JPH08338838A - Method and apparatus for measuring unit quantity of water in concrete - Google Patents

Method and apparatus for measuring unit quantity of water in concrete

Info

Publication number
JPH08338838A
JPH08338838A JP14761095A JP14761095A JPH08338838A JP H08338838 A JPH08338838 A JP H08338838A JP 14761095 A JP14761095 A JP 14761095A JP 14761095 A JP14761095 A JP 14761095A JP H08338838 A JPH08338838 A JP H08338838A
Authority
JP
Japan
Prior art keywords
sample
water
concrete
measuring
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14761095A
Other languages
Japanese (ja)
Other versions
JP2952277B2 (en
Inventor
Mikio Maruyama
幹雄 丸山
Takashi Endo
隆 遠藤
Eiji Yoshikawa
英二 吉川
Akifumi Yamada
明文 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKURIKU KENSETSU KOUSAIKAI
Original Assignee
HOKURIKU KENSETSU KOUSAIKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKURIKU KENSETSU KOUSAIKAI filed Critical HOKURIKU KENSETSU KOUSAIKAI
Priority to JP14761095A priority Critical patent/JP2952277B2/en
Publication of JPH08338838A publication Critical patent/JPH08338838A/en
Application granted granted Critical
Publication of JP2952277B2 publication Critical patent/JP2952277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To measure an estimated unit quantity of water in a short time. CONSTITUTION: An enclosable pressure reducing chamber 2 is formed in which heater 6 for heating a mortar 13 sampled from fresh concrete is disposed. The pressure reducing chamber 2 is coupled with a vacuum pump 8 and an electronic balance for measuring the weight of sample 13 is provided. The sample 13 is enclosed in the pressure reducing chamber 2 and the vacuum pump 8 is operated to reduce the pressure in the pressure reducing chamber 2. The sample 13 is heated under pressure reduced state thus evaporating water at low boiling point in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フレッシュコンクリー
トの単位水量を測定するコンクリートの単位水量測定方
法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the unit water content of concrete for measuring the unit water content of fresh concrete.

【0002】[0002]

【従来の技術】従来、コンクリートの強度は、打設して
から4週間後の圧縮強度試験で求めた値で判定するた
め、判定時にはすでにコンクリート構造物が完成してお
り、万一強度不足が発生すると、その構造物を破壊し、
再施工を行わなければならなくなるという問題がある。
2. Description of the Related Art Conventionally, since the strength of concrete is judged by a value obtained by a compressive strength test four weeks after it is placed, a concrete structure has already been completed at the time of judgment, and should the strength be insufficient. When it occurs, destroy the structure,
There is a problem that it will have to be reconstructed.

【0003】そして、固化後のコンクリートの強度は、
まだ固まる前のコンクリート、すなわちフレッシュコン
クリートの水セメント比により判定することができるこ
とが知られており、このためにコンクリートの水セメン
ト比を測定し、コンクリートの強度を判定する方法が種
々提案されているが、いずれも実用性に乏しい面があっ
た。例えば、フレッシュコンクリートの単位水量を測定
する方法として、特開昭64−20448号公報には、
まだ固まらないコンクリート中に、水に易液性の物質を
定量投入して、同物質がコンクリート中に拡散したの
ち、同コンクリートより液を抽出して同液中における前
記物質の濃度を測定し、コンクリートの含水量を計測す
る固化前のコンクリートの水分計測法が提案され、ま
た、特開昭62−106368号公報には、まだ固まら
ないコンクリートやモルタル等の一部を取り出して試料
とし、試料中のイオンを特定し、特定したイオン濃度を
測定し、特定したイオンの試料中における同種のイオン
を、試料に対して一定量添加し、イオン添加後の試料に
ついて添加したイオンの濃度を測定し、イオン添加前後
のイオン濃度を測定し、イオン添加前後のイオン濃度の
変化により、まだ固まらないコンクリートやモルタルに
含まれる単位水量を求めるコンクリート等の単位水量測
定方法が提案されているが、これらのものは、前記物質
を加えたり、イオンを加えたりする方法であるため、測
定作業が煩雑になると共に、セメントと水との水和作用
により正確な測定が困難になることが予想される。
The strength of the concrete after solidification is
It is known that it can be determined by the water-cement ratio of concrete before it has set, that is, fresh concrete. For this purpose, various methods of measuring the water-cement ratio of concrete and judging the strength of concrete have been proposed. However, all of them had poor practicality. For example, as a method for measuring the unit water amount of fresh concrete, Japanese Patent Laid-Open No. 20448/1988 discloses
In concrete that does not solidify yet, quantitatively add an easily liquid substance to water, after the substance diffuses in the concrete, extract the liquid from the concrete and measure the concentration of the substance in the liquid, A method for measuring the water content of concrete before solidification for measuring the water content of concrete has been proposed. Further, in Japanese Patent Laid-Open No. 62-106368, a part of concrete or mortar that has not yet solidified is taken out as a sample, and Of the specified ion, the concentration of the specified ion is measured, the ion of the same kind in the sample of the specified ion is added to the sample in a fixed amount, and the concentration of the added ion is measured for the sample after the ion addition, Measure the ion concentration before and after adding ions, and determine the unit water amount contained in concrete or mortar that has not solidified yet by measuring the change in ion concentration before and after adding ions. Although methods for measuring the amount of water in concrete such as concrete have been proposed, these methods involve adding the above substances or adding ions, which complicates the measurement work and results in a water mixture of cement and water. It is expected that the sum action will make accurate measurement difficult.

【0004】そこで上記特開昭64−20448号公報
の第1頁左欄の第16〜19行に記載されているように、コ
ンクリート中の含水分を測定する際、加熱によりコンク
リート中の水分を蒸発させ、同水分の蒸発前後のコンク
リートの重量差を比較する方法、所謂加熱乾燥方法を用
い、この加熱乾燥方法の測定精度を高めて正確な単位水
量を測定することが試みられている。
Therefore, as described in JP-A 64-20448, page 1, left column, lines 16 to 19, when moisture content in concrete is measured, the moisture content in concrete is heated by heating. It has been attempted to elevate the measurement accuracy of this heating and drying method and measure an accurate unit water amount by using a method of evaporating and comparing the weight difference of concrete before and after evaporation of the same moisture, that is, a so-called heating and drying method.

【0005】[0005]

【発明が解決しようとする課題】上記従来の加熱乾燥方
法では、大掛かりな加熱装置が必要になること、比較的
長い乾燥時間が必要になること、加熱温度が高温になる
ことなどの問題があった。特に加熱の時間が長くなると
ともに、加熱温度が高温になると、セメントの水和が促
進され、水がセメントに結合水として取り込まれるた
め、蒸発前後のコンクリートの重量差を測定しても正し
い単位水量を測定することが困難になる問題があった。
The above-mentioned conventional heating and drying method has problems that a large-scale heating device is required, a relatively long drying time is required, and the heating temperature becomes high. It was Especially when the heating time becomes long and the heating temperature becomes high, the hydration of the cement is promoted and water is taken into the cement as binding water, so even if the weight difference of concrete before and after evaporation is measured, the correct amount of unit water There was a problem that it became difficult to measure.

