JPH08334686A - Objective lens for recording and reproducing optical information recording medium - Google Patents

Objective lens for recording and reproducing optical information recording medium

Info

Publication number
JPH08334686A
JPH08334686A JP7160125A JP16012595A JPH08334686A JP H08334686 A JPH08334686 A JP H08334686A JP 7160125 A JP7160125 A JP 7160125A JP 16012595 A JP16012595 A JP 16012595A JP H08334686 A JPH08334686 A JP H08334686A
Authority
JP
Japan
Prior art keywords
light source
aspherical
lens
objective lens
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7160125A
Other languages
Japanese (ja)
Inventor
Noriyuki Yamazaki
敬之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP7160125A priority Critical patent/JPH08334686A/en
Publication of JPH08334686A publication Critical patent/JPH08334686A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To make the amt. of the occurrence of aberrations virtually negligible in spite of a fluctuation in an inter-object distance by specifying the conditions of a biconvex single lens of an aspherical shape on both of a light source side and an optical information recording medium side. CONSTITUTION: This objective lens for recording and reproducing of the optical information recording medium of finite system specifications is 0.5<NA<0.65 (where NA is the numerical aperture on an image side) and is the biconvex single lens of the aspherical shape on both the light source side and the optical information recording medium side. The objective lens satisfies the conditions expressed by 0.05<=|m|<=0.135, 0.75<r1 / (n-1)f√(1+|m|)}<1.5, equations I, II. In the equation I, (m) is an imaging magnification; r1 is the radius of curvature at the vertex on the light source side face; (n) is the refractive index of the lens; (f) is the focal length of the lens; δ1 (δ2 ) is a difference in the optical axis direction between the aspherical face on the extreme periphery of the effective diameter on the light source (image) side face and the aspherical lens in the position on the light source (image) side face where the rays of NA 0.45 are made incident; the case where the aspherical face on the extreme periphery of the effective diameter is displaced nearer the image side than the aspherical phase at NA 0.45 is defined positive; b(m) is the function of the imaging magnification (m) and is expressed by b(m)=|m|+0.33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大口径の光ディスク用
対物レンズ、特に光源と情報記録面との距離が比較的小
さい場合に用いるに適した有限共役型の両面非球面両凸
単レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-diameter objective lens for an optical disc, and more particularly to a finite conjugate type double-sided aspherical biconvex single lens suitable for use when the distance between a light source and an information recording surface is relatively small. .

【0002】[0002]

【従来の技術】光ディスク等の情報記録媒体への記録再
生装置において、半導体レーザ等の光源からの光をコリ
メータレンズを使用せずに直接結像させる光学系は、再
生装置全体の簡略化に有効である。CD(コンパクトデ
ィスク)、CD−ROM等、像側のNAが0.45程度
の対物レンズが要求される分野においては、既に前記有
限共役型の単レンズが広く用いられているが、VD(ビ
デオディスク)、DVD(デジタルビデオディスク)、
MO(光磁気)等、像側のNAが0.5を越える対物レ
ンズが必要とされる分野においては、一般的にはコリメ
ータレンズを必要とする無限共役型の対物レンズが用い
られることが多い。しかしながら、この方式は、有限共
役型の光学系に比べて部品点数が多く、構成が複雑にな
ることから、コストが高くなることは避けられない。
2. Description of the Related Art In a recording / reproducing apparatus for an information recording medium such as an optical disk, an optical system for directly focusing light from a light source such as a semiconductor laser without using a collimator lens is effective for simplifying the entire reproducing apparatus. Is. In the field such as CD (Compact Disc), CD-ROM, etc., in which an objective lens having an image-side NA of about 0.45 is required, the finite conjugate type single lens has already been widely used. Disc), DVD (digital video disc),
In fields such as MO (magneto-optical) where NA on the image side exceeds 0.5, an infinite conjugate objective lens that generally requires a collimator lens is often used. . However, in this method, the number of parts is larger than that of the finite-conjugate type optical system and the configuration is complicated, so that the cost is inevitably high.

【0003】[0003]

