolecular cross-linkages produced by cleaving a part of the double bonds in a polymeric solid electrolyte in which a high polar polymeric phase of a polymeric matrix comprising the low polar polymeric phase and high polar polymeric phase is impregnated with an electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム2次電池など
の高エネルギー密度電池に使用できる高分子固体電解質
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte that can be used in high energy density batteries such as lithium secondary batteries.

【0002】[0002]

【従来の技術】携帯電子機器の発展に伴い、これら機器
に電力を供給する電池が高い関心を集めている。中でも
リチウム2次電池は最も高いエネルギー密度を有し、精
力的に開発が進められている。このようなリチウム2次
電池に対し、液漏れがなく、機器の隙間に実装できるよ
うな加工性を付与できる高分子固体電解質が興味を集め
ている。高分子固体電解質には高いイオン伝導性と機械
的強度を付与することが求められている。このような要
求を満足するために本発明者らは、低極性高分子相と高
極性高分子相からなる高分子マトリクスの高極性高分子
相に電解液が含浸された高分子電解質を提案した(特開
平5−299119号公報参照)。この電解質では、低
極性の高分子相が機械的強度を保ち、電解液を含浸した
高極性高分子相がイオン伝導路相となっている。
2. Description of the Related Art With the development of portable electronic devices, batteries for supplying electric power to these devices have attracted great interest. Among them, the lithium secondary battery has the highest energy density and is being actively developed. For such a lithium secondary battery, a polymer solid electrolyte that has no liquid leakage and is provided with workability such that it can be mounted in a gap between devices is attracting interest. Polymer solid electrolytes are required to have high ionic conductivity and mechanical strength. In order to satisfy such requirements, the present inventors have proposed a polymer electrolyte in which an electrolyte solution is impregnated in a high polarity polymer phase of a polymer matrix composed of a low polarity polymer phase and a high polarity polymer phase. (See Japanese Patent Laid-Open No. 5-299119). In this electrolyte, the low-polarity polymer phase maintains mechanical strength, and the high-polarity polymer phase impregnated with the electrolytic solution serves as the ion conduction path phase.

【0003】[0003]

【発明が解決しようとする課題】このような高分子電解
質は、低極性高分子相と高極性高分子相からなる高分子
マトリクスを電解液に含浸して作製するが、低極性高分
子相にもわずかながら電解液が浸入し、低極性高分子相
が可塑化して、強度が低下した。本発明はこのような現
状にかんがみてなされたものであり、その目的はイオン
伝導性と機械的強度が高い高分子固体電解質を提供する
ことにある。
Such a polymer electrolyte is prepared by impregnating an electrolytic solution with a polymer matrix composed of a low-polarity polymer phase and a high-polarity polymer phase. Although the electrolyte slightly infiltrated, the low-polarity polymer phase was plasticized and the strength decreased. The present invention has been made in view of such circumstances, and an object thereof is to provide a polymer solid electrolyte having high ionic conductivity and mechanical strength.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は高分子固体電解質に関する発明であって、低極性
高分子相と高極性高分子相からなる高分子マトリクスの
高極性高分子相に電解液が含浸された高分子固体電解質
において、低極性高分子相が架橋構造を持ち、該低極性
高分子相の高分子成分が、2重結合を有し、更にその2
重結合の一部が開裂して生成した分子内あるいは分子間
架橋を有することを特徴とする。
The present invention will be described in brief. The present invention relates to a polymer solid electrolyte, which is a high polarity polymer of a polymer matrix composed of a low polarity polymer phase and a high polarity polymer phase. In a polymer solid electrolyte in which a phase is impregnated with an electrolytic solution, the low-polarity polymer phase has a cross-linking structure, the polymer component of the low-polarity polymer phase has a double bond, and
It is characterized in that it has an intramolecular or intermolecular bridge formed by cleavage of a part of the heavy bond.

【0005】本発明者らは、低極性高分子相と高極性高
分子相からなる高分子マトリクスの高極性高分子相に電
解液が含浸した高分子固体電解質の検討を進めてきた
が、含浸した電解液の低極性高分子相への浸入によって
高分子電解質の強度が低下するのを抑制するには、低極
性高分子相が架橋構造を有することが効果的なことを見
出した。
The present inventors have studied a polymer solid electrolyte in which a high polarity polymer phase of a polymer matrix composed of a low polarity polymer phase and a high polarity polymer phase is impregnated with an electrolytic solution. It was found that it is effective for the low-polarity polymer phase to have a crosslinked structure in order to suppress the decrease in the strength of the polymer electrolyte due to the infiltration of the electrolyte solution into the low-polarity polymer phase.