【0006】そこで本発明は、測定を短時間で行うこと
ができ、推定単位水量を正確に測定することができるコ
ンクリートの単位水量測定方法及びその装置を提供する
ことを目的とする。
[0006] Therefore, an object of the present invention is to provide a concrete unit water amount measuring method and an apparatus therefor capable of performing measurement in a short time and accurately measuring an estimated unit water amount.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、フレ
ッシュコンクリートからモルタル試料を採取し、この試
料の重量を測定し、この試料を減圧空間内で加熱し、水
分が蒸発した後、試料の重量を測定し、水分蒸発後の試
料の重量差により推定単位水量を求めるコンクリートの
単位水量測定方法である。
According to a first aspect of the present invention, a mortar sample is collected from fresh concrete, the weight of the sample is measured, and the sample is heated in a decompressed space to evaporate water, and then the sample is sampled. Is a unit water amount measuring method of concrete, in which the estimated unit water amount is obtained by measuring the weight of the sample and calculating the estimated unit water amount by the weight difference of the sample after water evaporation.

【0008】また、請求項2の発明は、前記減圧空間の
絶対圧が、160mmHg以下であるコンクリートの単位水
量測定方法である。
Further, the invention of claim 2 is a method for measuring a unit water amount of concrete, wherein the absolute pressure of the depressurized space is 160 mmHg or less.

【0009】さらに、請求項3の発明は、前記試料の温
度を50度(50°C)以下に保持して加熱するコンク
リートの単位水量測定方法である。
Furthermore, the invention of claim 3 is a method for measuring the unit water content of concrete, wherein the temperature of the sample is maintained at 50 ° C. (50 ° C.) or less and heated.

【0010】請求項4の発明は、密閉可能な減圧室と、
この減圧室内に入れたフレッシュコンクリートから採取
したモルタル試料を加熱する加熱手段と、前記減圧室に
接続された減圧用吸引装置と、前記試料の重量を測定す
る計量手段とを備えるコンクリートの単位水量測定装置
である。
The invention according to claim 4 is a decompression chamber which can be sealed,
Unit water content measurement of concrete provided with heating means for heating a mortar sample taken from fresh concrete placed in this decompression chamber, a suction device for decompression connected to the decompression chamber, and weighing means for measuring the weight of the sample It is a device.

【0011】[0011]

【作用】上記請求項1の構成では、減圧空間内で試料を
加熱するため、水の沸点が下がり、比較的低温で短時間
にて水が蒸発する。また、低温でかつ短時間で水が蒸発
するため、セメントの水和による結合水の発生が抑制さ
れ、蒸発前後の試料の重量を測定することにより、結合
水の影響の少ない正確な推定単位水量を得ることができ
る。
In the structure of the above-mentioned claim 1, since the sample is heated in the decompression space, the boiling point of water is lowered, and water is evaporated at a relatively low temperature in a short time. In addition, since water evaporates at low temperature in a short time, the generation of bound water due to hydration of cement is suppressed, and by measuring the weight of the sample before and after evaporation, an accurate estimated unit water amount with less influence of bound water Can be obtained.

【0012】上記請求項2の構成では、減圧空間の絶対
圧が、160mmHg以下であるため、水の沸点が低下し、
低温で水が蒸発する。
In the structure of the above-mentioned claim 2, since the absolute pressure of the decompression space is 160 mmHg or less, the boiling point of water decreases,
Water evaporates at low temperatures.

【0013】上記請求項3の構成では、減圧下で試料を
加熱し、水の気化熱に相当する熱を供給することによ
り、50度以下で試料を加熱するため、セメントの水和
作用を抑制することができる。
In the structure of claim 3, the sample is heated under reduced pressure and the heat corresponding to the heat of vaporization of water is supplied to heat the sample at 50 ° C. or less, so that the hydration action of the cement is suppressed. can do.

【0014】上記請求項4の構成では、減圧室内に試料
を密閉状態で収納し、減圧吸引装置を作動して減圧室内
を減圧し、この減圧状態で試料を加熱し、低沸点で水を
短時間に蒸発させることができる。
In the structure of the above-mentioned claim 4, the sample is housed in the decompression chamber in a sealed state, the decompression suction device is operated to decompress the decompression chamber, the sample is heated in this decompression state, and water is reduced at a low boiling point. Can be evaporated in time.

【0015】[0015]

【実施例】以下、本発明の実施例を添付図面を参照して
説明する。図1ないし図6は本発明の一実施例を示し、
本発明の測定装置について説明すると、図1及び図2に
示す乾燥装置1は、上部に減圧室2を有し、この減圧室
2は上部が開口した有底箱型をなし、その減圧室2の上
部に該減圧室2を密閉可能な開閉蓋3を設け、この開閉
蓋3の中央に該減圧室2内を視認可能な観測窓4を設け
ている。また、前記開閉蓋3の後部を前記減圧室2の後
部に枢着しており、さらに、その開閉蓋3の前側上面に
ハンドル5を設けている。また、前記減圧室2内に加熱
手段たるヒータ6を設け、このヒータ6は内部に電熱線
(図示せず)を有する電熱ヒータであって、該ヒータ6
の円形な上面7を平坦に形成している。また、前記ヒー
タ6は熱電対(図示せず)を備え、図示しない温度制御
装置により、一定温度で加熱を行うことができるように
なっている。前記乾燥装置1の下部に、減圧用吸引装置
たる真空ポンプ8を内蔵し、この真空ポンプ8の吸引口
に接続したパイプ9を前記減圧室2に接続している。ま
た、前記パイプ9の途中に水蒸気凝縮装置10を設け、こ
の水蒸気凝縮装置10には、水蒸気用のコールドトラップ
などが用いられ、例えば前記パイプ9の途中に該パイプ
9より大型の凝縮室を設け、この凝縮室を冷却状態で保
持し、前記減圧室2から前記パイプ9を通って送られて
来た水蒸気を、該凝縮室で凝縮し、得られた水を除去し
て前記真空ポンプ8に水蒸気が送られることを防止して
いる。また、前記ヒータ6及び電動式の前記真空ポンプ
8は、電源コード11を介して家庭用電源等に電気的に接
続される。また、前記乾燥装置1の前面に、前記ヒータ
6及び真空ポンプ8のオン,オフ操作及び作動時間、並
びにヒータ6の温度及び真空ポンプ8の吸引力を調整す
る操作パネル12を設けている。尚、図中3A及び2A
は、開閉蓋3及び減圧室2の断熱材である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 6 show an embodiment of the present invention,
The measuring apparatus of the present invention will be described. The drying apparatus 1 shown in FIGS. 1 and 2 has a decompression chamber 2 in the upper part, and the decompression chamber 2 has a bottomed box shape with an open upper part. An opening / closing lid 3 capable of sealing the decompression chamber 2 is provided in the upper part of the, and an observation window 4 for visually recognizing the inside of the decompression chamber 2 is provided at the center of the opening / closing lid 3. A rear portion of the opening / closing lid 3 is pivotally attached to the rear portion of the decompression chamber 2, and a handle 5 is provided on the front upper surface of the opening / closing lid 3. Further, a heater 6 as a heating means is provided in the decompression chamber 2, and the heater 6 is an electrothermal heater having a heating wire (not shown) therein.
The circular upper surface 7 is formed flat. The heater 6 is equipped with a thermocouple (not shown) and can be heated at a constant temperature by a temperature control device (not shown). A vacuum pump 8 as a vacuum suction device is built in the lower part of the drying device 1, and a pipe 9 connected to a suction port of the vacuum pump 8 is connected to the vacuum chamber 2. A steam condenser 10 is provided in the middle of the pipe 9, and a cold trap for steam is used in the steam condenser 10. For example, a condensation chamber larger than the pipe 9 is provided in the middle of the pipe 9. The condensation chamber is held in a cooled state, and the water vapor sent from the decompression chamber 2 through the pipe 9 is condensed in the condensation chamber and the water obtained is removed to the vacuum pump 8. Prevents the transmission of water vapor. Further, the heater 6 and the electric vacuum pump 8 are electrically connected to a household power source or the like via a power cord 11. Further, on the front surface of the drying device 1, an operation panel 12 for adjusting the on / off operation and operation time of the heater 6 and the vacuum pump 8 and the temperature of the heater 6 and the suction force of the vacuum pump 8 is provided. In addition, 3A and 2A in the figure
Is a heat insulating material for the opening / closing lid 3 and the decompression chamber 2.