【発明が解決しようとする課題】図1に示すようなコリ
メータレンズを用いない有限共役型の光学系において、
光源3から光情報記録面1までの間隔(物像間距離)U
は設計的に決まっているが、実際には光情報媒体のたわ
み等でこの距離Uにずれ△Uが生じる。現在、この種の
装置においては、使用可能な倍率の範囲で、ずれ△Uが
発生すると対物レンズ2は光軸に沿って移動し、光情報
記録面上にフォーカスするように制御されるオートフォ
ーカス装置が用いられている。しかし、このために収差
が発生する。この収差は主に球面収差であり、NAの4
乗に比例し、また△Uにも比例する。また、光学系の結
像倍率の絶対値|m|が変数となる関数に比例する。△
Uによって生じる収差量をWU 、結像倍率の絶対値|m
|が変数となる関数をα(|m|)とすると、α(|m
|)は変数|m|の単調増加関数であり、WU は以下の
式で表わせる。 WU =α(|m|)・(NA)4・△U
In a finite conjugate type optical system which does not use a collimator lens as shown in FIG.
Distance from light source 3 to optical information recording surface 1 (distance between object images) U
Is determined by design, but in reality, a deviation ΔU occurs in this distance U due to the deflection of the optical information medium or the like. Currently, in this type of apparatus, when a deviation ΔU occurs within a usable magnification range, the objective lens 2 moves along the optical axis and is controlled so as to focus on the optical information recording surface. The device is being used. However, this causes aberration. This aberration is mainly spherical aberration, and is 4 of NA.
It is proportional to the power and also to ΔU. Further, the absolute value | m | of the image forming magnification of the optical system is proportional to a variable function. △
Amount of aberration caused by U is WU, absolute value of imaging magnification | m
Let α (| m |) be a function whose | is a variable, then α (| m
|) Is a monotonically increasing function of the variable | m |, and WU can be expressed by the following equation. WU = α (| m |) ・ (NA) 4・ △ U

【0004】この収差はNA0.45程度でも発生する
が、問題となる程のレベルにはならない。しかし、本発
明が目的としている高NAの場合は無視することは出来
ない。有限共役型で、比較的高NAの単レンズは、特開
平1−152410号公報、特開平1−167717号
公報、特開平2−223906号公報等で提案されてい
るが、いずれの提案も結像倍率が|m|≧0.2と大き
い。対物レンズと光源を一体にしてオートフォーカスを
行うと上記の問題は無くなるが、周辺の装置が大がかり
なものとなり、コストアップとなる。この発明は、開口
数が0.5を越える高NA対物レンズに関し、光情報媒
体のたわみ等により物像間距離が変動しても収差の発生
量が実用上無視出来る程度である有限共役型の対物レン
ズを実現しようとするものである。
This aberration occurs even at an NA of about 0.45, but does not reach a level at which it causes a problem. However, it cannot be ignored in the case of the high NA targeted by the present invention. A finite conjugate type single lens having a relatively high NA has been proposed in JP-A-1-152410, JP-A-1-167717, JP-A-2-223906, and the like, but any of these proposals are concluded. The image magnification is as large as | m | ≧ 0.2. If the objective lens and the light source are integrated and autofocusing is performed, the above problem is eliminated, but the peripheral devices become large-scale and the cost is increased. The present invention relates to a high NA objective lens having a numerical aperture exceeding 0.5, and is of a finite conjugate type in which the amount of aberration is practically negligible even if the object-image distance varies due to deflection of the optical information medium. It is intended to realize an objective lens.

【0005】[0005]

【課題を解決するための手段】本発明の有限系仕様の光
情報記録媒体の記録再生用対物レンズは、 0.5<NA<0.65 (1) であり、図2にカバーガラスを含む断面図を示すよう
に、光源側及び光情報記録媒体側が共に非球面形状を有
する両凸単レンズであって、以下の条件を満足すること
を特徴とする。 0.05≦|m|≦0.135 (2) 0.75<r1/{(n−1)f√(1+|m|)}<1.5 (3)
The objective lens for recording and reproducing of the optical information recording medium of the finite system specification of the present invention is 0.5 <NA <0.65 (1), and FIG. 2 includes the cover glass. As shown in the sectional view, the light source side and the optical information recording medium side are both biconvex single lenses having an aspherical shape, and are characterized by satisfying the following conditions. 0.05 ≦ | m | ≦ 0.135 (2) 0.75 <r 1 /{(n−1)f√(1+|m|)}<1.5 (3)

【数3】 但し、 NA : 像側の開口数 m : 結像倍率 r1 : 光源側の面の頂点曲率半径 n : レンズの屈折率 f : レンズの焦点距離(Equation 3) However, NA: numerical aperture on the image side m: imaging magnification r 1 : radius of curvature of the vertex of the surface on the light source side n: refractive index of the lens f: focal length of the lens

【数4】 δ1 : 光源側の面の有効径最周辺(上記NAの周
縁光線が入射する光源側の面上の位置)における非球面
とNA0.45の光線が入射する光源側の面上の位置に
おける非球面との光軸方向の差で、有効径最周辺におけ
る非球面がNA0.45における非球面よりも像側へ変
位している場合を正とする。 δ2 : 像側の面の有効径最周辺における非球面と
NA0.45の光線が出射する像側の面上の位置におけ
る非球面との光軸方向の差で、有効径最周辺における非
球面がNA0.45における非球面よりも像側へ変位し
ている場合を正とする。 b(m): 結像倍率mの関数であり、b(m)=|m
|+0.33で表される。
[Equation 4] δ 1 : a non-spherical surface at the periphery of the effective diameter of the surface on the light source side (the position on the surface on the light source side where the marginal ray of NA is incident) and a position on the surface on the light source side where the ray of NA 0.45 is incident The case where the aspherical surface at the outermost periphery of the effective diameter is displaced toward the image side with respect to the aspherical surface at NA 0.45 due to the difference in the optical axis direction from the spherical surface is positive. δ 2 : The difference in the optical axis direction between the aspherical surface at the outermost periphery of the effective diameter of the image side and the aspherical surface at the position on the image side where the ray of NA 0.45 exits, and the aspherical surface at the outermost periphery of the effective diameter. Is positive when it is displaced toward the image side from the aspherical surface at NA 0.45. b (m): a function of the imaging magnification m, b (m) = | m
It is represented by | +0.33.

