JPH08334394A - Flow rate measuring instrument - Google Patents

Flow rate measuring instrument

Info

Publication number
JPH08334394A
JPH08334394A JP14198495A JP14198495A JPH08334394A JP H08334394 A JPH08334394 A JP H08334394A JP 14198495 A JP14198495 A JP 14198495A JP 14198495 A JP14198495 A JP 14198495A JP H08334394 A JPH08334394 A JP H08334394A
Authority
JP
Japan
Prior art keywords
mixing chamber
liquid
volume
gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14198495A
Other languages
Japanese (ja)
Other versions
JP3607364B2 (en
Inventor
Samon Oya
左門 大家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP14198495A priority Critical patent/JP3607364B2/en
Publication of JPH08334394A publication Critical patent/JPH08334394A/en
Application granted granted Critical
Publication of JP3607364B2 publication Critical patent/JP3607364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To measure the quantity of liquid of a jetted multiphase flow separately from the quantity of gas jetted in terms of a flow rate measuring instrument that measures the flow rate of the liquid in the multiphase flow jetted from a mixing chamber that mixes the gas with the liquid. CONSTITUTION: The title instrument comprises a flow rate sensor 20 that measures a flow rate of liquid flowing into a mixing chamber 10, a sound source 21 that applies a sound wave QOexp (jωt) to the mixing chamber 10, a pressure sensor 22 that measures a reference static pressure PO in the mixing chamber 10 and a sound pressure sensor 23 that measures a sound pressure PW of an angle frequency ω in the mixing chamber 10. The quantity of the liquid jetted of a multiphase flow is obtained by a calculation section 26, based on the above detected values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体と液体とを混合す
る混合室から噴射された混相流中の液体の流量を測定す
る流量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate of liquid in a multiphase flow injected from a mixing chamber for mixing gas and liquid.

【0002】[0002]

【従来の技術】従来より、上記のような、混合室内で気
体と液体とを混合して噴射する技術が、例えば自動車の
エンジン内にガソリンを噴入する装置等に使用されてい
る。図3は、混合室の模式図である。この混合室10に
は、液体(例えばガソリン)11と気体(例えば空気)
12が流入し、この混合室10の内部でそれらが混合さ
れてその混合室10から噴射される。
2. Description of the Related Art Conventionally, the above-described technology of mixing and injecting gas and liquid in a mixing chamber has been used, for example, in a device for injecting gasoline into an engine of an automobile. FIG. 3 is a schematic view of the mixing chamber. In the mixing chamber 10, a liquid (for example, gasoline) 11 and a gas (for example, air)
12 flows in, they are mixed inside the mixing chamber 10 and are jetted from the mixing chamber 10.

【0003】[0003]

【発明が解決しようとする課題】例えば上述した、エン
ジン内へのガソリンの噴入量の時間的変化を測定するこ
とが要望されているが、これまでは、適切な測定手法が
見出されていない。例えば、混合室10から噴出された
混相流を圧力センサ等に吹き付けてその圧力変化から噴
射量を求める、いわゆるモーメンタム法を採用すること
が考えられるが、混相流中の液体の吹付圧力と気体の吹
付圧力とを分離することができず、したがって混相流中
の液体のみの噴出量を測定することはできない。
For example, it has been desired to measure the temporal change in the injection amount of gasoline into the engine as described above, but until now, an appropriate measurement method has been found. Absent. For example, it is conceivable to employ a so-called momentum method in which the multiphase flow ejected from the mixing chamber 10 is sprayed on a pressure sensor or the like and the injection amount is obtained from the pressure change, but the spraying pressure of the liquid in the multiphase flow and the gas It is not possible to separate the spray pressure and therefore it is not possible to measure the ejection volume of only the liquid in the multiphase flow.