【0016】モルタルTの試料13を入れる受皿14をステ
ンレスから形成し、この受皿14は前記ヒータ6の上面7
とほぼ同形の円形底面14Aと側面14Bとを有し、この側
面14Bに取っ手14Cを設けてなり、前記底面14Aは平坦
に形成されている。
A tray 14 for holding the sample 13 of mortar T is made of stainless steel, and the tray 14 is the upper surface 7 of the heater 6.
It has a circular bottom surface 14A and a side surface 14B which are substantially the same shape as the above, and is provided with a handle 14C on the side surface 14B, and the bottom surface 14A is formed flat.

【0017】図3及び図4に示す計量演算装置21は、上
部に計量室22を設け、この計量室22内に、計量手段たる
電子天秤23の計量台24を臨んで設け、また、前記計量室
22を覆う開閉カバー25を設け、この開閉カバー25の後部
を計量演算装置21に枢着し、さらに、該開閉カバー25の
前面にハンドル26を設けており、また、前記開閉カバー
25の上面に前記計量室22内を視認可能な観測窓27を設け
ている。前記計量演算装置21はCPUなどからなる演算
手段28を内蔵し、また、その前面には操作パネル29及び
演算結果を印刷するプリンタ30の用紙排出口31が設けら
れている。さらに、それら電子天秤23、演算手段28及び
プリンタ30は、電源コード32を介して家庭用電源等に電
気的に接続される。
3 and 4 is provided with a weighing chamber 22 at an upper portion thereof, and a weighing table 24 of an electronic balance 23 as a weighing means is provided in the weighing chamber 22 so as to face the weighing chamber 22. Room
An opening / closing cover 25 that covers 22 is provided, a rear portion of the opening / closing cover 25 is pivotally attached to the weighing / calculating device 21, and a handle 26 is provided on the front surface of the opening / closing cover 25.
An observation window 27 that allows the inside of the weighing chamber 22 to be visually recognized is provided on the upper surface of 25. The weighing / calculating device 21 incorporates a calculating means 28 including a CPU and the like, and on the front surface thereof, an operation panel 29 and a paper discharge port 31 of a printer 30 for printing the calculation result are provided. Further, the electronic balance 23, the computing means 28, and the printer 30 are electrically connected to a household power source or the like via a power cord 32.

【0018】次に前記装置1,21を用いた測定方法と前
記演算手段28の構成につき説明すると、まず、フレッシ
ュコンクリートは、水、セメント、細骨材、粗骨材及び
混和剤を配合して混合し、それらの割合が既知であっ
て、所定の水セメント比としたものを使用し、例えば当
日出荷するフレッシュコンクリートである生コンクリー
トや、コンクリートミキサー車により現場に搬入した生
コンクリートの一部を採取し、さらに、この生コンクリ
ートからウエットスクリーニングによりモルタルTの試
料13を採取する。このウエットスクリーニングにおいて
は、5ミリ篩(図示せず)を用いて、モルタルTと粗骨
材とに分離し、すなわち前記生コンクリートから粗骨材
を分離してモルタル試料13を得る。また、実際の作業に
は、生コンクリートを篩分けし、モルタルTを受け容器
(図示せず)に入れ、この受け容器内のモルタルTを前
記受皿14にスプーン(図示せず)などを用いて例えば4
00グラム程度入れるものであるが、この作業に使用す
る前記篩、受け容器及びスプーンなど用具は、湿ったタ
オルで拭いた湿潤状態にして使用し、試料採取作業に伴
う水分誤差の発生を防止する。
Next, the measuring method using the devices 1 and 21 and the constitution of the calculating means 28 will be explained. First, fresh concrete is prepared by mixing water, cement, fine aggregate, coarse aggregate and admixture. Mix and use those with a known water-cement ratio, and, for example, fresh concrete that is fresh concrete to be shipped on the same day, or part of the fresh concrete that was brought into the site by a concrete mixer truck. A sample 13 of mortar T is collected by wet screening from this fresh concrete. In this wet screening, a mortar sample 13 is obtained by separating the mortar T and the coarse aggregate using a 5 mm sieve (not shown), that is, separating the coarse aggregate from the green concrete. Further, in the actual work, fresh concrete is sieved and put into a receiving container (not shown) of the mortar T, and the mortar T in the receiving container is put into the receiving tray 14 with a spoon (not shown) or the like. Eg 4
About 100 grams is put in, but the equipment used for this work, such as the sieve, receiving container, and spoon, is used in a wet state wiped with a damp towel to prevent the occurrence of a water error associated with the sampling operation. .

【0019】このようにしてフレッシュコンクリートか
ら採取したモルタル試料13を、受皿14ごと前記電子天秤
23の計量台24に乗せ、開閉カバー25を閉め、試料13の乾
燥前重量M1 を測定する。この場合、予め受皿14の重量
を計量しておき、測定重量から受皿14の重量を減ずるこ
とにより試料13の乾燥前重量M1 が得られ、前記演算手
段28は、この計算を行うと共に、前記乾燥前重量M1
記憶する。
The mortar sample 13 thus collected from the fresh concrete is put together with the pan 14 into the electronic balance.
The sample 13 is placed on a weighing table 24, the open / close cover 25 is closed, and the weight M 1 of the sample 13 before drying is measured. In this case, the weight of the saucer 14 is measured in advance, and the weight before drying M 1 of the sample 13 is obtained by subtracting the weight of the saucer 14 from the measured weight, and the calculating means 28 performs the calculation and The weight M 1 before drying is stored.