【0006】さらに望ましくは、More preferably,

【数5】 但し、(Equation 5) However,

【数6】 1 : 光源側の面のNA0.45の光線が入射す
る位置における非球面位置と頂点曲率半径r1 を有する
基準球面位置との光軸方向の差で、光軸から遠ざかるほ
ど該非球面が光源側へ変位している場合を正とする。 △2 : 像側の面のNA0.45の光線が出射する
位置における非球面位置と頂点曲率半径r2 を有する基
準球面位置との光軸方向の差で、光軸から遠ざかるほど
該非球面が光源側へ変位している場合を正とする。 a(m): 結像倍率mの関数であり、a(m)=2.
5|m|2+0.11で表される。
(Equation 6) Δ 1 : Difference in the optical axis direction between the aspherical surface position at the position where a light ray having a NA of 0.45 is incident on the light source side and the reference spherical surface position having a vertex curvature radius r 1 , and the aspherical surface is the light source as the distance from the optical axis increases. Positive when it is displaced to the side. Δ 2 : The difference in the optical axis direction between the aspherical surface position at the position where a ray of NA 0.45 on the image side exits and the reference spherical surface position having the vertex curvature radius r 2 , and the further the aspherical surface becomes from the light source, the further the aspherical surface becomes. Positive when it is displaced to the side. a (m): a function of the imaging magnification m, a (m) = 2.
It is represented by 5 | m | 2 +0.11.

【0007】[0007]

【作用】条件(1)は、本発明の有限高NA対物レンズ
の開口数(NA)を規制するための前提条件である。N
Aが0.5以下の場合は本発明が目的としている高NA
の範囲を下回り、また上限を超えると、本発明を用いて
も物像間距離の変動により発生する収差が大きくなり、
実用に適さなくなる。条件(2)は、条件(1)の範囲
において、前記収差発生量を小さく押さえ、なおかつ実
用に適した有限高NA対物レンズを提供するための条件
である。下限を下回ると前記収差発生量を小さく押さえ
ることに関しては有利であるが、必要な作動距離を確保
するためには焦点距離を長くしなければならず、このた
め、光源と情報記録面との距離が長くなってしまう。こ
の場合、光学系全体を小型化するためには光源と対物レ
ンズとの間にミラーやプリズム等を配置して光路を折り
曲げなければならず、コリメータレンズを必要としない
有限光学系であってもコストアップを招くという問題が
生じる。また、上限を超えると前記収差を十分に小さく
押さえることが困難になる。
The condition (1) is a precondition for controlling the numerical aperture (NA) of the finite high NA objective lens of the present invention. N
When A is 0.5 or less, the high NA targeted by the present invention
Below the range of, and exceeds the upper limit, the aberration caused by the variation of the object-image distance becomes large even if the present invention is used,
It becomes unsuitable for practical use. The condition (2) is a condition for suppressing the aberration generation amount to be small and providing a finite high NA objective lens suitable for practical use within the range of the condition (1). If it is less than the lower limit, it is advantageous for suppressing the amount of aberration generation to a small extent, but in order to secure the necessary working distance, the focal length must be lengthened, and therefore the distance between the light source and the information recording surface. Will be long. In this case, in order to reduce the size of the entire optical system, it is necessary to dispose a mirror or prism between the light source and the objective lens to bend the optical path, and even a finite optical system that does not require a collimator lens There arises a problem of increasing costs. On the other hand, if the upper limit is exceeded, it will be difficult to suppress the aberration sufficiently small.