【0006】このような高分子固体電解質は、高分子微
粒子分散液から好適に作製される。具体的には、例え
ば、高極性高分子微粒子を含有するラテックスと低極性
高分子微粒子を含有するラテックスを混合後、分散媒体
を除去すると高分子微粒子は凝集・融着し、高極性高分
子相と低極性高分子相を有する高分子マトリクスシート
が形成される。この高分子マトリクスシートを電解液に
含浸して高分子固体電解質が作製される。この際、電解
液は高極性高分子相に選択的に浸入、吸収される。この
ような作製手法において、低極性高分子微粒子の成分と
して、ブタジエン、イソプレンなどジエン系モノマーを
重合した高分子、あるいはこれらジエン系モノマーに他
の低極性モノマーを共重合した高分子を好適に用いるこ
とができる。このような高分子は分子鎖内に2重結合を
有し反応性を持っている。この2重結合は熱、光などで
開裂すると、付加反応、環化反応等により分子内あるい
は分子間で架橋構造を形成することができる。そして、
この架橋構造を導入することにより、つまり本発明の高
分子固体電解質では、電解液が低極性高分子相に浸入す
ることによる機械的強度の低下を効果的に抑制できる。
Such a polymer solid electrolyte is preferably prepared from a polymer particle dispersion liquid. Specifically, for example, after mixing the latex containing the high polarity polymer particles and the latex containing the low polarity polymer particles and removing the dispersion medium, the polymer particles are aggregated and fused to form a high polarity polymer phase. And a polymer matrix sheet having a low polarity polymer phase is formed. The polymer matrix sheet is impregnated with an electrolytic solution to produce a polymer solid electrolyte. At this time, the electrolytic solution selectively permeates and is absorbed in the highly polar polymer phase. In such a production method, a polymer obtained by polymerizing a diene-based monomer such as butadiene or isoprene, or a polymer obtained by copolymerizing another low-polarity monomer with these diene-based monomers is preferably used as a component of the low-polarity polymer fine particles. be able to. Such a polymer has a double bond in the molecular chain and is reactive. When this double bond is cleaved by heat, light, etc., a crosslinked structure can be formed intramolecularly or intermolecularly by addition reaction, cyclization reaction and the like. And
By introducing this crosslinked structure, that is, in the polymer solid electrolyte of the present invention, it is possible to effectively suppress the decrease in mechanical strength due to the infiltration of the electrolytic solution into the low-polarity polymer phase.

【0007】上記に示したジエン系共重合体は、ブタジ
エン、イソプレンなどジエン系モノマーと低極性モノマ
ーから合成されるが、その代表的なものとしてブタジエ
ンとスチレンから合成されたスチレン−ブタジエン共重
合体ゴム(SBR)が好適に用いられる。その他の共重
合の相手となる低極性モノマーの例として、プロピレ
ン、イソブテン、エチレンが挙げられる。更に、ジビニ
ルベンゼンあるいはα−メチルスチレンなどのスチレン
の誘導体が挙げられる。これらのモノマーは、単独であ
るいは複数を組合せて用いてもよい。
The above-mentioned diene-based copolymer is synthesized from a diene-based monomer such as butadiene and isoprene and a low-polarity monomer. A typical example thereof is a styrene-butadiene copolymer synthesized from butadiene and styrene. Rubber (SBR) is preferably used. Examples of other low-polarity monomers to be copolymerized with are propylene, isobutene, and ethylene. Further, a derivative of styrene such as divinylbenzene or α-methylstyrene can be used. These monomers may be used alone or in combination of two or more.

