JPH0833474B2 - How to operate a nuclear reactor - Google Patents

How to operate a nuclear reactor

Info

Publication number
JPH0833474B2
JPH0833474B2 JP61289837A JP28983786A JPH0833474B2 JP H0833474 B2 JPH0833474 B2 JP H0833474B2 JP 61289837 A JP61289837 A JP 61289837A JP 28983786 A JP28983786 A JP 28983786A JP H0833474 B2 JPH0833474 B2 JP H0833474B2
Authority
JP
Japan
Prior art keywords
fuel
core
nuclear reactor
cross
high conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61289837A
Other languages
Japanese (ja)
Other versions
JPS63142293A (en
Inventor
幸治 藤村
貞夫 内川
泰典 別所
博見 丸山
知行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61289837A priority Critical patent/JPH0833474B2/en
Publication of JPS63142293A publication Critical patent/JPS63142293A/en
Publication of JPH0833474B2 publication Critical patent/JPH0833474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽水減速沸騰水型原子炉の運転方法に係
り、特に、高燃焼度・省ウランを達成するのに好適な原
子炉の運転方法に関する。
Description: TECHNICAL FIELD The present invention relates to an operation method of a light water moderated boiling water reactor, and particularly to an operation of a reactor suitable for achieving high burnup and uranium saving. Regarding the method.

〔従来の技術〕[Conventional technology]

軽水減速型原子炉において、濃縮ウランを用いたワン
ススルー方式で高燃焼度を達成し、ウランの有効利用を
図るために、例えば特開昭61−129594号に開示されてい
る高転換バーナー型炉心が開発された。この炉心は、第
2図に示すように、炉心を半径方向に分割して、燃料の
水素対ウラン原子数比(以下、H/Uという)の異なる領
域を設け、燃料の寿命前半はH/Uの小さい高転換領域に
装荷し、後半はH/Uの大きいバーナー領域に装荷する炉
心構成を採つている。すなわち、炉心滞在期間前半はH/
Uが小さく中性子スペクトルの硬い領域(高転換領域
A)に装荷し、燃料親物質の核分裂性物質への転換を図
り、炉心滞在期間後半はH/Uが大きく中性子スペクトル
の軟い領域(バーナー領域B)に装荷し、核分裂性物質
を効率よく燃焼させることを意図している。
In a light water moderator reactor, in order to achieve a high burnup by a once-through method using enriched uranium and to effectively utilize uranium, for example, a high conversion burner core disclosed in JP-A-61-129594. Was developed. As shown in FIG. 2, this core is divided into radial regions to provide regions with different hydrogen to uranium atomic number ratios of fuel (hereinafter referred to as H / U). The core configuration is such that it is loaded in the high conversion area with a small U and the latter half is loaded in the burner area with a large H / U. That is, during the first half of the core stay period, H /
U is small and is loaded in the hard region of the neutron spectrum (high conversion region A) to convert the fuel parent material to fissile material. In the latter half of the core stay period, H / U is large and the neutron spectrum is soft region (burner region). It is intended to be loaded in B) and efficiently burn the fissile material.

このときの中性子無限増倍率の燃焼度依存性を第3図
に示す。高濃縮度ウラン燃料である新燃料が装荷される
高転換領域は、中性子無限増倍率が低く、燃焼の進んだ
燃料が装荷されるバーナー領域は中性子無限増倍率が高
くなるため、出力ミスマツチを低減でき、また燃料の余
剰反応度を低く抑えることができる。
Fig. 3 shows the burnup dependence of the infinite neutron multiplication factor at this time. The high conversion region where new fuel, which is a highly enriched uranium fuel, is loaded has a low neutron infinite multiplication factor, and the burner region where advanced combustion fuel is loaded has a high neutron infinite multiplication factor, reducing output mismatch. In addition, the excess reactivity of the fuel can be suppressed to a low level.

従来の沸騰水型原子炉の制御棒は板状で、各燃料集合
体のチヤンネルボツクスの外側の隙間を移動できるよう
に設置されている。これに対して、高転換バーナー炉に
おいては、燃料棒1が稠密に配置されており、格子状に
配置した燃料棒位置の一部に燃料棒に代えて制御棒案内
管が置かれ、その中を棒状の制御棒2が移動するクラス
ター型制御棒が用いられている。
The control rod of the conventional boiling water reactor is plate-shaped and is installed so that it can move in the gap outside the channel box of each fuel assembly. On the other hand, in the high conversion burner furnace, the fuel rods 1 are densely arranged, and the control rod guide tubes are placed in place of the fuel rods at a part of the fuel rod positions arranged in a lattice pattern. A cluster type control rod in which the rod-shaped control rod 2 moves is used.