【0020】次に乾燥装置1により、減圧状態で試料13
の乾燥を行う。まず、試料13を入れた受皿14をヒータ6
の上面7に載置し、図示しないクランプ機構により前記
底面14Aを前記上面7に密着状態で固定する。このよう
に密着することにより、ヒータ6の熱が試料13の均一に
伝わると共に、ヒータ6の熱が無駄なく水の気化熱に変
換される。開閉蓋3を閉めて減圧室2内を密封したら操
作パネル12を操作してヒータ6及び真空ポンプ8を作動
する。そしてヒータ6の加熱温度を250°C、真空ポ
ンプ8の連続吸引により減圧室2を絶対圧160mmHg以
下で試料13の加熱乾燥を行う。この状態を示す図6のグ
ラフは、同一条件の実験において、横軸に時間を取り、
縦軸に温度を取り、ヒータ6、減圧室2、試料13の温度
及び室温の変化を示すものであり、ヒータ6による加熱
と真空ポンプ8の作動を同時に開始すると、略1分後に
は減圧室2の絶対圧が160mmHg以下となり、この真空
に近い減圧状態で水の沸点が降下し、50°C以下の略
20〜30°Cの温度で試料13の水が蒸発する。ヒータ
6の温度が緩やかに上昇するのは、ヒータ6の熱が水の
気化熱となって奪われるためであり、試料13の温度が略
12分経過するまで、略20〜30°Cでほぼ一定して
いるのは、水が気化していることを示しており、試料13
中の気化する水が無くなった12分経過後からは、ヒー
タ6の温度が250°Cに達し、その250°Cで前記
温度制御装置によってほぼ一定温度となり、同時に試料
13は残ったセメント、細骨材等自体の温度が上昇し、グ
ラフに示す緩やかな上り傾斜となる。そしてほぼ400
グラムの試料13を使用する本方法では、上記の条件で1
2分後には、試料13の結合水を除いた水が完全に蒸発す
るが、その12分より長い18分を減圧加熱時間とし
た。このようにして試料13中の水を略20〜30°Cと
いう低温で比較的短時間にて蒸発させるため、加熱中の
セメントの水和作用を抑制することができる。尚、1気
圧は、絶対圧760mmHgである。
Next, by using the drying device 1, the sample 13 was depressurized.
To dry. First, set the pan 14 containing the sample 13 to the heater 6
The bottom surface 14A is fixed to the top surface 7 in a close contact state by a clamp mechanism (not shown). Due to such close contact, the heat of the heater 6 is uniformly transferred to the sample 13, and the heat of the heater 6 is converted into the heat of vaporization of water without waste. After closing the opening / closing lid 3 and sealing the inside of the decompression chamber 2, the operation panel 12 is operated to operate the heater 6 and the vacuum pump 8. Then, the heating temperature of the heater 6 is 250 ° C., and the vacuum chamber 8 is continuously sucked to heat and dry the sample 13 in the decompression chamber 2 at an absolute pressure of 160 mmHg or less. In the graph of FIG. 6 showing this state, in the experiment under the same conditions, the horizontal axis shows time,
The temperature is plotted on the vertical axis, and changes in the temperature of the heater 6, the decompression chamber 2, the sample 13 and the room temperature are shown. When heating by the heater 6 and the operation of the vacuum pump 8 are started at the same time, the decompression chamber takes about 1 minute. The absolute pressure of 2 becomes 160 mmHg or less, the boiling point of water falls under the reduced pressure close to this vacuum, and the water of sample 13 evaporates at a temperature of about 20 to 30 ° C below 50 ° C. The reason why the temperature of the heater 6 gradually rises is that the heat of the heater 6 is removed as vaporization heat of water, and the temperature of the sample 13 is kept at about 20 to 30 ° C. for about 12 minutes. The constant indicates that the water is vaporizing, and sample 13
The temperature of the heater 6 reached 250 ° C. after 12 minutes when the vaporized water in the sample disappeared, and at 250 ° C., the temperature became almost constant by the temperature control device.
In No. 13, the temperature of the remaining cement, fine aggregate, etc. itself rises, and the slope gradually rises as shown in the graph. And almost 400
This method using gram of sample 13
After 2 minutes, the water excluding the bound water of the sample 13 was completely evaporated, and 18 minutes, which was longer than 12 minutes, was set as the reduced pressure heating time. In this way, the water in the sample 13 is evaporated at a low temperature of about 20 to 30 ° C. in a relatively short time, so that the hydration action of the cement during heating can be suppressed. In addition, 1 atm is an absolute pressure of 760 mmHg.

【0021】続いて減圧加熱処理後の試料13を電子天秤
23に乗せ、試料13の乾燥後重量M2を計測し、前記演算
手段28は、この試料13の重量計算を行うと共に、得られ
た乾燥後重量M2 を記憶する。このようにして乾燥前,
乾燥後の重量M1 ,M2 を算出し、既知のセメント、水
及び細骨材の乾燥前,乾燥後の重量M1 ,M2 から前記
演算手段28が推定単位水量などを算出する。尚、本発明
では、単位水量、単位セメント量、単位骨材量などの用
語は、コンクリート配合による既知のものであり、推定
単位水量、推定水セメント比などの用語は、本測定方法
により算出したものを示す。
Subsequently, the sample 13 after the reduced pressure heat treatment was subjected to an electronic balance.
The sample 13 is placed on the table 23 and the weight M 2 of the sample 13 after drying is measured. The calculating means 28 calculates the weight of the sample 13 and stores the obtained weight M 2 after drying. In this way before drying,
Calculating the weight M 1, M 2 after drying, known cement, prior to drying of the water and fine aggregate, after drying weight M 1, M 2 from the calculating means 28 calculates the like estimated unit water. In the present invention, terms such as unit water amount, unit cement amount, unit aggregate amount and the like are known by concrete mixing, and terms such as estimated unit water amount and estimated water cement ratio are calculated by this measurement method. Show things.

【0022】ここでさらに、発明者は、推定単位水量の
精度を高めるため、以下の予備実験などを行うと共に、
そのデータを基に上記測定から得られる推定単位水量の
補正を行い、これを演算手段28に予めデータとして組み
入れ、あるいは操作パネル29から入力して、一層精度の
高い推定単位水量及びこれに基づく推定水セメント比な
どを算出可能とした。以下に、実験及びデータを説明す
る。
Further, in order to improve the accuracy of the estimated unit water amount, the inventor further conducts the following preliminary experiments, and
The estimated unit water amount obtained from the above measurement is corrected based on the data, and this is incorporated into the computing means 28 in advance as data or is input from the operation panel 29 to obtain a more accurate estimated unit water amount and estimation based on this. It was possible to calculate the water cement ratio. The experiment and data are described below.

【0023】第1に、本方法では、減圧加熱処理を用い
ることにより、加熱時のセメントの水和を抑制すること
が可能となったが、例えば生コンクリートをコンクリー
トミキサー車で現場まで運ぶ場合等では、ミキサー車に
コンクリートを積んでから、所定時間が経過した後、測
定を行うこととなるから、その間にセメントに結合水と
して水が取り込まれることとなる。このため、試料13に
結合水として取り込まれた水分量を補正するため、前記
18分の減圧加熱処理後の試料13の強熱減量試験を行
い、この強熱減量試験から前記18分の減圧加熱処理後
の試料13の結合水の割合を各水セメント比ごとに求め
る。
First, in the present method, it was possible to suppress the hydration of cement during heating by using the reduced pressure heat treatment. For example, when carrying fresh concrete to the site by a concrete mixer truck, etc. Then, after the concrete time is loaded on the mixer truck, the measurement is carried out after a predetermined time has passed, so that water is taken into the cement as bound water during that time. Therefore, in order to correct the amount of water taken in as bound water in the sample 13, the ignition loss test of the sample 13 after the reduced pressure heating treatment for 18 minutes was performed, and from this ignition loss test, the reduced pressure heating for 18 minutes was performed. The ratio of the bound water of the treated sample 13 is calculated for each water cement ratio.