【0008】本発明の高分子固体電解質の高極性高分子
相の成分としては、電解液を含浸できる極性があればよ
い。高極性高分子を形成するモノマーとしては、アクリ
ロニトリル、フッ化ビニリデン、塩化ビニル、メチルメ
タクリレート、メチルアクリレート、メタクリル酸(及
び金属塩)、アクリル酸(及び金属塩)、ビニルアルコ
ール、塩化ビニリデン、エチレンイミン、メタクリロニ
トリル、ビニルアセテート、ビニルピロリドンあるいは
これらの誘導体が挙げられる。これらモノマーを単独で
重合したり、複数で共重合させて高極性高分子を合成す
る。また、これらモノマーは他のモノマーと共重合させ
たりして使用することができる。例えば、ブタジエン、
イソプレン等の共役ジエン系モノマーと共重合させる
と、高分子は柔軟でゴム弾性を持ち、高分子電解質を作
製したとき、電極と良好な密着性を有するため好適であ
る。代表的なものとしてブタジエンとアクリロニトリル
から合成されたアクリロニトリル−ブタジエン共重合体
ゴム(NBR)が好適に用いられる。
As the component of the highly polar polymer phase of the solid polymer electrolyte of the present invention, it is sufficient that it has a polarity capable of impregnating an electrolytic solution. Examples of the monomer that forms the highly polar polymer include acrylonitrile, vinylidene fluoride, vinyl chloride, methyl methacrylate, methyl acrylate, methacrylic acid (and metal salts), acrylic acid (and metal salts), vinyl alcohol, vinylidene chloride, and ethyleneimine. , Methacrylonitrile, vinyl acetate, vinylpyrrolidone or derivatives thereof. Highly polar polymers are synthesized by polymerizing these monomers individually or by copolymerizing a plurality of them. Further, these monomers can be used by being copolymerized with other monomers. For example, butadiene,
Copolymerization with a conjugated diene-based monomer such as isoprene is preferable because the polymer is flexible and has rubber elasticity, and when a polymer electrolyte is prepared, it has good adhesion to an electrode. As a typical one, acrylonitrile-butadiene copolymer rubber (NBR) synthesized from butadiene and acrylonitrile is preferably used.

【0009】本発明の高分子固体電解質に使用する電解
液は、その用途によって異なり、特に限定されない。例
えば、リチウム電池への応用を考えると、電解液の構成
要素の金属塩には、LiClO4 、LiBF4 、LiP
6 、LiNbF6 、LiSCN、Li(CF3
3 )、Li(C6 5 SO3 )、LiAsF6 等のリ
チウム塩が単独あるいは混合して用いられる。
The electrolytic solution used in the solid polymer electrolyte of the present invention varies depending on its application and is not particularly limited. For example, considering the application to a lithium battery, the metal salts of the components of the electrolytic solution include LiClO 4 , LiBF 4 , and LiP.
F 6 , LiNbF 6 , LiSCN, Li (CF 3 S
O 3 ), Li (C 6 H 5 SO 3 ), LiAsF 6 and other lithium salts are used alone or in combination.

【0010】また、電解液の溶媒にはプロピレンカーボ
ネート、エチレンカーボネート、γ−ブチロラクトン、
ジメチルカーボネート、ジメチルスルホキシド、アセト
ニトリル、スルホラン、ジメチルホルムアミド、ジメチ
ルアセトアミド、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、ジオキソラン、メチルアセテート等
の非プロトン性溶媒及びこれらを含む混合物が好適に用
いられる。なお、この電解液の濃度は、重量モル濃度
で、0.01〜5 mol/kgとするのが好適である。
The electrolyte solvent is propylene carbonate, ethylene carbonate, γ-butyrolactone,
Dimethyl carbonate, dimethyl sulfoxide, acetonitrile, sulfolane, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-
An aprotic solvent such as diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate and the like and a mixture containing these are preferably used. The concentration of the electrolytic solution is preferably 0.01 to 5 mol / kg in molar concentration.

【0011】本発明の高分子固体電解質は、高分子微粒
子分散液から作製される方法が好適であるが、高分子微
粒子分散液の安定化のために安定剤を使ってもよく、そ
れには界面活性剤が好適に使われ、例えば、次のような
ものが挙げられる:脂肪酸金属塩、ポリオキシエチレ
ン、ポリエチレングリコール、ポリオキシプロピレン、
アルキルベンゼンスルホン酸金属塩、アルキル硫酸金属
塩、ジオクチルスルホコハク酸金属塩、ポリオキシエチ
レンノニルフェニルエーテル、ポリオキシエチレンステ
アリン酸エステル、ポリオキシエチレンソルビタンモノ
ラウリン酸エステル、ポリオキシエチレン−ポリオキシ
プロピレンブロック共重合体、ポリエーテル変性シリコ
ーンオイル等の単独あるいは混合物。高分子微粒子分散
液の分散媒体には、水が好適に用いられるが、アルコー
ル類など有機溶媒あるいは水との混合物を使用すること
もできる。
The polymer solid electrolyte of the present invention is preferably prepared from a polymer fine particle dispersion, but a stabilizer may be used for stabilizing the polymer fine particle dispersion, and the stabilizer may be used. Activators are preferably used and include, for example, the following: fatty acid metal salts, polyoxyethylene, polyethylene glycol, polyoxypropylene,
Alkylbenzene sulfonic acid metal salt, alkyl sulfate metal salt, dioctyl sulfosuccinic acid metal salt, polyoxyethylene nonylphenyl ether, polyoxyethylene stearic acid ester, polyoxyethylene sorbitan monolauric acid ester, polyoxyethylene-polyoxypropylene block copolymer , Polyether-modified silicone oil, etc., alone or in a mixture. Water is preferably used as the dispersion medium of the polymer particle dispersion, but an organic solvent such as alcohols or a mixture with water can also be used.