【0004】本発明は、上記事情に鑑み、噴射混相流中
の液体の噴射量を、気体の噴射量とは分離して測定する
流量測定装置を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a flow rate measuring device for measuring the injection amount of liquid in an injection multiphase flow separately from the injection amount of gas.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の流量測定装置は、気体と液体との双方が流入する所
定の混合室から噴射された、これらの気体と液体とが混
合された混相流中の液体の噴出量を測定する流量測定装
置であって、 (1)混合室に流入する液体の流量を測定する流量セン
サ (2)混合室内の気体の体積ないし体積変化を測定する
体積センサ (3)流量センサで測定された流量と体積センサで測定
された体積ないし体積変化とに基づいて、混相流中の液
体の噴出量を求める演算部を備えたことを特徴とする。
In a flow rate measuring device of the present invention which achieves the above object, a gas and a liquid, which are injected from a predetermined mixing chamber into which both a gas and a liquid flow, are mixed. A flow rate measuring device for measuring the ejection amount of a liquid in a multi-phase flow, comprising: (1) a flow rate sensor for measuring the flow rate of the liquid flowing into the mixing chamber (2) a volume for measuring the volume or change in volume of gas in the mixing chamber. Sensor (3) It is characterized by comprising an arithmetic unit for determining the ejection amount of the liquid in the multiphase flow based on the flow rate measured by the flow rate sensor and the volume or volume change measured by the volume sensor.

【0006】ここで、上記本発明の流量測定装置におい
て、上記(2)の体積センサが、 (2−1)混合室内の気体中に、少なくとも所定の周波
数を含む音波を放出する音源 (2−2)混合室内の圧力を測定する圧力センサ (2−3)混合室内の、所定の周波数の音圧を測定する
音圧センサを備えたものであることが好ましい。
In the flow rate measuring device of the present invention, the volume sensor of (2) above is (2-1) a sound source that emits a sound wave containing at least a predetermined frequency into the gas in the mixing chamber. 2) Pressure sensor for measuring pressure in the mixing chamber (2-3) It is preferable to include a sound pressure sensor for measuring sound pressure at a predetermined frequency in the mixing chamber.

【0007】[0007]

【作用】図1は、本発明の原理説明図であり、図3に示
す混合室の模式図に、各種記号を書き加えた図である。
本発明の流量測定装置は、この図1に示すような矩形の
混合室等にのみ適用されるものではないが、解り易さの
ため、以下、この図1を参照しながら、本発明の測定原
理について説明する。
FIG. 1 is a diagram for explaining the principle of the present invention, in which various symbols are added to the schematic diagram of the mixing chamber shown in FIG.
Although the flow rate measuring device of the present invention is not applied only to the rectangular mixing chamber and the like as shown in FIG. 1, the measurement of the present invention will be described below with reference to FIG. 1 for the sake of easy understanding. The principle will be described.

【0008】図1に示す系で、液体11の混合室10へ
の流入体積速度をQL,in(t)、混合室10の内容積を
O 、混合室10内の液体11の体積をVL (t)、混
合室10内の気体の体積をVG (t)、混合室10から
噴射される混相流中の液体の流出体積速度をQL,out
(t)とする。尚、(t)は時刻tの関数であることを
表わす。ここで求めようとしているのは、液体の流出体
積速度QL,out (t)である。
In the system shown in FIG. 1, the volumetric velocity of the liquid 11 flowing into the mixing chamber 10 is Q L, in (t), the internal volume of the mixing chamber 10 is V O , and the volume of the liquid 11 in the mixing chamber 10 is V L (t), the volume of the gas in the mixing chamber 10 V G (t), the flow volume rate of liquid in multiphase flow ejected from the mixing chamber 10 Q L, out
(T). Note that (t) represents a function of time t. What is being sought here is the outflow volume velocity Q L, out (t) of the liquid.

【0009】混合室10の内の液体11の体積VL
(t)は、 VL (t)=VO −VG (t) ……(1) で与えられるので、
Volume V L of liquid 11 in mixing chamber 10
(T) is, because it is given by V L (t) = V O -V G (t) ...... (1),

【0010】[0010]

【数1】 [Equation 1]

【0011】により、噴射混相流中の液体の流出体積速
度QL,out (t)が推定される。ただし、ここでは、液
体11は、非圧縮性流体であるとしている。すなわち
(2)式によると、混合室10に流入する液体11の流
入体積速度Q L,in(t)と、混合室10内の気体12の
体積VG (t)もしくはその体積変化{dVG (t)/
dt}とを測定することにより、噴射混相流中の流体の
流出体積速度QL,out (t)を求めることができる。
According to the above, the outflow volume velocity of the liquid in the jet multiphase flow is
Degree QL, out (T) is estimated. However, here
The body 11 is assumed to be an incompressible fluid. Ie
According to the equation (2), the flow of the liquid 11 flowing into the mixing chamber 10
Volumetric velocity Q L, in(T) and the gas 12 in the mixing chamber 10
Volume VG (T) or its volume change {dVG (T) /
dt} and the fluid in the jet multiphase flow
Outflow volume velocity QL, out (T) can be obtained.