さて、沸騰水型原子炉においては、沸騰により炉心下
部に蒸気泡(ボイド)が発生し、炉心上部ほど冷却材中
に占めるボイド体積割合が大きくなる。つまり、燃料集
合体のH/Uが炉心下部ほど大きいので、炉心下部に出力
のピークが発生する。第4図は、濃縮度6w/oのウラン燃
料の中性子無限増倍率とH/Uの関係を示したものであ
る。上記高転換バーナー型炉心のボイド率0〜80%に対
する高転換およびバーナーの各領域におけるH/Uの変化
は、それぞれ3.07〜1.26,6.24〜3.33である。第4図か
ら、対応する中性子無限増倍率の変化、すなわち反応度
変化は、高転換領域燃料集合体においては、バーナー領
域とほぼ同じ反応度変化の従来の沸騰水型原子炉に比べ
て大きくなることがわかる。
Now, in a boiling water reactor, boiling causes vapor bubbles (voids) in the lower part of the core, and the void volume ratio in the coolant increases toward the upper part of the core. In other words, the H / U of the fuel assembly is larger in the lower part of the core, so that the output peak occurs in the lower part of the core. Fig. 4 shows the relationship between infinite neutron multiplication factor and H / U for uranium fuel with enrichment of 6w / o. The change in H / U in each region of the high conversion and burner for the void ratio of 0 to 80% of the high conversion burner type core is 3.07 to 1.26 and 6.24 to 3.33, respectively. From FIG. 4, the corresponding change in the infinite multiplication factor of neutrons, that is, the reactivity change becomes larger in the high conversion region fuel assembly than in the conventional boiling water reactor in which the reactivity change is almost the same as in the burner region. I understand.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術では、稠密格子燃料を配置した高転換領
域集合体におけるH/Uの変化による反応度変化が従来の
炉心より大きくなる点についての配慮がなく、軸方向の
出力ピークが大きくなるという問題があつた。
In the above-mentioned conventional technology, there is no consideration for the fact that the reactivity change due to the change of H / U in the high conversion region assembly in which the dense lattice fuel is arranged is larger than that of the conventional core, and the problem that the output peak in the axial direction becomes large I got it.

本発明の目的は、稠密格子燃料集合体を用いた沸騰水
型高転換バーナー炉のH/Uの変化を低減し、軸方向出力
分布を平坦化する原子炉の運転方法を提供することであ
る。
An object of the present invention is to provide a method for operating a nuclear reactor which reduces the change in H / U of a boiling water high conversion burner reactor using a dense lattice fuel assembly and flattens the axial power distribution. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、単位断面積当
たりの冷却材の占める断面積と燃料物質の占める断面積
との比が異なる領域が混在する炉心において、ウランを
燃料とする稠密格子燃料集合体に挿入する制御棒のう
ち、出力調整に用いないすべての制御棒の案内管内の炉
心下端より燃料棒発熱長の1/6〜1/2の範囲の飽和水を制
御棒先端に設けた水除去部により排除し、燃料集合体の
減速材対燃料原子数比を低減させて原子炉を運転する方
法を提案するものである。
In order to achieve the above object, the present invention provides a dense lattice fuel using uranium as a fuel in a core in which regions having different ratios of the cross-sectional area occupied by a coolant per unit cross-sectional area and the cross-sectional area occupied by a fuel substance are mixed. Of the control rods to be inserted into the assembly, saturated water in the range of 1/6 to 1/2 of the heat generation length of the fuel rod was installed at the tip of the control rod from the core lower end in the guide tubes of all control rods not used for power adjustment. It proposes a method of operating a nuclear reactor by reducing the ratio of the moderator to the fuel atomic number of the fuel assembly by eliminating the water by the water removing unit.