【0008】条件(3)は、光源側の面の頂点曲率半径
1 に関する。本発明のレンズでは両面を非球面にして
いるので、球面収差、正弦条件を良好に補正することは
可能である。しかし、r1 を最適に選ぶことにより、出
来るだけ球面収差、コマ収差の発生を少なくし、小さい
非球面量でしかも単純な非球面形状で補正することが可
能となる。すなわち、上記の収差発生量が小さいレンズ
形状は、結像倍率が零のときは、レンズの屈折率が比較
的小さい場合は強い曲率を持った面を光源側に向けた両
凸レンズであり、屈折率が高いときは同様の凸メニスカ
スレンズであることはよく知られている。一方、結像倍
率が−1のときは対称両凸レンズとなる。条件(3)は
結像倍率が大きくなる程光源側の面の頂点曲率半径r1
の最適値が緩くなるという上述の関係を示している。上
限を超えて大となると正弦条件がオーバーとなり、下限
を超えて小となると正弦条件がアンダーとなり、何れの
場合も正弦条件を良好に保って球面収差を補正するには
非球面形状が複雑になる。条件(4)、(5)は球面収
差を良好に補正するための非球面量に関する条件であ
る。結像倍率を一定とすると、レンズの像側開口数(N
A)が大きくなる程、レンズの屈折率(n)が小さくな
る程、焦点距離(f)が長くなる程、球面収差を良好に
補正するための非球面量は大きくなる。従って、非球面
量δ1、δ2はNA、n、fで正規化、また△1、△2
n、fで正規化する必要がある。具体的には、δ1、δ2
は(NA)6、1−/(n−1)、fで正規化した量を
The condition (3) relates to the apex curvature radius r 1 of the surface on the light source side. Since both sides of the lens of the present invention are aspherical, it is possible to satisfactorily correct spherical aberration and sine conditions. However, by optimally selecting r 1 , it is possible to reduce the occurrence of spherical aberration and coma as much as possible, and it is possible to correct with a simple aspherical surface with a small amount of aspherical surface. That is, the above-mentioned lens shape with a small amount of aberration generation is a biconvex lens with a surface having a strong curvature facing the light source side when the imaging magnification is zero and the refractive index of the lens is relatively small. It is well known that when the ratio is high, it is a similar convex meniscus lens. On the other hand, when the imaging magnification is -1, the lens becomes a symmetrical biconvex lens. The condition (3) is that the radius of curvature of the vertex of the surface on the light source side is r 1 as the imaging magnification increases.
It shows the above-mentioned relationship that the optimum value of becomes loose. When the value exceeds the upper limit and becomes large, the sine condition becomes over, and when the value becomes smaller than the lower limit and becomes small, the sine condition becomes under. Become. Conditions (4) and (5) are conditions relating to the amount of aspherical surface for favorably correcting spherical aberration. Assuming that the imaging magnification is constant, the image-side numerical aperture (N
The larger A), the smaller the refractive index (n) of the lens, and the longer the focal length (f), the larger the amount of aspherical surface for favorably correcting spherical aberration. Therefore, it is necessary to normalize the aspherical surface quantities δ 1 and δ 2 with NA, n, and f, and Δ 1 and Δ 2 with n and f. Specifically, δ 1 , δ 2
Is the amount normalized by (NA) 6 , 1-/ (n-1), f

【数7】 とすると(Equation 7) And

【数8】 が正で大な程、(Equation 8) Is positive and large,

【数9】 が負で小な程球面収差をアンダーにする効果が大きくな
るので、球面収差を補正するには
[Equation 9] The more negative and smaller, the greater the effect of making spherical aberration under, so to correct spherical aberration

【数10】 はある範囲内にあることが必要である。また、△1、△2
は、1/(n−1)3 、fで正規化した量を
[Equation 10] Must be within a certain range. Also, △ 1 , △ 2
Is the amount normalized by 1 / (n-1) 3 , f

【数11】 とすると[Equation 11] And

【数12】 が正で大な程、(Equation 12) Is positive and large,

【数13】 が負で小な程球面収差をオーバーにする効果が大きくな
るので、球面収差を補正するためには
(Equation 13) The more negative and smaller the value is, the greater the effect of overcoming the spherical aberration becomes. Therefore, in order to correct the spherical aberration,

【数14】 は、[Equation 14] Is

【数15】 と同様にある範囲内にあることが必要である。(Equation 15) It is necessary to be within a certain range as well.

【0009】次に、倍率を変化させた場合は、結像倍率
の変化が波面収差に及ぼす影響を考慮して結像倍率mを
変数とする関数b(m)、a(m)を導入し、
Next, when the magnification is changed, the functions b (m) and a (m) whose variables are the imaging magnification m are introduced in consideration of the influence of the change in the imaging magnification on the wavefront aberration. ,

【数16】 がある範囲内にある必要がある。条件(4)、(5)は
この範囲を有効径最周辺を光線が通過する位置及びNA
0.45の光線が通過する位置において規定するもので
あり、条件(4)の下限、条件(5)の上限を超えると
球面収差が補正過剰となり、条件(4)の上限、条件
(5)の下限を超えると球面収差が補正不足となる。
[Equation 16] Must be within some range. Conditions (4) and (5) are the position where the light ray passes through the periphery of the effective diameter and NA in this range.
It is defined at a position where a ray of 0.45 passes, and when the lower limit of condition (4) and the upper limit of condition (5) are exceeded, spherical aberration is overcorrected, and the upper limit of condition (4) and condition (5) are satisfied. If the lower limit of is exceeded, spherical aberration will be undercorrected.

【0010】[0010]

【実施例】以下に、本発明の対物レンズの実施例を示
す。表中の記号は前述の他、 dL :レンズの軸上厚 dc :像側に挿入されているカバーガラスの軸上厚 nc :像側に挿入されているカバーガラスの屈折率 wD :作動距離 を示す。光源側、像側の面の非球面形状は、面の頂点を
原点とし、光軸方向をX軸とした直交座標系において、
κを円錐定数、Ai を非球面係数、Pi を非球面のべき
数とするとき、
EXAMPLES Examples of the objective lens of the present invention will be shown below. The symbols in the table are in addition to those mentioned above. DL: axial thickness of lens dc: axial thickness of cover glass inserted on the image side nc: refractive index of cover glass inserted on the image side wD: working distance Show. The aspherical shape of the surface on the light source side and the surface on the image side is defined by
Let κ be the conic constant, Ai be the aspherical coefficient, and Pi be the power of the aspherical surface.