【0012】本発明の高分子固体電解質の高分子マトリ
クスフィルムは、高分子微粒子分散液から分散媒体を除
去して作製される方法が好適であるが、その方法は通常
の方法でよく、加熱、あるいは加熱と減圧を組合せても
よい。しかし、均一な高分子マトリクスフィルムを作製
するには、高分子微粒子の成分のガラス転移温度以上に
加熱するのが好適である。必要に応じて加圧プレスし
て、高分子マトリクスを任意の形状に成形することも可
能である。分散媒体が、固体電解質適用先の電池等に悪
影響を与えるときには、この分散媒体の沸点以上に加熱
するか、加熱と減圧処理を組合せて、分散媒体を取り除
かなければならない。
The polymer matrix film of the polymer solid electrolyte of the present invention is preferably prepared by removing the dispersion medium from the polymer particle dispersion liquid, but the method may be an ordinary method, such as heating, Alternatively, heating and reduced pressure may be combined. However, in order to produce a uniform polymer matrix film, it is preferable to heat the glass transition temperature of the component of the polymer particles or higher. If necessary, the polymer matrix can be molded into an arbitrary shape by pressing under pressure. When the dispersion medium has an adverse effect on the battery or the like to which the solid electrolyte is applied, it must be heated to a temperature higher than the boiling point of the dispersion medium or combined with heating and decompression treatment to remove the dispersion medium.

【0013】本発明の高分子固体電解質では、低極性高
分子中の2重結合を反応させて架橋構造を形成する必要
があるが、これは熱、あるいは紫外線、放射線などの電
磁波の照射によって反応を起こさせることができる。特
に加熱による方法は好適で、高分子マトリクスシートを
形成するときに同時に架橋構造を導入することができ
る。加熱温度は、2重結合が開裂する温度であればよい
が、50℃以上、特に100℃以上が好適である。
In the polymer solid electrolyte of the present invention, it is necessary to react the double bond in the low polarity polymer to form a crosslinked structure, which is reacted by heat or irradiation with electromagnetic waves such as ultraviolet rays and radiation. Can be caused. In particular, the method by heating is preferable, and the crosslinked structure can be introduced at the same time when the polymer matrix sheet is formed. The heating temperature may be a temperature at which the double bond is cleaved, but is preferably 50 ° C. or higher, particularly 100 ° C. or higher.

【0014】電解液の含浸は通常の方法でよく、例えば
高分子マトリクスフィルムを電解液中に浸漬すればよ
い。電解液の含浸量は浸漬時間の長さで制御できるが、
高分子電解質中10重量%以上含浸させることが好適で
ある。
The impregnation with the electrolytic solution may be carried out by a usual method, for example, by immersing the polymer matrix film in the electrolytic solution. The amount of electrolyte impregnation can be controlled by the length of immersion time,
It is preferable to impregnate the polymer electrolyte with 10% by weight or more.

【0015】[0015]