ここで、稠密格子とは、減速材である軽水の占める断
面積と燃料物質の占める断面積との比が1.5以下となる
ように構成した燃料集合体内の燃料棒格子をいう。ま
た、上記水除去部内には、中性子吸収材の吸収断面積よ
り小さい吸収断面積を有する物質を封入する。
Here, the dense lattice means a fuel rod lattice in a fuel assembly configured such that the ratio of the cross-sectional area occupied by light water as a moderator and the cross-sectional area occupied by fuel substances is 1.5 or less. Further, a substance having an absorption cross-sectional area smaller than that of the neutron absorbing material is enclosed in the water removing section.

すなわち、本発明は、上記目的を達成するために、複
数の燃料棒を整列させて配置した燃料集合体が装架され
単位断面積当たりの冷却材の占める断面積と燃料物質の
占める断面積との比が異なる領域が混在し軽水が下方か
ら上方に流れる高転換バーナー炉心と、炉心領域内に炉
心下部から挿入される複数の制御棒とを有する原子炉の
運転方法において、冷却材の占める断面積と燃料物質の
占める断面積との比が1.5以下となる高転換領域に挿入
する制御棒のうち、出力調整に用いない制御棒の中性子
吸収材領域よりも先端側に、中性子吸収材よりも小さな
吸収断面積を有する物質を内部に封入した水除去部を設
置し、水除去部を原子炉の炉心下端から前記燃料棒発熱
長の1/6〜1/2の範囲に挿入して運転する原子炉の運転方
法を提案するものである。
That is, in order to achieve the above-mentioned object, the present invention provides a fuel assembly in which a plurality of fuel rods are arranged in an aligned manner, and a cross-sectional area occupied by a coolant and a cross-sectional area occupied by a fuel substance per unit cross-sectional area. In a method of operating a nuclear reactor having a high conversion burner core in which regions of different ratios are mixed and light water flows upward from below, and a plurality of control rods inserted from the lower part of the core into the core region Of the control rods to be inserted in the high conversion region where the ratio of the area and the cross-sectional area occupied by the fuel substance is 1.5 or less, the control rod not used for output adjustment is closer to the tip side than the neutron absorber region, and is more than the neutron absorber. Install a water removal unit that encapsulates a substance with a small absorption cross-section, and insert the water removal unit from the lower end of the reactor core into the range of 1/6 to 1/2 of the fuel rod heat generation length for operation. It proposes a method of operating a nuclear reactor.

〔作用〕[Action]

稠密格子燃料集合体の制御棒案内管内の飽和水を、制
御棒先端に設けた水除去部(以下、フオロアという)で
除去すると、燃料集合体の減速材対燃料原子数比(ここ
では、水素対ウラン原子数比H/U)が低減される。
When the saturated water in the control rod guide tube of the dense lattice fuel assembly is removed by the water removing unit (hereinafter referred to as follower) provided at the tip of the control rod, the moderator to fuel atomic number ratio (here, hydrogen) of the fuel assembly is removed. The ratio of the number of uranium atoms (H / U) is reduced.

第5図は、高転換バーナー炉心の高転換領域集合体に
おいて、制御棒案内管内が飽和水で満されている場合、
および上記案内管内の飽和水がフオロアによつて排除さ
れている場合の、集合体の水素対ウラン原子数比と冷却
材(軽水)のボイド体積比率との関係を示したものであ
る。この図から、フオロアを挿入すると、同じボイド体
積比率に対して、H/Uが約0.4低減していることがわか
る。
FIG. 5 shows that in the high conversion area assembly of the high conversion burner core, when the control rod guide pipe is filled with saturated water,
And the relationship between the hydrogen-to-uranium atom number ratio of the assembly and the void volume ratio of the coolant (light water) when the saturated water in the guide tube is removed by the follower. From this figure, it can be seen that when the follower is inserted, H / U is reduced by about 0.4 for the same void volume ratio.

第4図に関して既に述べたように、H/Uの変化が反応
度の変化に与える影響はH/Uが小さいほど大きいので、H
/Uが3.0より小さいすなわち減速材である軽水の占める
断面積と燃料物質の占める断面積との比が1.5より小さ
い稠密格子燃料集合体において、フオロアの効果がより
大きくなる。
As already described with reference to Fig. 4, the effect of changes in H / U on changes in reactivity increases as H / U decreases.
The effect of the follower is more significant in a dense lattice fuel assembly in which / U is less than 3.0, that is, the ratio of the sectional area occupied by the moderator light water to the sectional area occupied by the fuel substance is less than 1.5.