【0024】[0024]

【表1】 [Table 1]

【0025】上記表1は、一例としてコンクリートの配
合により水セメント比が50パーセントの試料13の強熱
減量値Xを、前記18分の減圧加熱処理後に強熱減量試
験によりそれぞれ求めたものであり、かつその減圧加熱
処理前の練置き時間を0分、60分後、90分後として
セメント質量に対する強熱減量の値Xをパーセントで示
している。すなわち値Xは各練置き時間後に前記減圧加
熱処理をした試料13中のセメントに結合水として含まれ
る水の重量パーセントを示す。そして上記表1以外に
も、異なる水セメント比(40、45、50、55、6
0パーセントなど)の試料13を、例えば30分刻みごと
の各練置き時間後に、同様にして強熱減量試験により、
前記減圧加熱処理後にセメントに結合水として残る水の
重量パーセントを算出し、これらの値Xを前記演算処理
手段28に記憶させておく。あるいは経過時間と水セメン
ト比を入力すると、前記演算処理手段28がそれらの条件
に該当する値Xを用いて演算を行う。尚、強熱減量試験
は、土質工学会基準(JSFT221−1990)の土
の強熱減量試験方法を基準として行い、前記減圧加熱処
理後の試料13の一部をるつぼに入れ、試料13の一部と共
にるつぼの重量を測定し、該るつぼを700〜800°
Cで2〜4時間加熱し、前記試料13の一部が一定重量に
なるまで加熱し、減少した重量を前記試料の一部の重量
に対する百分率により求める。
Table 1 above shows, as an example, the ignition loss value X of Sample 13 having a water-cement ratio of 50% due to the mixing of concrete by the ignition loss test after the reduced pressure heating treatment for 18 minutes. Moreover, the value X of the loss on ignition with respect to the cement mass is shown as a percentage, assuming that the kneading time before the reduced pressure heat treatment is 0 minutes, 60 minutes, and 90 minutes later. That is, the value X indicates the weight percentage of water contained as the bound water in the cement in the sample 13 which was subjected to the reduced pressure heat treatment after each kneading time. And besides the above Table 1, different water cement ratios (40, 45, 50, 55, 6
0%, etc.) of the sample 13 is, for example, after each kneading time every 30 minutes, by the same ignition loss test,
The weight percentage of water remaining as bound water in the cement after the reduced pressure heat treatment is calculated, and these values X are stored in the arithmetic processing means 28. Alternatively, when the elapsed time and the water-cement ratio are input, the arithmetic processing means 28 performs arithmetic using the value X corresponding to those conditions. The ignition loss test is carried out based on the soil ignition loss test method of the Japan Society of Soil Engineering (JSFT221-1990), and a part of the sample 13 after the reduced pressure heat treatment is put into a crucible to obtain one of the samples 13. The crucible is weighed together with the parts, and the crucible is set to 700 to 800 °.
Heat at C for 2-4 hours, heat until a portion of the sample 13 reaches a constant weight, and determine the reduced weight as a percentage of the weight of the portion of the sample.

【0026】第2に試料とする細骨材の吸水率に基いた
補正を行う。配合設計の細骨材は、表乾状態の細骨材を
基準し、実際には含水した細骨材を混合してコンクリー
トを製造する。このため、前記減圧加熱処理により、細
骨材が含む吸水率に対応した水分も蒸発することとな
る。そこで、コンクリートに配合する細骨材の吸水率P
に基き、細骨材の比重及び吸水率試験方法(JIS A
1109−1993)を適用した補正を行う。そし
て、実際の作業では、使用するコンクリートの細骨材の
吸水率Pを操作パネル29により前記演算手段28に入力す
る。この入力により、前記演算手段28は、下記の各演算
式などに基づき、推定単位数量Wa,推定水セメント比
Ha,コンクリート強度σなどを算出し、前記プリンタ
ー30に印刷する。
Secondly, correction is made based on the water absorption rate of the fine aggregate used as the sample. The fine aggregate of the mix design is based on the fine aggregate in the surface dry state, and actually, the fine aggregate that contains water is mixed to produce concrete. Therefore, the reduced pressure heat treatment also evaporates the water content corresponding to the water absorption rate of the fine aggregate. Therefore, the water absorption rate P of the fine aggregate mixed in the concrete
Based on JIS, specific gravity and water absorption test method of fine aggregate (JIS A
1109-1993) is applied. Then, in the actual work, the water absorption rate P of the concrete fine aggregate to be used is input to the calculating means 28 by the operation panel 29. By this input, the calculating means 28 calculates the estimated unit quantity Wa, the estimated water cement ratio Ha, the concrete strength σ, etc. based on the following respective equations, and prints them on the printer 30.

【0027】以下の数1,2,3の式における記号はコ
ンクリート配合時の各値を示し、Cは単位センメント量
(Kg/m3 )、Wは単位水量(Kg/m3 )、Sは単
位細骨材量(Kg/m3 )、Pは細骨材の吸水率をそれ
ぞれ示している。
The symbols in the following formulas 1, 2 and 3 indicate respective values when concrete is mixed, C is a unit amount of sentinum (Kg / m 3 ), W is a unit amount of water (Kg / m 3 ), and S is Unit fine aggregate amount (Kg / m 3 ), P indicates the water absorption rate of the fine aggregate.

【0028】[0028]

【数1】 [Equation 1]

【0029】[0029]

【数2】 [Equation 2]

【0030】[0030]

【数3】 (Equation 3)

【0031】上記数1について説明すると、減圧加熱処
理の前後で求めた乾燥前重量M1 と乾燥後重量M2
り、コンクリート配合により既知の単位センメント量
C、単位水量W及び単位細骨材量Sを加算した単位モル
タル量に含まれる推定単位水量を算出し、これに上述し
た実験で得た強熱減量値Xに単位セメント量Cを掛けた
値を加算して、減圧加熱処理後にセメントに結合水とし
て含まれる水量の補正を行い、さらに、配合時に細骨材
に含まれた水分を、使用する細骨材ごとに既知の吸水率
Pを基に、減じる補正を行う。尚、この吸水率Pによる
補正は、上述したようにコンクリート配合においては、
表乾状態の細骨材を用いるものであり、この細骨材に含
まれる水分が減圧加熱処理により蒸発し、この分だけ推
定単位水量が大きくなるため、吸水率Pを基に細骨材に
含まれていた単位水量を減じる補正を行う。
Explaining Equation 1 above, based on the pre-drying weight M 1 and post-drying weight M 2 obtained before and after the reduced pressure heat treatment, the unit cement amount C, the unit water amount W and the unit fine aggregate amount known by the concrete mixing are known. The estimated unit water amount contained in the unit mortar amount obtained by adding S is calculated, and the value obtained by multiplying the ignition loss value X obtained in the above-mentioned experiment by the unit cement amount C is added to the cement after the reduced pressure heat treatment. The amount of water contained as bound water is corrected, and further, the water contained in the fine aggregate at the time of blending is reduced based on the known water absorption rate P for each fine aggregate used. In addition, as described above, the correction by the water absorption rate P is as follows.
Since the fine aggregate in the surface dry state is used, the water contained in the fine aggregate is evaporated by the reduced pressure heat treatment, and the estimated unit water amount increases by this amount. Make a correction to reduce the included unit water volume.