【実施例】以下に本発明を実施例によって更に詳しく説
明するが、本発明はこの実施例に限定されない。
EXAMPLES The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0016】実施例1 高分子微粒子分散液として、日本ゼオン社製スチレン・
フタジエン共重合体(低極性高分子成分)ラテックス
(SBRラテックス;商品名:Nipol LX424)と日本ゼオ
ン社製アクリロニトリル・ブタジエン共重合体(高極性
高分子成分)ラテックス(NBRラテックス;商品名:
Nipol 1571) を固形分重量比6:4で混合した後、ガラ
ス基板上にキャストした後、常圧・70℃で5時間乾燥
した後、SBR分子の架橋反応を起こさせるために13
0℃で5時間、真空雰囲気で加熱した。このとき真空度
は0.1Torrであった。真空乾燥した結果、厚さ200
μmの高分子マトリクスフィルムを得た。赤外分光法で
分析した結果、SBR高分子鎖の2重結合に起因する吸
収が減少していることが確認された。この高分子マトリ
クスフィルムをLiClO4 をプロピレンカーボネート
と2−メチルテトラヒドロフラン等容積混合溶媒に溶解
した電解液(LiClO4 濃度:0.1 mol/リット
ル)に1時間浸漬して、高分子固体電解質を得た。この
高分子電解質をダンベル状試験片〔JIS2(1/
3)〕に打ち抜き、インストロン社製引張試験機で引張
強度を測定した(引張速度=20mm/min)。引張
強度は9kgf/cm2 であった。
Example 1 As a polymer fine particle dispersion liquid, styrene
Phthaldiene copolymer (low polarity polymer component) latex (SBR latex; trade name: Nipol LX424) and acrylonitrile-butadiene copolymer (high polarity polymer component) latex (NBR latex; trade name: manufactured by Nippon Zeon Co., Ltd.)
Nipol 1571) was mixed at a solid content weight ratio of 6: 4, cast on a glass substrate, and then dried at atmospheric pressure and 70 ° C. for 5 hours. Then, in order to cause a crosslinking reaction of SBR molecules, 13
Heated at 0 ° C. for 5 hours in a vacuum atmosphere. At this time, the degree of vacuum was 0.1 Torr. As a result of vacuum drying, a thickness of 200
A polymer matrix film of μm was obtained. As a result of analysis by infrared spectroscopy, it was confirmed that the absorption due to the double bond of the SBR polymer chain was reduced. The polymer matrix film electrolyte prepared by dissolving LiClO 4 in propylene carbonate and 2-methyltetrahydrofuran equal volume mixed solvent (LiClO 4 concentration: 0.1 mol / liter) and soaked for 1 hour, the resulting solid polymer electrolyte It was A dumbbell-shaped test piece [JIS2 (1 /
3)], and the tensile strength was measured with a tensile tester manufactured by Instron (tensile speed = 20 mm / min). The tensile strength was 9 kgf / cm 2 .

【0017】比較例1 実施例1の高分子固体電解質の作製過程の高分子マトリ
クス形成過程において、常圧・70℃で5時間乾燥した
後130℃で5時間真空乾燥する代りに、加熱せず常温
で24時間真空乾燥して、厚さ200μmの高分子マト
リクスフィルムを得た。この高分子マトリクスフィルム
を赤外分光法で分析した結果、SBR高分子鎖の2重結
合に起因する吸収の減少は認められなかった。このよう
に作製した高分子マトリクスフィルムをLiClO4
プロピレンカーボネートと2−メチルテトラヒドロフラ
ン等容積混合溶媒に溶解した電解液(LiClO4
度:0.1 mol/リットル)に1時間浸漬して、高分子
固体電解質を得た。実施例1と同様に引張強度を測定し
たところ、3kgf/cm2 であった。
Comparative Example 1 In the process of forming the polymer matrix in the process of producing the polymer solid electrolyte of Example 1, instead of drying at atmospheric pressure and 70 ° C. for 5 hours and then vacuum drying at 130 ° C. for 5 hours, heating was not performed. It was vacuum dried at room temperature for 24 hours to obtain a polymer matrix film having a thickness of 200 μm. As a result of infrared spectroscopy analysis of this polymer matrix film, no decrease in absorption due to the double bond of the SBR polymer chain was observed. Such electrolyte solution prepared was a polymer matrix film was dissolved LiClO 4 in propylene carbonate and 2-methyltetrahydrofuran equal volume mixed solvent in (LiClO 4 concentration: 0.1 mol / liter) and soaked for 1 hour, a polymer A solid electrolyte was obtained. When the tensile strength was measured in the same manner as in Example 1, it was 3 kgf / cm 2 .