さて、本発明で解決しようとしている稠密格子燃料集
合体の軸方向出力ピークは、主に燃料集合体のH/Uが軸
方向位置により変化した結果生じている。したがつて、
軸方向出力ピークの大きさは、上記フオロアを炉心下端
より軸方向のどの位置まで挿入するかに依存する。
Now, the axial output peak of the dense lattice fuel assembly to be solved by the present invention mainly results from the H / U of the fuel assembly changing with the axial position. Therefore,
The magnitude of the axial output peak depends on the axial position of the follower from the lower end of the core.

第6図は、制御棒フオロアの炉心下端からの軸方向挿
入位置と、稠密格子燃料集合体の軸方向出力ピーク値と
の関係を調べたものである。この図から、フオロアを炉
心下端より6/24(=1/4)ノードの位置に挿入したとき
に、出力ピークが最も低減されることがわかる。なお、
軸方向出力ピークが2.2程度に抑えられるフオロアの挿
入範囲は、炉心下端より4/24〜12/24(1/6〜1/2)ノー
ドである。
FIG. 6 shows the relationship between the axial insertion position of the control rod follower from the lower end of the core and the axial output peak value of the dense lattice fuel assembly. From this figure, it can be seen that the output peak is most reduced when the follower is inserted at the 6/24 (= 1/4) node position from the lower end of the core. In addition,
The insert range of the follower that can suppress the axial output peak to about 2.2 is 4/24 to 12/24 (1/6 to 1/2) nodes from the core bottom end.

第7図は、高転換バーナー炉のすべての稠密格子燃料
集合体の炉心下端より6/24(=1/4)ノードの範囲にフ
オロアを挿入したときの、稠密格子燃料集合体燃料の運
転サイクル末期における軸方向出力分布を示したもので
ある。比較のために、フオロアを挿入しない場合の出力
分布を併記してある。フオロアを挿入すると、フオロア
注入範囲の出力ピークが約33%低減されることになる。
なお、炉心下部の出力ピークが抑えられた結果、フオロ
ア先端より上側の領域における出力が相対的に増大し、
炉心軸方向の出力分布が平坦化されている。
Fig. 7 shows the operating cycle of the dense lattice fuel assembly fuel when the follower is inserted in the range of 6/24 (= 1/4) node from the core lower end of all the dense lattice fuel assemblies of the high conversion burner reactor. It shows the axial output distribution in the final stage. For comparison, the output distribution without a follower is also shown. Inserting a follower will reduce the output peak in the follower injection range by about 33%.
As a result of suppressing the output peak in the lower part of the core, the output in the region above the tip of the follower increased relatively,
The power distribution in the core axis direction is flattened.