【0032】上記数2は、上記表1により得られた単位
水量Waにより、推定水セメント比Haを算出する式で
ある。
Equation 2 is an equation for calculating the estimated water cement ratio Ha from the unit water amount Wa obtained from Table 1 above.

【0033】上記数3は、コンクリート強度σを算出す
る回帰式の一例であり、生コン工場の実績に基づき使用
されており、各生コン工場ごとに異なるが、単位セメン
ト量Cと単位水量Wを基に、コンクリート強度を得るこ
とができ、単位水量Wを推定単位水量に置き換えれば、
推定コンクリート強度を算出できることが分かる。
The above mathematical formula 3 is an example of a regression equation for calculating the concrete strength σ, which is used based on the results of the ready-mixed concrete plant, and is different for each ready-mixed plant, but it is based on the unit cement amount C and the unit water amount W. In addition, if the concrete strength can be obtained and the unit water volume W is replaced with the estimated unit water volume,
It can be seen that the estimated concrete strength can be calculated.

【0034】以下の表2は、各水セメント比C、各単位
水量Wで、かつ細骨材、粗骨材及び混和剤の配合を変え
た15種類のサンプルの推定単位水量Wa及び推定水セ
メント比Haを、本方法により測定算出したものを示
し、高い精度で測定できることが判明した。
The following Table 2 shows the estimated unit water amount Wa and the estimated water cement of 15 kinds of samples with each water cement ratio C, each unit water amount W, and different composition of fine aggregate, coarse aggregate and admixture. The ratio Ha was measured and calculated by this method, and it was revealed that the ratio Ha can be measured with high accuracy.

【0035】[0035]

【表2】 [Table 2]

【0036】このように本実施例では請求項1に対応し
て、フレッシュコンクリートからモルタル試料13を採取
し、この試料13の重量M1 を測定し、この試料13を減圧
空間内で加熱し、水分が蒸発した後、試料13の重量M2
を測定し、水分蒸発後の試料13の重量差により推定単位
水量を求める測定方法であるから、減圧空間内で試料13
を加熱するため、水の沸点が下がり、比較的低温で短時
間にて水が蒸発し、また、低温でかつ短時間で水が蒸発
するため、セメントの水和による結合水の発生が抑制さ
れ、蒸発前後の試料13の重量を測定することにより、結
合水の影響の少ない正確な推定単位水量を得ることがで
きる。
As described above, in this embodiment, according to claim 1, a mortar sample 13 is taken from fresh concrete, the weight M 1 of the sample 13 is measured, and the sample 13 is heated in a decompressed space, After evaporation of water, weight of sample 13 M 2
Is measured and the estimated unit water amount is obtained by the weight difference of the sample 13 after evaporation of water, so that the sample 13
Since the boiling point of water is lowered, the water evaporates at a relatively low temperature in a short time, and the water evaporates at a low temperature in a short time, so that the generation of bound water due to hydration of cement is suppressed. By measuring the weight of the sample 13 before and after evaporation, it is possible to obtain an accurate estimated unit water amount with little influence of bound water.

【0037】また、請求項2に対応して、減圧空間の絶
対圧が、160mmHg以下であるから、水の沸点が低下
し、低温で水が蒸発する。
Further, according to the second aspect, since the absolute pressure of the decompression space is 160 mmHg or less, the boiling point of water is lowered and the water evaporates at a low temperature.

【0038】さらに、請求項3に対応して、試料13の温
度を50度以下に保持して加熱するから、減圧下で試料
13を加熱し、水の気化熱に相当する熱を供給することに
より、50度以下で試料13を加熱するため、セメントの
水和作用を抑制することができる。
Further, according to claim 3, since the temperature of the sample 13 is maintained at 50 ° C. or less and heated, the sample 13 is heated under reduced pressure.
By heating the sample 13 and supplying heat corresponding to the heat of vaporization of water, the sample 13 is heated at 50 ° C. or less, so that the hydration action of the cement can be suppressed.

【0039】このように本実施例では請求項4に対応し
て、密閉可能な減圧室2と、この減圧室2内に入れたフ
レッシュコンクリートから採取したモルタル試料13を加
熱する加熱手段たるヒータ6と、減圧室2に接続された
減圧用吸引装置たる真空ポンプ8と、試料13の重量を測
定する計量手段たる電子天秤23とを備えるものであるか
ら、減圧室2内に試料13を密閉状態で収納し、真空ポン
プ8を加熱中連続作動して減圧室2内を減圧し、この減
圧状態で試料13を加熱し、低沸点で水を短時間に蒸発さ
せることができる。
As described above, in this embodiment, according to the fourth aspect, the sealable decompression chamber 2 and the heater 6 as a heating means for heating the mortar sample 13 taken from the fresh concrete contained in the decompression chamber 2 are used. And a vacuum pump 8 which is a vacuum suction device connected to the decompression chamber 2 and an electronic balance 23 which is a weighing means for measuring the weight of the sample 13. Therefore, the sample 13 is sealed in the decompression chamber 2. The vacuum pump 8 is continuously operated during heating to reduce the pressure in the decompression chamber 2, and the sample 13 is heated in this depressurized state to evaporate water at a low boiling point in a short time.

【0040】また、実施例上の効果として、減圧加熱処
理した試料13を強熱減量して種々の試料13の強熱減量値
Xを予め算出し、この強熱減量値Xにより補正すること
により、正確な推定単位水量Waなどを求めることがで
き、さらに、使用する細骨材の吸水率Pを用いて、減圧
加熱処理で蒸発した細骨材中の水分量を補正することに
より、一層正確な推定単位水量Waを求めることがで
き、強熱減量値Xを、経過時間ごとに予め強熱減量値X
を算出して使用するため、ミキサー車などで現場に搬入
したコンクリートの推定単位水量Waも正確に測定する
ことができる。また、減圧加熱処理中、真空ポンプ8を
連続作動するため、水の蒸発を促進することができる。
また、受皿14の底面14Aとヒータ6の上面7を平坦に形
成し、クランプ手段により両者が密着するように構成す
るとともに、該底面14Aと上面7とをほぼ同形に形成し
たから、ヒータ6の熱が試料13に効率よく伝達され、す
なわち図6に示したように、ヒータ6を加熱しても減圧
室2の温度が余り上昇せず、ヒータ6の熱が水の気化熱
に効率よく変換することができる。
Further, as an effect of the embodiment, by reducing the ignition loss of the sample 13 subjected to the reduced pressure heat treatment, the ignition loss values X of various samples 13 are calculated in advance, and the ignition loss values X are corrected by the ignition loss values X. It is possible to obtain an accurate estimated unit water amount Wa and the like, and further, by using the water absorption rate P of the fine aggregate to be used to correct the amount of water in the fine aggregate evaporated in the reduced pressure heat treatment, it becomes more accurate. The estimated unit water amount Wa can be calculated, and the ignition loss value X is calculated in advance for each elapsed time.
Since it is calculated and used, the estimated unit water amount Wa of the concrete brought into the site by a mixer truck or the like can be accurately measured. Further, since the vacuum pump 8 is continuously operated during the reduced pressure heat treatment, evaporation of water can be promoted.
Further, since the bottom surface 14A of the tray 14 and the top surface 7 of the heater 6 are formed flat and the two are made in close contact with each other by the clamping means, and the bottom surface 14A and the top surface 7 are formed in substantially the same shape, the heater 6 The heat is efficiently transferred to the sample 13, that is, as shown in FIG. 6, even if the heater 6 is heated, the temperature of the decompression chamber 2 does not rise so much, and the heat of the heater 6 is efficiently converted to the heat of vaporization of water. can do.