【数17】 で表される。H1、H2は像側NA0.45の光線がそれ
ぞれ光源側の面、像側の面を通過する高さである。非球
面量△1、△2は、非球面形状を上記のように表した場合
には、 △1 =Xsp,j−Xas,j , (j=1,2) 但し、
[Equation 17] It is represented by. H 1 and H 2 are the heights at which the image-side NA 0.45 ray passes through the light source side surface and the image side surface, respectively. When the aspherical surface shape is expressed as above, the aspherical surface quantities Δ 1 and Δ 2 are Δ 1 = Xsp, j−Xas, j, (j = 1,2)

【数18】 Cj =1/r1 κj :j面の円錐定数 Ai(j) :j面の非球面係数 Pi(j) :j面の非球面のべき数 である。また、H1’、H2’をそれぞれ光源側の面、像
側の面における周辺光線の高さとすると、非球面量
δ1、δ2は、非球面形状を前記のように表した場合に
は、 δj =Xas,j’−Xas,j , (j=1,2) 但し、
(Equation 18) Cj = 1 / r 1 κj: Conical constant of j-plane Ai (j): Aspherical surface coefficient of j-plane Pi (j): Exponent of aspherical surface of j-plane. If H 1 'and H 2 ' are the heights of the marginal rays on the surface on the light source side and the surface on the image side, the aspherical surface quantities δ 1 and δ 2 are as shown in the above-mentioned case. Is δj = Xas, j'-Xas, j, (j = 1,2) where

【数19】 である。[Formula 19] Is.

【0011】実施例1 f = 1.00 NA=0.64 m =−1/20 dc =0.2222 WD = 0.5276 nc =1.58 r1 = 0.75500 dL =0.70 n=1.7000 r2 =−5.94064 非球面係数、べき数 第1面 κ1 =−0.32219 A1(1) =−0.20620×10-1 1(1)= 4.0 A2(1) =−0.55576×10-1 2(1)= 6.0 A3(1) =−0.25645 P3(1)= 8.0 A4(1) =−0.78063×10-1 4(1)=10.0 第2面 κ2 =−0.54318×102 1(2) =+0.43201 P1(2)= 4.0 A2(2) =−0.18900×10 P2(2)= 6.0 A3(2) =+0.38530×10 P3(2)= 8.0 A4(2) =−0.30053×10 P4(2)=10.0 r1/(n−1)f√(1+|m|)=1.0526[0011] Example 1 f = 1.00 NA = 0.64 m = -1 / 20 dc = 0.2222 WD = 0.5276 nc = 1.58 r 1 = 0.75500 dL = 0.70 n = 1.7000 r 2 = −5.994064 Aspherical coefficient, power number 1st surface κ 1 = −0.32219 A 1 (1) = −0.20620 × 10 −1 P 1 (1) = 4.0 A 2 (1) = -0.555576 x 10 -1 P 2 (1) = 6.0 A 3 (1) = -0.25564 P 3 (1) = 8.0 A 4 (1) = -0. 78063 × 10 −1 P 4 (1) = 10.0 Second surface κ 2 = −0.54318 × 10 2 A 1 (2) = + 0.43201 P 1 (2) = 4.0 A 2 (2) = -0.18900 × 10 P 2 (2) = 6.0 A 3 (2) = + 0.38530 × 10 P 3 (2) = 8.0 A 4 (2) = −0.30053 × 10 P 4 (2) = 10.0 r 1 /(n−1)f√(1+|m|)=1.0526

【数20】 (Equation 20)

【0012】実施例2 f = 1.00 NA=0.63 m =−1/7.5 dc =0.2222 WD = 0.6337 nc =1.58 r1 = 0.80300 dL =0.70 n=1.7000 r2 =−3.49840 非球面係数、べき数 第1面 κ1 =−0.35823 A1(1) =−0.43155×10-1 1(1)= 4.0 A2(1) =−0.67105×10-1 2(1)= 6.0 A3(1) =−0.13428 P3(1)= 8.0 A4(1) =−0.10425 P4(1)=10.0 第2面 κ2 =−0.54193×102 1(2) =+0.19311 P1(2)= 4.0 A2(2) =−0.70191 P2(2)= 6.0 A3(2) =+0.98817 P3(2)= 8.0 A4(2) =−0.54963 P4(2)=10.0 r1/(n−1)f√(1+|m|)=1.0776[0012] Example 2 f = 1.00 NA = 0.63 m = -1 / 7.5 dc = 0.2222 WD = 0.6337 nc = 1.58 r 1 = 0.80300 dL = 0.70 n = 1.7000 r 2 = −3.498840 Aspheric coefficient, power number First surface κ 1 = −0.35823 A 1 (1) = −0.43155 × 10 −1 P 1 (1) = 4. 0 A 2 (1) = -0.67105 x 10 -1 P 2 (1) = 6.0 A 3 (1) = -0.13428 P 3 (1) = 8.0 A 4 (1) =- 0.10425 P 4 (1) = 10.0 Second surface κ 2 = −0.54193 × 10 2 A 1 (2) = + 0.19311 P 1 (2) = 4.0 A 2 (2) = -0.70191 P 2 (2) = 6.0 A 3 (2) = + 0.98817 P 3 (2 ) = 8.0 A 4 (2) = −0.54963 P 4 (2) = 10.0 r 1 /(n−1)f√(1+|m|)=1.0776