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明に
より、イオン伝導性と機械的強度が高い高分子固体電解
質を提供することができるという利点がある。
As is apparent from the above description, the present invention has an advantage that a polymer solid electrolyte having high ionic conductivity and mechanical strength can be provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 低極性高分子相と高極性高分子相からな
る高分子マトリクスの高極性高分子相に電解液が含浸さ
れた高分子固体電解質において、低極性高分子相が架橋
構造を持ち、該低極性高分子相の高分子成分が、2重結
合を有し、更にその2重結合の一部が開裂して生成した
分子内あるいは分子間架橋を有することを特徴とする高
分子固体電解質。
1. In a polymer solid electrolyte in which an electrolyte solution is impregnated in a high polarity polymer phase of a polymer matrix composed of a low polarity polymer phase and a high polarity polymer phase, the low polarity polymer phase has a crosslinked structure. A polymer solid characterized in that the polymer component of the low-polarity polymer phase has a double bond and further has an intramolecular or intermolecular crosslink formed by cleavage of a part of the double bond. Electrolytes.
JP6192226A 1994-07-25 1994-07-25 Polymeric solid electrolyte Pending JPH0834929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6192226A JPH0834929A (en) 1994-07-25 1994-07-25 Polymeric solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6192226A JPH0834929A (en) 1994-07-25 1994-07-25 Polymeric solid electrolyte

Publications (1)

Publication Number Publication Date
JPH0834929A true JPH0834929A (en) 1996-02-06

Family

ID=16287766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6192226A Pending JPH0834929A (en) 1994-07-25 1994-07-25 Polymeric solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0834929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259924A (en) * 1996-03-26 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Composite polymer electrolytic film
WO1997049137A1 (en) * 1996-06-17 1997-12-24 Valence Technology, Inc. Method of preparing polymeric electrolytes
US7141183B2 (en) 2002-07-22 2006-11-28 Sumitomo Rubber Industries, Ltd. Conductive elastomer composition and method of producing same
US7226965B2 (en) 2003-01-15 2007-06-05 Sumitomo Rubber Industries, Ltd. Polymeric-type electric resistance control agent and polymer composition containing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259924A (en) * 1996-03-26 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Composite polymer electrolytic film
WO1997049137A1 (en) * 1996-06-17 1997-12-24 Valence Technology, Inc. Method of preparing polymeric electrolytes
US7141183B2 (en) 2002-07-22 2006-11-28 Sumitomo Rubber Industries, Ltd. Conductive elastomer composition and method of producing same
US7226965B2 (en) 2003-01-15 2007-06-05 Sumitomo Rubber Industries, Ltd. Polymeric-type electric resistance control agent and polymer composition containing the same
US7435770B2 (en) 2003-01-15 2008-10-14 Sumitomo Rubber Industries, Ltd. Polymeric-type electric resistance control agent and polymer composition containing the same

Similar Documents

Publication Publication Date Title
JP3262708B2 (en) Composite polymer electrolyte membrane
US5585039A (en) Solid polymer electrolyte and method of manufacture thereof
US20120330589A1 (en) Binder with good rate property and long cycleability for lithium secondary battery
EP1298740A3 (en) Process for production of composite porous film
EP1018181B1 (en) Solid polymer electrolyte and preparation methods
CN1244962C (en) Solidifying material for electrolyte solution of battery and battery containing it
CN111755650A (en) Preparation method of lithium battery diaphragm modified by ultraviolet radiation grafting, lithium battery diaphragm and application of lithium battery diaphragm
Zhang et al. Li-ion battery with poly (acrylonitrile-methyl methacrylate)-based microporous gel electrolyte
JPH0834929A (en) Polymeric solid electrolyte
JP2007329069A (en) Solid polymer electrolyte membrane and fuel cell
JP4060465B2 (en) Polymer solid electrolyte and electrochemical device using the same
JP2000011757A (en) Ion conductive gel and its manufacture
JP3230610B2 (en) Polymer solid electrolyte and method for producing the same
JPH07335258A (en) High molecular solid electrolyte
KR100982905B1 (en) A porous polymeric membrane comprising vinylidene fluoride, a process for producing the same, and a laminate comprising the same
CN116014360A (en) Composite diaphragm and preparation method and application thereof
CN112442153B (en) Electrolyte polymer base material, solid electrolyte, preparation method of solid electrolyte and lithium ion battery
JPH0869816A (en) Manufacture of polymer solid electrolyte
JPH1092470A (en) Lithium ion battery and manufacture of it
JPH05299119A (en) Polymeric solid elegtrolyte and manufacture thereof
KR102524443B1 (en) A separator and a method for manufacturing the same
JPH103897A (en) Separator for battery
WO2022004628A1 (en) Electrolyte, secondary cell, and composite material
KR20020019214A (en) Manufacturing method for lithium secondary battery
JP2003257484A (en) Polyimide porous membrane composite material and lithium ion electrolytic membrane