〔実施例〕〔Example〕

以下、本発明を実施例によりさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

第1図は、本発明による原子炉の運転方法の第1実施
例を示す図である。本実施例の炉心は、稠密格子燃料集
合体の高転換領域のまわりに、H/Uが現行炉心と同程度
のバーナー領域を配置した結合型高転換バーナー炉心で
ある。各領域の燃料集合体そのものは、第2図に示すも
のと変わらない。高転換領域燃料集合体Aにおいて、燃
料棒と制御棒案内管からなるクラスターは、チヤンネル
ボツクス6で囲まれ、減速材と冷却材を兼ねた軽水の沸
騰によつて生じるボイドの横方向への浮遊を防止してい
る。バーナー領域集合体Bにおいては、H/Uを高くする
ために、燃料棒の代わりに水ロツドが置かれている。ま
た、高転換バーナー炉においては、燃料棒あるいは水ロ
ツドが稠密に配置されているので、制御棒としては第8
図に示すようなクラスター制御棒を使用する。このクラ
スター制御棒の中性子吸収材領域4の長さは、燃料棒発
熱長と等しくし、内部にはB4Cを充填する。また、フオ
ロア部3は、中性子吸収材領域よりも先端側で燃料棒発
熱長の1/6〜1/2の領域に設け、内部には中性子吸収材よ
りも吸収断面積の小さな物質,例えば炭素を充填する。
クラスター制御棒の駆動装置は、燃料集合体3体に対し
て1体設置されている。上記のように構成した高転換バ
ーナー炉の高転換領域において、第1図に示したよう
に、運転サイクル初期の余剰反応度を抑えるために、本
実施例では、A0で示した7組(21体)の燃料集合体の制
御棒を全挿し、A1で示した残りすべての燃料集合体にお
いて、制御棒先端のフオロア部3のみを炉心下部に挿入
して運転する。
FIG. 1 is a diagram showing a first embodiment of a method for operating a nuclear reactor according to the present invention. The core of the present embodiment is a combined high conversion burner core in which a burner area having an H / U of the same degree as that of the current core is arranged around the high conversion area of the dense lattice fuel assembly. The fuel assembly itself in each region is the same as that shown in FIG. In the high conversion region fuel assembly A, the cluster consisting of the fuel rods and the control rod guide tubes is surrounded by the channel box 6, and the voids generated in the lateral direction due to the boiling of light water that also serves as a moderator and a coolant float in the lateral direction. Is being prevented. In the burner area assembly B, a water rod is placed instead of the fuel rod in order to increase H / U. In the high conversion burner furnace, since the fuel rods or water rods are densely arranged, the control rod is the 8th.
Use cluster control rods as shown. The length of the neutron absorber region 4 of this cluster control rod is made equal to the heat generation length of the fuel rod, and the inside is filled with B 4 C. Further, the follower portion 3 is provided in a region 1/6 to 1/2 of the heat generation length of the fuel rod on the tip side of the neutron absorbing material region, and has a substance having a smaller absorption cross section than the neutron absorbing material, such as carbon. To fill.
One cluster control rod drive device is installed for each of the three fuel assemblies. In the high conversion region of the high conversion burner furnace configured as described above, as shown in FIG. 1, in order to suppress the excess reactivity at the initial stage of the operation cycle, in this example, 7 sets (denoted by A 0) ( (21 bodies) all the control rods of the fuel assemblies are inserted, and in all the remaining fuel assemblies indicated by A 1 , only the follower section 3 at the tip of the control rods is inserted into the lower part of the core for operation.

沸騰水型原子炉では、運転状態で炉心軸方向にボイド
分布が生じ、燃料下端ではボイド率0%であるが、上端
では約70%となる。このボイド分布によつて、燃料上下
のH/Uに差が発生し、したがつて中性子無限増倍率にも
差ができて、燃料下部に出力ピークが生じる。H/Uが3.0
以下である稠密格子燃料集合体においては、第4図に示
したように、H/Uが5.0に近い従来の軽水炉に比較し、ま
たは上述の高転換バーナー炉のバーナー領域Bの燃料集
合体と比べ、H/Uの変化に伴う中性子無限増倍率が大き
く、ボイド分布によるピーク値も大きくなる。
In a boiling water reactor, a void distribution occurs in the axial direction of the core during operation, and the void fraction is 0% at the lower end of the fuel, but is about 70% at the upper end. Due to this void distribution, a difference in H / U above and below the fuel occurs, and thus an infinite neutron multiplication factor also varies, resulting in an output peak below the fuel. H / U is 3.0
As shown in FIG. 4, in the dense lattice fuel assembly below, as compared with the conventional light water reactor with H / U close to 5.0, or with the fuel assembly in the burner region B of the above-mentioned high conversion burner reactor, In comparison, the infinite neutron multiplication factor with the change in H / U is large and the peak value due to the void distribution is also large.

これに対し、本実施例の運転方法によると、ボイド率
の低い炉心下部でのH/Uの炉心軸方向の変化を小さくし
て、稠密格子燃料集合体に発生する出力ピークを抑え、
出力分布を平坦化できる。このように、本発明では、燃
料集合体の高さ方向に濃縮度分布などの特別の対策を施
さなくても、出力分布が平坦化される。
On the other hand, according to the operating method of the present embodiment, the change in the core axial direction of H / U in the lower core of the low void fraction is reduced to suppress the output peak generated in the dense lattice fuel assembly,
The output distribution can be flattened. As described above, in the present invention, the output distribution is flattened without taking any special measures such as the enrichment distribution in the height direction of the fuel assembly.