【0012】(液体の流入体積速度QL,in(t)の測
定)これは、液体のみが液体流入管13内を流れている
状態における液体の流入体積速度であるから、例えばレ
ーザドプラ流速計、超音波流速計等によりその液体11
の流速VL,in(t)を測定し、管13(図1参照)の内
断面積をS、補正係数をαとして、 QL,in(t)=α・S・VL,in(t) ……(3) により求めることができる。この、液体流入管13内を
流れる液体の体積速度を求める手法自体は従来知られて
おり、また流速計についても種々の原理に基づくものが
従来知られており、ここでは、これ以上の詳細説明は省
略する。
(Measurement of Liquid Inflow Volume Velocity Q L, in (t)) Since this is the liquid inflow volume velocity in the state where only the liquid is flowing in the liquid inflow pipe 13, for example, a laser Doppler velocity meter, Liquid 11 by ultrasonic velocity meter
The flow velocity V L, in (t) of the pipe 13 is measured, and the inner cross-sectional area of the pipe 13 (see FIG. 1) is S and the correction coefficient is α. Q L, in (t) = α · S · V L, in ( t) It can be calculated by (3). The method itself for obtaining the volume velocity of the liquid flowing in the liquid inflow pipe 13 has been conventionally known, and the velocity meter based on various principles has been conventionally known. Here, more detailed description will be given here. Is omitted.

【0013】(混合室内の気体の体積ないし体積変化の
測定)本発明は、混合室内の体積ないし体積変化を求め
る手法自体を特定の手法に限定するものではなく、例え
ば混合室10を透明体で形成し混合室10の内部の様子
を連続的に撮影して画像処理を行なうこと等によってそ
の体積ないし体積変化を測定するものであってもよい
が、ここでは、例えば上述したガソリンの噴入のよう
な、例えば数msecを単位とした高速の流量変化を知
ることのできる手法として、以下の原理に基づく、気体
の体積を測定する手法を説明する。
(Measurement of Volume or Volume Change of Gas in Mixing Chamber) The present invention does not limit the method itself for obtaining the volume or volume change in the mixing chamber to a specific method. The volume or volume change may be measured by continuously forming an image of the inside of the mixing chamber 10 and performing image processing, but here, for example, the injection of gasoline described above is performed. A method of measuring the volume of gas based on the following principle will be described as a method capable of knowing a high-speed flow rate change in units of several msec, for example.

【0014】混合室10内に、角周波数ω,体積速度Q
O の音波QO exp(jωt)を発生する音源を配置し
て混合室10内の気体に音波(圧力変化)を与え、その
混合室10内の気体の圧力PO と、角周波数ωの音圧P
W exp(jωt)を測定する。尚、jは虚数単位を表
わす。ここでは、混合室10内の代表的な長さが音波Q
O exp(jωt)の波長に比べ十分小さいものとす
る。
In the mixing chamber 10, an angular frequency ω and a volume velocity Q
O waves Q O gives exp gas to sonic (pressure change) in place sound sources for generating (j? T) and the mixing chamber 10 of the pressure P O of the gas in the mixing chamber 10, the sound of the angular frequency ω Pressure P
Measure W exp (jωt). In addition, j represents an imaginary unit. Here, the typical length in the mixing chamber 10 is the sound wave Q.
It is assumed to be sufficiently smaller than the wavelength of O exp (jωt).