【数21】 [Equation 21]

【0013】実施例3 f = 1.00 NA=0.60 m =−1/20 dc =0.2222 WD = 0.5382 nc =1.58 r1 = 0.62013 dL =0.70 n=1.4899 r2 =−1.46699 非球面係数、べき数 第1面 κ1 =−0.78016 A1(1) =+0.13928 P1(1)= 4.0 A2(1) =−0.10146 P2(1)= 6.0 A3(1) =+0.17257 P3(1)= 8.0 A4(1) =−0.42971 P4(1)=10.0 第2面 κ2 =−0.27250×102 1(2) =−0.45045×10-1 1(2)= 4.0 A2(2) =+0.26170×10-1 2(2)= 6.0 A3(2) =−0.45967×10-1 3(2)= 8.0 A4(2) =+0.23605×10-1 4(2)=10.0 r1/(n−1)f√(1+|m|)=1.2353[0013] Example 3 f = 1.00 NA = 0.60 m = -1 / 20 dc = 0.2222 WD = 0.5382 nc = 1.58 r 1 = 0.62013 dL = 0.70 n = 1.4899 r 2 = −1.466699 aspherical coefficient, power number 1st surface κ 1 = −0.78016 A 1 (1) = + 0.13928 P 1 (1) = 4.0 A 2 (1) = −0.10146 P 2 (1) = 6.0 A 3 (1) = + 0.17257 P 3 (1) = 8.0 A 4 (1) = −0.42971 P 4 (1) = 10.0 Second surface κ 2 = −0.27250 × 10 2 A 1 (2) = -0.45045 x 10 -1 P 1 (2) = 4.0 A 2 (2) = +0.26170 x 10 -1 P 2 (2) = 6.0 A 3 (2) = −0.45967 × 10 −1 P 3 (2) = 8.0 A 4 (2) = + 0.23605 × 10 −1 P 4 (2) = 10.0 r 1 / (n−1) f√ (1+ | m |) = 1.2353

【数22】 [Equation 22]

【0014】実施例4 f = 1.00 NA=0.564 m =−1/7.5 dc =0.2222 WD = 0.6366 nc =1.58 r1 = 0.64647 dL =0.70 n=1.4899 r2 =−1.30257 非球面係数、べき数 第1面 κ1 =−0.93181 A1(1) =+0.13297 P1(1)= 4.0 A2(1) =−0.75937×10-1 2(1)= 6.0 A3(1) =+0.41641×10-1 3(1)= 8.0 A4(1) =−0.29086 P4(1)=10.0 第2面 κ2 =−0.14879×102 1(2) =+0.51309×10-2 1(2)= 4.0 A2(2) =−0.15536 P2(2)= 6.0 A3(2) =+0.20191 P3(2)= 8.0 A4(2) =−0.14246 P4(2)=10.0 r1/(n−1)f√(1+|m|)=1.240[0014] Example 4 f = 1.00 NA = 0.564 m = -1 / 7.5 dc = 0.2222 WD = 0.6366 nc = 1.58 r 1 = 0.64647 dL = 0.70 n = 1.4899 r 2 = −1.30257 aspherical coefficient, power number 1st surface κ 1 = −0.93181 A 1 (1) = + 0.13297 P 1 (1) = 4.0 A 2 (1 ) = − 0.75937 × 10 −1 P 2 (1) = 6.0 A 3 (1) = + 0.41641 × 10 −1 P 3 (1) = 8.0 A 4 (1) = −0. 29086 P 4 (1) = 10.0 Second surface κ 2 = −0.14879 × 10 2 A 1 (2) = + 0.51309 × 10 -2 P 1 (2) = 4.0 A 2 (2) = -0.15536 P 2 (2) = 6.0 A 3 (2) = + 0.20191 P 3 (2) = 8.0 A 4 (2) = -0.14246 P 4 (2) = 10.0 r 1 /(n-1)f√(1+|m|)=1.240

【数23】 (Equation 23)