第9図は、本発明による原子炉の運転方法の第2実施
例を示したものである。高転換領域Aのすべての燃料集
合体の炉心下部にフオロア部3を挿入し、バーナー領域
Bは全引抜きの状態で炉心を運転する。この運転方法
は、主に燃料の燃焼が進んだ運転サイクル末期に有効で
ある。すなわち、運転サイクル末期には、余剰反応度が
小さく、これをフオロア3挿入に伴う反応度低下のみに
よつて抑えられるからである。フオロア部3の中性子吸
収断面積は、中性子吸収材の吸収断面積より小さいの
で、本実施例の炉心の運転方法は、中性子吸収棒のみに
より余剰反応度を抑える従来方法よりも中性子経済上有
利であり、燃料の寿命を延することができる。
FIG. 9 shows a second embodiment of the method for operating a nuclear reactor according to the present invention. The follower portion 3 is inserted in the lower part of the core of all the fuel assemblies in the high conversion region A, and the burner region B operates the core in the fully drawn state. This operation method is effective mainly at the end of the operation cycle where the combustion of fuel has advanced. That is, at the end of the operation cycle, the excess reactivity is small, and this can be suppressed only by the decrease in reactivity due to the insertion of the follower 3. Since the neutron absorption cross section of the follower part 3 is smaller than the absorption cross section of the neutron absorbing material, the operation method of the core of this example is more advantageous in neutron economy than the conventional method of suppressing the excess reactivity by only the neutron absorbing rod. Yes, the life of the fuel can be extended.

第10図は、本発明による原子炉の運転方法の第3実施
例を示したものである。この例は、9で示すY字型制御
棒をギヤツプ水領域10に挿入する高転換バーナー炉を対
象としている。本実施例においては、Y字型制御棒の中
性子吸収材領域先端部にフオロア部を設け、これを高転
換領域集合体に挿入して原子炉を運転する。
FIG. 10 shows a third embodiment of the method for operating a nuclear reactor according to the present invention. This example is directed to a high conversion burner furnace in which a Y-shaped control rod designated by 9 is inserted into the gear water region 10. In this embodiment, a follower portion is provided at the tip of the neutron absorbing material region of the Y-shaped control rod, and this is inserted into the high conversion region assembly to operate the nuclear reactor.

本実施例以外に、十字型制御棒を用いる高転換バーナ
ー炉においても、同様のフオロアを設け、炉心を運転す
る方法が考えられる。
In addition to the present embodiment, also in a high conversion burner furnace using a cruciform control rod, a method of providing a similar follower and operating the core can be considered.

本発明の第1実施例においては、余剰反応度を抑える
ための制御棒(高転換領域集合体A0に挿入する制御棒)
として、フオロアなしの従来型制御棒を用いている。こ
れに代え、余剰反応度を抑えるための制御棒としてフオ
ロア付きの制御棒も組み合わせ、フオロア部の中性子吸
収をも考慮した制御棒駆動計画を実行すると、運転期間
を通じて出力分布を平坦化できる。
In the first embodiment of the present invention, the control rod for suppressing the excess reactivity (the control rod to be inserted into the high conversion area assembly A 0 )
As a conventional control rod without follower. Alternatively, if a control rod with a follower is also combined as a control rod for suppressing the excess reactivity and a control rod drive plan that also considers neutron absorption in the follower portion is executed, the output distribution can be flattened throughout the operation period.

さらに、運転初期にガドリニア燃料棒や短尺燃料棒を
使用すれば、出力分布をより一層平坦化可能である。
Furthermore, if gadolinia fuel rods or short fuel rods are used in the initial stage of operation, the output distribution can be further flattened.