【0015】混合室10内部の気体12の密度をρ、粒
子速度(ベクトル)をvとしたとき、質量に関する連続
の式は、
Assuming that the density of the gas 12 inside the mixing chamber 10 is ρ and the particle velocity (vector) is v,

【0016】[0016]

【数2】 [Equation 2]

【0017】で表わされる。また、混合室10内の気体
12の圧力をPとし、 P = PO + p ρ = ρO + ρ´ v = vO + v´= v´ ……(5) のように、平行状態での圧力PO ,密度ρO ,速度vO
と、それからの偏差p(音圧),ρ´,v´との和で表
わす。ただし、粒子速度vについては、平衡状態では気
体の流れはないものとし、したがって粒子速度vO はv
O =0とする。
It is represented by Further, the pressure of the gas 12 in mixing chamber 10 is P, as in P = P O + p ρ = ρ O + ρ'v = v O + v'= v'...... (5), a parallel state Pressure P O , density ρ O , velocity v O
And the deviation p (sound pressure), ρ ′, and v ′ from it. However, regarding the particle velocity v, it is assumed that there is no gas flow in the equilibrium state, and therefore the particle velocity v O is v
Let O = 0.

【0018】(5)式を(4)式に代入すると、PO
ρO は一定値であるため、
Substituting equation (5) into equation (4), P O ,
Since ρ O is a constant value,

【0019】[0019]

【数3】 (Equation 3)

【0020】となる。この(6)式の左辺の第3項v´
・grad(ρ´)は2次の微小量であるためこれを省
略すると、
[0020] The third term v'on the left side of the equation (6)
・ Grad (ρ ') is a second-order minute quantity, so if omitted,

【0021】[0021]

【数4】 [Equation 4]

【0022】が成立する。更に、熱力学考察より、気体
の密度ρを圧力PとエントロピーSとの関数 ρ = ρ(P,S) ……(7) と考えるとともに、熱伝導や粘性の影響は無視できる等
エントロピー過程を考え、
Is satisfied. Further, from thermodynamic consideration, we consider gas density ρ as a function of pressure P and entropy S ρ = ρ (P, S) (7), and the isentropic process in which the effects of heat conduction and viscosity can be ignored. Thinking,

【0023】[0023]

【数5】 (Equation 5)

【0024】ここで(…)S,O の‘o’は平衡状態での
値であることを示している。(7)式は、
Here, 'o' of (...) S, O is a value in the equilibrium state. Equation (7) is

【0025】[0025]

【数6】 (Equation 6)

【0026】となる。次に、上記(9)式を混合室10
の気体12の部分全体(VG )にわたって積分する。こ
こで、上述したように、混合室10の長さディメンショ
ンは音波の波長に比べて十分小さい場合は、音圧は混合
室10内部で一様と考えてよく、
[0026] Next, the above equation (9) is applied to the mixing chamber 10
Over a portion (V G ) of the gas 12 of Here, as described above, when the length dimension of the mixing chamber 10 is sufficiently smaller than the wavelength of the sound wave, the sound pressure may be considered to be uniform inside the mixing chamber 10,

【0027】[0027]

【数7】 (Equation 7)

【0028】但し、xはベクトルを表わす となる。さて、(9)式をVG 内で積分し、However, x represents a vector. Now, by integrating equation (9) within V G ,

【0029】[0029]

【数8】 (Equation 8)

【0030】を得る。ただし、簡単のため音源は平面ピ
ストン音源とし、音源の振動速度の法線成分をVn ・e
xp(jωt),音源の面積をA、また、 P = PW exp(jωt) とし、共通因子exp(jωt)は省略した。(11)
式より、
To obtain However, for simplicity, the sound source is a plane piston sound source, and the normal component of the vibration velocity of the sound source is V n · e
xp (jωt), the area of the sound source is A, and P = P W exp (jωt), and the common factor exp (jωt) is omitted. (11)
From the formula,

【0031】[0031]

【数9】 [Equation 9]

【0032】 QO = −A・Vn ……(13) を得る。理想気体の場合には、Q O = −A · V n (13) is obtained. In case of ideal gas,

【0033】[0033]

【数10】 [Equation 10]

【0034】が成り立ち、(12)式は、And the equation (12) is

【0035】[0035]

【数11】 [Equation 11]

【0036】となる。従ってIt becomes Therefore

【0037】[0037]

【数12】 (Equation 12)