【0015】実施例5 f = 1.00 NA=0.510 m =−1/10.0 dc =0.2222 WD = 0.5964 nc =1.58 r1 = 0.63422 dL =0.70 n=1.4899 r2 =−1.37159 非球面係数、べき数 第1面 κ1 =−0.89511 A1(1) =+0.13998 P1(1)= 4.0 A2(1) =−0.21030×10-1 2(1)= 6.0 A3(1) =+0.51236×10-1 3(1)= 8.0 A4(1) =−0.18622 P4(1)=10.0 第2面 κ2 =−0.16854×102 1(2) =+0.46240×10-1 1(2)= 4.0 A2(2) =−0.15527 P2(2)= 6.0 A3(2) =+0.19709 P3(2)= 8.0 A4(2) =−0.11607 P4(2)=10.0 r1/(n−1)f√(1+|m|)=1.234[0015] Example 5 f = 1.00 NA = 0.510 m = -1 / 10.0 dc = 0.2222 WD = 0.5964 nc = 1.58 r 1 = 0.63422 dL = 0.70 n = 1.4899 r 2 = −1.37159 aspherical coefficient, power number 1st surface κ 1 = −0.89511 A 1 (1) = + 0.13998 P 1 (1) = 4.0 A 2 (1 ) = -0.21030 × 10 -1 P 2 (1) = 6.0 A 3 (1) = + 0.51236 × 10 -1 P 3 (1) = 8.0 A 4 (1) = -0. 18622 P 4 (1) = 10.0 Second surface κ 2 = −0.16854 × 10 2 A 1 (2) = + 0.46240 × 10 -1 P 1 (2) = 4.0 A 2 (2) = -0.15527 P 2 (2) = 6.0 A 3 (2) = + 0.19709 P 3 (2) = 8.0 A 4 (2) = -0.11607 P 4 (2) = 10.0 r 1 /(n-1)f√(1+|m|)=1.234

【数24】 [Equation 24]

【0016】[0016]

【発明の効果】本発明の光情報記録媒体の記録再生用対
物レンズは、その実施例および図面から見るように、開
口数が0.5を越える高NAの有限共役型の対物レンズ
であり、球面収差のみならず、正弦条件および非点収差
も良好であるだけでなく、光情報媒体のたわみ等による
物像間距離の変動による収差の発生量が実用上無視出来
る対物レンズを実現することが出来た。
The objective lens for recording / reproducing of the optical information recording medium of the present invention is a finite conjugate type objective lens with a high NA exceeding 0.5, as seen from the examples and the drawings. Not only the spherical aberration but also the sine condition and astigmatism are good, and it is possible to realize an objective lens in which the amount of aberration generated due to the variation of the distance between the object images due to the deflection of the optical information medium is practically negligible. done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対物レンズを用いる光学系の一例の光
学配置図である。
FIG. 1 is an optical layout diagram of an example of an optical system using an objective lens of the present invention.

【図2】本発明の対物レンズのカバーガラスを含む断面
図である。
FIG. 2 is a sectional view including a cover glass of an objective lens of the present invention.

【図3】本発明の対物レンズの実施例1の収差曲線図で
ある。
FIG. 3 is an aberration curve diagram of Example 1 of the objective lens of the present invention.

【図4】本発明の対物レンズの実施例2の収差曲線図で
ある。
FIG. 4 is an aberration curve diagram of Example 2 of the objective lens of the present invention.

【図5】本発明の対物レンズの実施例3の収差曲線図で
ある。
FIG. 5 is an aberration curve diagram of Example 3 of the objective lens of the present invention.

【図6】本発明の対物レンズの実施例4の収差曲線図で
ある。
FIG. 6 is an aberration curve diagram of Example 4 of the objective lens according to the present invention.

【図7】本発明の対物レンズの実施例5の収差曲線図で
ある。
FIG. 7 is an aberration curve diagram of Example 5 of the objective lens of the present invention.

【符号の説明】[Explanation of symbols]