〔発明の効果〕〔The invention's effect〕

本発明によれば、高転換バーナー炉の稠密格子燃料集
合体の炉心下部に制御棒フオロアを挿入して炉心を運転
する方法が提供されるので、H/Uを低減でき、したがつ
て反応度も低減できるから、軸方向出力分布が平坦化さ
れる。
According to the present invention, there is provided a method of operating a core by inserting a control rod follower into the lower part of the core of a dense lattice fuel assembly of a high conversion burner reactor, so that H / U can be reduced, and therefore the reactivity can be reduced. Can also be reduced, so that the axial power distribution is flattened.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による原子炉の運転方法の第1実施例を
示す図、第2図はワンススルー方式に基づいて構成され
た原子炉炉心の構成を示す図、第3図は第2図の炉心に
使用される従来の燃料集合体の中性子無限増倍率の燃焼
変化を示す図、第4図はワンススルー方式に基づいて構
成された原子炉に装荷されるウラン燃料の中性子無限増
倍率とH/Uとの関係を示す図、第5図は第2図に示した
炉心の高転換領域に装荷される燃料集合体のH/Uと冷却
材ボイド率との関係を、本発明によるフオロアを使用し
た場合と使用しない場合とについて示す図、第6図は第
2図に示した炉心の高転換領域に装荷される燃料の炉心
軸方向出力ピークと本発明によるフオロアの挿入位置と
の関係を示す図、第7図は上記炉心の高転換領域に装荷
される燃料の運転サイクル末期における炉心軸方向相対
出力分布を、本発明によるフオロアを使用した場合と使
用しない場合とについて示す図、第8図は本発明による
第1実施例の原子炉の運転に用いるフオロア付きクラス
ター制御棒の断面図および側面図、第9図は本発明によ
る原子炉の運転方法の第2実施例を示す図、第10図は本
発明による原子炉の運転方法の第3実施例を示す図であ
る。 A……高転換領域集合体、A1……フオロア制御棒を挿入
する高転換領域集合体、B……バーナー領域集合体、A0
……制御棒を全挿入する高転換領域集合体、1……燃料
棒、2……制御棒、3……フオロア部、4……中性子吸
収材、5……水ロツド、6……チヤンネルボツクス、7
……高転換炉心、8……バーナー炉心、9……Y字型制
御棒、10……ギヤツプ水領域。
FIG. 1 is a diagram showing a first embodiment of a method of operating a nuclear reactor according to the present invention, FIG. 2 is a diagram showing a configuration of a reactor core constructed on the basis of a once-through system, and FIG. 3 is a diagram showing FIG. Fig. 4 is a diagram showing the combustion variation of the neutron infinite multiplication factor of the conventional fuel assembly used in the core of Fig. 4, and Fig. 4 is the neutron infinite multiplication factor of the uranium fuel loaded in the reactor constructed based on the once-through method. FIG. 5 shows the relationship with H / U, and FIG. 5 shows the relationship between the H / U of the fuel assembly loaded in the high conversion region of the core shown in FIG. FIG. 6 shows the case of using fuel and the case of not using fuel, and FIG. 6 shows the relationship between the core axial output peak of the fuel loaded in the high conversion region of the core shown in FIG. 2 and the insertion position of the follower according to the present invention. Fig. 7 shows the operating size of the fuel loaded in the high conversion region of the core. Fig. 8 is a diagram showing relative power distribution in the axial direction of the reactor core in the final stage, with and without the follower according to the present invention. Fig. 8 is a cluster control with follower used for operating the reactor of the first embodiment according to the present invention. A sectional view and a side view of the rod, FIG. 9 is a diagram showing a second embodiment of the method for operating a nuclear reactor according to the present invention, and FIG. 10 is a diagram showing a third embodiment of the method for operating a nuclear reactor according to the present invention. is there. A: High conversion area assembly, A 1: High conversion area assembly with follower control rod inserted, B: Burner area assembly, A 0
...... High conversion area assembly in which all control rods are inserted, 1 ... Fuel rod, 2 ... Control rod, 3 ... follower part, 4 ... Neutron absorber, 5 ... Water rod, 6 ... Channel box , 7
...... High conversion core, 8 ...... Burner core, 9 ...... Y-shaped control rod, 10 ...... Gear water area.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 博見 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 松本 知行 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (56)参考文献 特開 昭61−86676(JP,A) 特開 昭56−8592(JP,A) 特開 昭62−62286(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromi Maruyama 1168 Moriyama-cho, Hitachi City, Hitachi, Ibaraki Pref., Energy Research Laboratory, Hitachi, Ltd. (72) Tomoyuki Matsumoto 1168 Moriyama-cho, Hitachi City, Ibaraki, Hitachi, Ltd. (56) References JP-A-61-86676 (JP, A) JP-A-56-8592 (JP, A) JP-A-62-62286 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の燃料棒を整列させて配置した燃料集
合体が装架され単位断面積当たりの冷却材の占める断面
積と燃料物質の占める断面積との比が異なる領域が混在
し軽水が下方から上方に流れる高転換バーナー炉心と、
前記炉心領域内に炉心下部から挿入される複数の制御棒
とを有する原子炉の運転方法において、 前記冷却材の占める断面積と燃料物質の占める断面積と
の比が1.5以下となる高転換領域に挿入する制御棒のう
ち、出力調整に用いない制御棒の中性子吸収材領域より
も先端側に、前記中性子吸収材よりも小さな吸収断面積
を有する物質を内部に封入した水除去部を設置し、 前記水除去部を原子炉の炉心下端から前記燃料棒発熱長
の1/6〜1/2の範囲に挿入して運転することを特徴とする
原子炉の運転方法。
1. Light water in which a fuel assembly in which a plurality of fuel rods are arranged in an array is mounted, and regions having different ratios of the cross-sectional area occupied by a coolant and the cross-sectional area occupied by a fuel substance per unit cross-sectional area are mixed. With a high conversion burner core in which
In a method of operating a nuclear reactor having a plurality of control rods inserted from below the core in the core region, a high conversion region in which the ratio of the cross-sectional area occupied by the coolant and the cross-sectional area occupied by the fuel substance is 1.5 or less. Among the control rods to be inserted into, the tip side of the neutron absorbing material region of the control rod that is not used for output adjustment, a water removal unit is installed in which a substance having an absorption cross section smaller than the neutron absorbing material is sealed inside. A method for operating a nuclear reactor, comprising: inserting the water removing unit into a range of 1/6 to 1/2 of a heat generation length of the fuel rod from a lower end of a core of the nuclear reactor.
【請求項2】特許請求の範囲第1項において、 前記水除去部を原子炉の炉心下端から前記燃料棒発熱長
の1/6〜1/2の範囲に挿入するとともに、 運転サイクル初期に、前記水除去部を持たない制御棒を
前記燃料集合体のいくつかの組に全挿入して運転するこ
とを特徴とする原子炉の運転方法。
2. The water removing section according to claim 1, wherein the water removing section is inserted from a core lower end of a nuclear reactor into a range of 1/6 to 1/2 of a fuel rod heat generation length, and at the beginning of an operation cycle, A method for operating a nuclear reactor, comprising: fully inserting a control rod having no water removing section into some sets of the fuel assemblies to operate.
JP61289837A 1986-12-05 1986-12-05 How to operate a nuclear reactor Expired - Lifetime JPH0833474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289837A JPH0833474B2 (en) 1986-12-05 1986-12-05 How to operate a nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289837A JPH0833474B2 (en) 1986-12-05 1986-12-05 How to operate a nuclear reactor