【0041】尚、本発明は上記実施例に限定されるもの
ではなく、本発明の要旨の範囲内において種々の変形実
施が可能である。例えば乾燥装置と計量演算装置を一体
化してもよく、さらに、ヒータに電子天秤を組み込ん
で、ヒータの上面に載置した受皿の重量を測定するよう
にしてもよい。また、コンクリートの各単位量に、生コ
ン納入業者が提出する印字記録のものを用いることもで
きる。さらに、加熱温度も適宜選定可能である。さら
に、減圧室内に試料の温度を測定する温度センサを設
け、この温度センサにより試料の温度が上昇したら、こ
れにより水の蒸発が完了したことが分かるから、この時
点で減圧加熱を終了するようにしてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, the drying device and the weighing calculation device may be integrated, and an electronic balance may be incorporated in the heater to measure the weight of the pan placed on the upper surface of the heater. Further, it is also possible to use, for each unit amount of concrete, a printed record submitted by a ready-mixed concrete supplier. Further, the heating temperature can be selected as appropriate. Further, a temperature sensor for measuring the temperature of the sample is provided in the decompression chamber, and when the temperature of the sample rises by this temperature sensor, it can be seen that the evaporation of water is completed. May be.

【0042】[0042]

【発明の効果】請求項1の発明は、フレッシュコンクリ
ートからモルタル試料を採取し、この試料の重量を測定
し、この試料を減圧空間内で加熱し、水分が蒸発した
後、試料の重量を測定し、水分蒸発後の試料の重量差に
より推定単位水量を求めるコンクリートの単位水量測定
方法であり、測定を短時間で行うことができ、推定単位
水量を正確に測定することができるコンクリートの単位
水量測定方法を提供することができる。
According to the first aspect of the present invention, a mortar sample is taken from fresh concrete, the weight of the sample is measured, and the sample is heated in a decompressed space to evaporate water, and then the weight of the sample is measured. However, it is a unit water amount measuring method of concrete that obtains the estimated unit water amount by the weight difference of the sample after water evaporation, and the unit water amount of concrete that can perform the measurement in a short time and can accurately measure the estimated unit water amount. A measurement method can be provided.

【0043】また、請求項2の発明は、前記減圧空間の
絶対圧が、160mmHg以下であるコンクリートの単位水
量測定方法であり、測定を短時間で行うことができ、推
定単位水量を正確に測定することができるコンクリート
の単位水量測定方法を提供することができる。
The invention according to claim 2 is a method for measuring a unit water amount of concrete in which the absolute pressure of the depressurized space is 160 mmHg or less, the measurement can be performed in a short time, and the estimated unit water amount is accurately measured. It is possible to provide a method for measuring the unit water amount of concrete that can be performed.

【0044】さらに、請求項3の発明は、前記試料の温
度を50度以下に保持して加熱するコンクリートの単位
水量測定方法であり、測定を短時間で行うことができ、
推定単位水量を正確に測定することができるコンクリー
トの単位水量測定方法を提供することができる。
Furthermore, the invention of claim 3 is a method of measuring the unit water content of concrete, in which the temperature of the sample is maintained at 50 ° C. or lower, and the unit water content can be measured in a short time.
It is possible to provide a method for measuring the unit water amount of concrete, which can accurately measure the estimated unit water amount.

【0045】請求項4の発明は、密閉可能な減圧室と、
この減圧室内に入れたフレッシュコンクリートから採取
したモルタル試料を加熱する加熱手段と、前記減圧室に
接続された減圧用吸引装置と、前記試料の重量を測定す
る計量手段とを備えるコンクリートの単位水量測定装置
であり、測定を短時間で行うことができ、推定単位水量
を正確に測定することができるコンクリートの単位水量
測定装置を提供することができる。
According to a fourth aspect of the invention, a decompression chamber capable of being closed is provided,
Unit water content measurement of concrete provided with heating means for heating a mortar sample taken from fresh concrete placed in this decompression chamber, a suction device for decompression connected to the decompression chamber, and weighing means for measuring the weight of the sample It is an apparatus, can perform measurement in a short time, and can provide a unit water amount measuring device for concrete that can accurately measure an estimated unit water amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す乾燥装置の断面図であ
る。
FIG. 1 is a sectional view of a drying device showing an embodiment of the present invention.

【図2】本発明の一実施例を示す乾燥装置の斜視図であ
る。
FIG. 2 is a perspective view of a drying device showing an embodiment of the present invention.

【図3】本発明の一実施例を示す計量演算装置の断面図
である。
FIG. 3 is a cross-sectional view of a weighing / calculating device showing an embodiment of the present invention.

【図4】本発明の一実施例を示す計量演算装置の斜視図
である。
FIG. 4 is a perspective view of a weighing / calculating device showing an embodiment of the present invention.

【図5】本発明の一実施例を示す測定手順を説明するフ
ローチャート図である。
FIG. 5 is a flow chart illustrating a measurement procedure according to an embodiment of the present invention.

【図6】本発明の一実施例を示す減圧加熱状態の試料及
びヒータの温度のグラフの図である。
FIG. 6 is a graph showing the temperature of a sample and a heater in a reduced pressure heating state showing an example of the present invention.

【符号の説明】[Explanation of symbols]

1 乾燥装置 2 減圧室 6 ヒータ(加熱手段) 8 真空ポンプ(減圧用吸引装置) 13 試料 21 計量演算装置 23 電子天秤(計量手段) M1 乾燥前重量 M2 乾燥後重量 Wa 推定単位水量1 Drying device 2 Decompression chamber 6 Heater (heating means) 8 Vacuum pump (decompression suction device) 13 Sample 21 Measuring / calculating device 23 Electronic balance (measuring means) M 1 Weight before drying M 2 Weight after drying Wa Estimated unit water amount

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 明文 新潟県長岡市上富岡町1603−1 長岡技術 科学大学内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akifumi Yamada 1603-1 Kamitomioka-cho, Nagaoka-shi, Niigata Nagaoka University of Technology