1 光情報記録面 2 対物レンズ 3
光源
1 Optical information recording surface 2 Objective lens 3
light source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源側及び光情報記録媒体側が共に非球
面形状を有し、 0.5<NA<0.65 である両凸単レンズであって、以下の条件を満足するこ
とを特徴とする有限系仕様の光情報記録媒体の記録再生
用対物レンズ 0.05≦|m|≦0.135 0.75 <r1/{(n−1)f√(1+|m|)}
<1.5 【数1】 但し、 NA : 像側の開口数 m : 結像倍率 r1 : 光源側の面の頂点曲率半径 n : レンズの屈折率 f : レンズの焦点距離 【数2】 δ1 : 光源側の面の有効径最周辺(上記NAの周
縁光線が入射する光源側の面上の位置)における非球面
とNA0.45の光線が入射する光源側の面上の位置に
おける非球面との光軸方向の差で、有効径最周辺におけ
る非球面がNA0.45における非球面よりも像側へ変
位している場合を正とする。 δ2 : 像側の面の有効径最周辺における非球面と
NA0.45の光線が出射する像側の面上の位置におけ
る非球面との光軸方向の差で、有効径最周辺における非
球面がNA0.45における非球面よりも像側へ変位し
ている場合を正とする。 b(m): 結像倍率mの関数であり、b(m)=|m
|+0.33で表される。
1. A biconvex single lens in which both the light source side and the optical information recording medium side have an aspherical shape and 0.5 <NA <0.65, and which satisfies the following conditions: Objective lens for recording / reproduction of optical information recording medium with finite system specification 0.05 ≦ | m | ≦ 0.135 0.75 <r 1 / {(n−1) f√ (1+ | m |)}
<1.5 [Equation 1] Where NA is the numerical aperture on the image side, m is the imaging magnification, r 1 is the radius of curvature of the vertex of the surface on the light source side, n is the refractive index of the lens, and f is the focal length of the lens. δ 1 : a non-spherical surface at the periphery of the effective diameter of the surface on the light source side (the position on the surface on the light source side where the marginal ray of NA is incident) and a position on the surface on the light source side where the ray of NA 0.45 is incident The case where the aspherical surface at the outermost periphery of the effective diameter is displaced toward the image side with respect to the aspherical surface at NA 0.45 due to the difference in the optical axis direction from the spherical surface is positive. δ 2 : The difference in the optical axis direction between the aspherical surface at the outermost periphery of the effective diameter of the image side and the aspherical surface at the position on the image side where the ray of NA 0.45 exits, and the aspherical surface at the outermost periphery of the effective diameter. Is positive when it is displaced toward the image side from the aspherical surface at NA 0.45. b (m): a function of the imaging magnification m, b (m) = | m
It is represented by | +0.33.
JP7160125A 1995-06-05 1995-06-05 Objective lens for recording and reproducing optical information recording medium Pending JPH08334686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7160125A JPH08334686A (en) 1995-06-05 1995-06-05 Objective lens for recording and reproducing optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160125A JPH08334686A (en) 1995-06-05 1995-06-05 Objective lens for recording and reproducing optical information recording medium

Publications (1)

Publication Number Publication Date
JPH08334686A true JPH08334686A (en) 1996-12-17

Family

ID=15708416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160125A Pending JPH08334686A (en) 1995-06-05 1995-06-05 Objective lens for recording and reproducing optical information recording medium

Country Status (1)

Country Link
JP (1) JPH08334686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835473A (en) * 1996-01-17 1998-11-10 Asahi Glass Company Ltd. Optical pick-up, optical data recording apparatus and objective lens for optical data recording material
US6188528B1 (en) 1998-07-09 2001-02-13 Sony Corporation Optical lens, and optical pickup and optical disc apparatus using such lens
JP2001235678A (en) * 2000-02-23 2001-08-31 Sony Corp Objective lens, optical pickup device and optical disk device
US7209428B2 (en) 2003-06-05 2007-04-24 Pentax Corporation Optical system of optical pick-up
US7839731B2 (en) 2003-12-18 2010-11-23 Hoya Corporation Optical system for optical disc

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835473A (en) * 1996-01-17 1998-11-10 Asahi Glass Company Ltd. Optical pick-up, optical data recording apparatus and objective lens for optical data recording material
US6188528B1 (en) 1998-07-09 2001-02-13 Sony Corporation Optical lens, and optical pickup and optical disc apparatus using such lens
JP2001235678A (en) * 2000-02-23 2001-08-31 Sony Corp Objective lens, optical pickup device and optical disk device
US7209428B2 (en) 2003-06-05 2007-04-24 Pentax Corporation Optical system of optical pick-up
US7839731B2 (en) 2003-12-18 2010-11-23 Hoya Corporation Optical system for optical disc

Similar Documents

Publication Publication Date Title
US4449792A (en) Large-aperture single lens with aspherical surfaces
US4657352A (en) Image optical system including a non-spherical single lens
JP2991524B2 (en) Wide-angle lens
JP2641514B2 (en) Single group objective lens
JPH06258573A (en) Optical system for recording and reproducing optical information medium
JP2902435B2 (en) Objective lens system for optical information recording / reproducing device
JPH0314324B2 (en)
US4701032A (en) Graded refractive index lens system
JPH08334686A (en) Objective lens for recording and reproducing optical information recording medium
JPH0428282B2 (en)
US4684221A (en) Graded refractive index single lens system
US4902114A (en) Objective lens for an optical disk
JPH09179021A (en) Optical system and objective for recording and reproducing optical information recording medium
JPH0453285B2 (en)
JP2613761B2 (en) Condensing optical system for optical information recording media
JP3014311B2 (en) Objective lens system with variable disk substrate thickness
JP2567047B2 (en) Aspheric single lens
SU723481A1 (en) Reflex lens objective
JPH11144291A (en) Objective lens whose off-axis characteristic is improved
JPH0829682A (en) Objective lens for recording and reproducing optical information recording medium
JPH04163510A (en) Object lens for optical disk
JPS62215223A (en) Condenser lens for optical memory
JPH09325270A (en) Image forming optical system capable of varying thickness of disk substrate
JPS61177408A (en) Objective lens for recording and reproducing of optical information recording medium
JP2001249271A (en) Refraction/diffraction hybrid lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030701