Publications (2)

Publication Number Publication Date
JPS63142293A JPS63142293A (en) 1988-06-14
JPH0833474B2 true JPH0833474B2 (en) 1996-03-29

Family

ID=17748412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289837A Expired - Lifetime JPH0833474B2 (en) 1986-12-05 1986-12-05 How to operate a nuclear reactor

Country Status (1)

Country Link
JP (1) JPH0833474B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186676A (en) * 1984-10-04 1986-05-02 株式会社日立製作所 Hollow control rod nuclear reactor

Also Published As

Publication number Publication date
JPS63142293A (en) 1988-06-14

Similar Documents

Publication Publication Date Title
EP0856852B1 (en) Reactor core for a light water cooled nuclear reactor and control rod for the same
JP3036810B2 (en) Fuel assembly
EP0204288B1 (en) Fuel assembly
JPH058797B2 (en)
JP3531011B2 (en) Fuel assemblies and reactors
JP2511584B2 (en) Water rod and nuclear fuel rod bundle usable for containing water at a position substantially inside the nuclear fuel rod bundle
JPH04143694A (en) Fuel assembly
US4255236A (en) Reactor and fuel assembly design for improved fuel utilization in liquid moderated thermal reactors
JPH051912B2 (en)
JPH0833474B2 (en) How to operate a nuclear reactor
JP2543930B2 (en) Reactor
JP3070756B2 (en) Fuel assembly
JP2610254B2 (en) Boiling water reactor
JPH07107555B2 (en) Control rod for boiling water reactor and method of operating boiling water reactor using the same
JPH0631744B2 (en) Boiling water reactor
JP2625404B2 (en) Fuel assembly
JPS62259086A (en) Fuel aggregate
JP3309797B2 (en) Fuel assembly
JPH06331766A (en) Fuel assembly
JPS6353490A (en) Nuclear fuel aggregate
JPS6186676A (en) Hollow control rod nuclear reactor
JPH0478959B2 (en)
JPS61264291A (en) Fuel aggregate
JPH0721543B2 (en) Fuel assembly
JPH04286989A (en) Work type short fuel cluster, fuel assembly and reactor core