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フレッシュコンクリートからモルタル試
料を採取し、この試料の重量を測定し、この試料を減圧
空間内で加熱し、水分が蒸発した後、試料の重量を測定
し、水分蒸発後の試料の重量差により推定単位水量を求
めることを特徴とするコンクリートの単位水量測定方
法。
1. A mortar sample is taken from fresh concrete, the weight of the sample is measured, and the sample is heated in a decompressed space to evaporate water, and then the weight of the sample is measured to obtain a sample after evaporation of water. A method for measuring the unit water volume of concrete, characterized in that the estimated unit water volume is obtained from the difference in weight.
【請求項2】 前記減圧空間の絶対圧が、160mmHg以
下であることを特徴とする請求項1記載のコンクリート
の単位水量測定方法。
2. The concrete water content measuring method according to claim 1, wherein the absolute pressure of the decompression space is 160 mmHg or less.
【請求項3】 前記試料の温度を50度以下に保持して
加熱することを特徴とする請求項1又は2記載のコンク
リートの単位水量測定方法。
3. The method for measuring the unit water content of concrete according to claim 1, wherein the sample is heated while being kept at a temperature of 50 ° C. or lower.
【請求項4】 密閉可能な減圧室と、この減圧室内に入
れたフレッシュコンクリートから採取したモルタル試料
を加熱する加熱手段と、前記減圧室に接続された減圧用
吸引装置と、前記試料の重量を測定する計量手段とを備
えることを特徴とするコンクリートの単位水量測定装
置。
4. A hermetic decompression chamber, a heating means for heating a mortar sample collected from fresh concrete placed in the decompression chamber, a decompression suction device connected to the decompression chamber, and a weight of the sample. A unit water content measuring device for concrete, comprising a measuring means for measuring.
JP14761095A 1995-06-14 1995-06-14 Concrete unit water volume measurement method Expired - Lifetime JP2952277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14761095A JP2952277B2 (en) 1995-06-14 1995-06-14 Concrete unit water volume measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14761095A JP2952277B2 (en) 1995-06-14 1995-06-14 Concrete unit water volume measurement method

Publications (2)

Publication Number Publication Date
JPH08338838A true JPH08338838A (en) 1996-12-24
JP2952277B2 JP2952277B2 (en) 1999-09-20

Family

ID=15434224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14761095A Expired - Lifetime JP2952277B2 (en) 1995-06-14 1995-06-14 Concrete unit water volume measurement method

Country Status (1)

Country Link
JP (1) JP2952277B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337085A (en) * 2000-05-29 2001-12-07 Kett Electric Laboratory Method for inferring unit water amount of ready mixed concrete
FR2820143A1 (en) * 2001-01-31 2002-08-02 Garnier Ets Wine-making procedure uses evaporation and condensation to produce wine with increased alcohol content
JP2003014602A (en) * 2001-07-04 2003-01-15 Marui:Kk Water meter of uncured kneaded object
JP2009222509A (en) * 2008-03-14 2009-10-01 Dic Corp Concrete evaluation device and concrete evaluation method
JP2013142627A (en) * 2012-01-11 2013-07-22 Shimadzu Corp Moisture meter
CN106092817A (en) * 2016-07-29 2016-11-09 广东惠利普路桥信息工程有限公司 A kind of bridge construction concrete moisture content monitoring device
CN109732777A (en) * 2019-02-24 2019-05-10 桐乡市阑悦服饰有限公司 A kind of bridge construction monitoring device and monitoring method
CN110608972A (en) * 2019-10-21 2019-12-24 中国地质科学院岩溶地质研究所 Direct type soil moisture content check out test set
JP2021117050A (en) * 2020-01-23 2021-08-10 鹿島建設株式会社 Water content measuring apparatus of ground material and water content measuring method of ground material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100939060B1 (en) * 2008-01-16 2010-01-28 한국표준과학연구원 Density measurement device and measurement method using vacuum

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337085A (en) * 2000-05-29 2001-12-07 Kett Electric Laboratory Method for inferring unit water amount of ready mixed concrete
JP4583552B2 (en) * 2000-05-29 2010-11-17 株式会社ケット科学研究所 Method for estimating unit water volume of ready-mixed concrete
FR2820143A1 (en) * 2001-01-31 2002-08-02 Garnier Ets Wine-making procedure uses evaporation and condensation to produce wine with increased alcohol content
JP2003014602A (en) * 2001-07-04 2003-01-15 Marui:Kk Water meter of uncured kneaded object
JP4725908B2 (en) * 2001-07-04 2011-07-13 株式会社マルイ Water meter for uncured kneaded material
JP2009222509A (en) * 2008-03-14 2009-10-01 Dic Corp Concrete evaluation device and concrete evaluation method
JP2013142627A (en) * 2012-01-11 2013-07-22 Shimadzu Corp Moisture meter
CN106092817A (en) * 2016-07-29 2016-11-09 广东惠利普路桥信息工程有限公司 A kind of bridge construction concrete moisture content monitoring device
CN109732777A (en) * 2019-02-24 2019-05-10 桐乡市阑悦服饰有限公司 A kind of bridge construction monitoring device and monitoring method
CN110608972A (en) * 2019-10-21 2019-12-24 中国地质科学院岩溶地质研究所 Direct type soil moisture content check out test set
JP2021117050A (en) * 2020-01-23 2021-08-10 鹿島建設株式会社 Water content measuring apparatus of ground material and water content measuring method of ground material

Also Published As

Publication number Publication date
JP2952277B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP2952277B2 (en) Concrete unit water volume measurement method
US8225526B2 (en) Device and methods for rapid drying of porous materials
US7401501B2 (en) Method and apparatus for determining liquid absorption of aggregate
Dibdin The stability of water in human dental enamel studied by proton nuclear magnetic resonance
JP5006150B2 (en) Method and apparatus for measuring free water
JP2001289766A (en) Percentage of aggregate water absorption measuring method, aggregate surface moisture ratio measuring method, surface moisture removing device, and mortar constituent extracting apparatus
JP2015219194A (en) Apparatus for measuring unit water content of concrete
Sorenson et al. Thermodynamics of proton dissociations from aqueous L-proline: apparent molar volumes and apparent molar heat capacities of the protonated cationic, zwitterionic, and deprotonated anionic forms at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa
JP3525802B2 (en) Method for measuring surface water ratio of fine aggregate and measuring method of concrete material using the same
JP2000146797A (en) Method and apparatus for measurement of moisture content of fresh concrete as well as promotion method for drying of civil engineering and construction material
JPH1183718A (en) Method for measuring density of inorganic hydraulic substance and method for measuring unit water content of inorganic hydraulic kneaded matter
JP3446813B2 (en) Method and apparatus for measuring water content of fresh concrete
JP4315400B2 (en) Method and device for measuring unit water volume of fresh concrete
JP2002090279A (en) Measuring device of unit water quantity of concrete
JP2005283363A (en) Method to measure the amount of water except for water absorption of aggregate of ready-mixed concrete
JPH1183846A (en) Estimation method for unit water quantity of concrete and measuring method for moisture quantity in concrete
Poyet et al. A simple method to measure the isosteric energy of adsorption
Jones et al. The dissolution and growth of Barium Iodate crystals: I. Rates of dissolution and growth
JP3388294B2 (en) Method and apparatus for measuring moisture content of sludge
JP2002214105A (en) Volatile component quantity measuring device and volatile component quantity measuring method
Hooghoudt 115. IRREVERSIBLY DESICCATED PEAT, CLAYEY PEAT AND PEATY CLAY SOILS; THE DETERMINATION OF THE DEGREE OF REVERSIBILITY
JP2873377B2 (en) Non-destructive method and apparatus for measuring tritium content in concrete
JP2758673B2 (en) Calibration curve preparation method for high-strength concrete component measurement
JP4096220B2 (en) Concrete material measurement method
JP3076378U (en) Concrete unit water volume measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term