【0038】を得る。尚、今まで、VG ,PO は一定と
したが、これらがexp(jωt)に比べ、ゆっくり変
化する場合には、 VG → VG (t), PO → PO (t) ……(18) としてよい。また、(5)式以降vO =0としたが、気
体の熱伝導の影響は無視し得るとして(10)式で仮定
したのと同じ理由で、密度ρ=ρ0 +ρ’も混合室内で
は空間的に一様に変化すると考えるならば、そして、音
波の時間変動が背景のP0 (t)等の時間変動に比べ十
分速いとするならばvO ≠0の場合にも、(7)式は成
り立つことになる。
To obtain Up to now, V G and P O are constant, but when these change slowly compared to exp (jωt), V G → V G (t), P O → P O (t) ... … (18) Also, (5) was the expression since v O = 0, for the same reason that the influence of the heat conduction gas was assumed as negligible in (10), the density ρ = ρ 0 + ρ 'in the mixing chamber If it is considered that the spatially uniform variation occurs, and if the temporal variation of the sound wave is sufficiently faster than the temporal variation of the background P 0 (t), etc., then in the case of v O ≠ 0, (7) The formula will hold.

【0039】ここで、上記(17)式において、音源の
体積速度QO は測定、制御可能な量であり、圧力PO
音圧PW も測定可能量である。ところで(17)式中に
示される比熱比γは、理想気体の場合は比熱比でよかっ
たが、現実には、混合室10の内壁と気体との間の熱伝
導は無視できない。そこで、上記(17)式を、
Here, in the above equation (17), the volume velocity Q O of the sound source is a measurable and controllable amount, and the pressure P O ,
The sound pressure P W is also a measurable amount. By the way, the specific heat ratio γ shown in the equation (17) is good in the case of an ideal gas, but in reality, the heat conduction between the inner wall of the mixing chamber 10 and the gas cannot be ignored. Therefore, the above equation (17) is changed to

【0040】[0040]

【数13】 (Equation 13)

【0041】と書き換える。ここで、γeff は低周波で
γeff ≒1、高周波では、γeff ≒γとなる複素数値を
とる無次元量である。このγeff は球や円筒内部等の簡
単な境界条件の場合は容易に算出し得るが、図1に示す
ような複雑な系については解析的な手法では一般的には
求めることはできない。そこで、混合室10の内部の形
状、攪拌状態等とγeff との関係マップを、測定データ
を基に作成しておき、その関係マップから求められたγ
eff を用いてV G を推定することが望ましい。
Rewrite as Where γeff At low frequencies
γeff ≒ 1, γ at high frequencyeff A complex value such that ≈γ
It is a dimensionless quantity to be taken. This γeff Is a simple sphere or cylinder
Although it can be easily calculated in the case of a simple boundary condition, it is shown in Fig. 1.
For complex systems such as
I can't ask. Therefore, the internal shape of the mixing chamber 10
Shape, stirring state, and γeff Relationship map with measured data
Γ obtained from the relationship map
eff Using V G It is desirable to estimate

【0042】このようにして、(3)式に基づいて液体
の流入体積速度QL,in(t)を求めるとともに、(1
7)式ないし(19)式に基づいて混合室内部の気体の
体積V G を求めることにより、(2)式から、噴射混相
流中の液体の流出体積速度QL, out (t)が求められ
る。尚、上記説明では、混合室10内部の体積VO とし
ては、混合室10内部の幾何学的形状のみにより定まる
体積を想定したが、必要に応じて、幾何学的な体積に代
わり、実効的な体積を想定してもよい。また必要に応じ
て、混合室10に流入する気体12の流路に音響フィル
タを取り付けてもよい。
In this way, the liquid based on the equation (3) is used.
Inflow volume velocity QL, in(T) is calculated and (1
Based on equations (7) to (19), the gas inside the mixing chamber
Volume V G From the formula (2), the injection mixed phase can be obtained by
Outflow volume velocity Q of liquid in flowL, out (T) is required
It In the above description, the volume V inside the mixing chamber 10 isO age
Is determined only by the geometrical shape inside the mixing chamber 10.
The volume is assumed, but if necessary, the geometrical volume is substituted.
Alternatively, an effective volume may be assumed. If necessary
The acoustic flow in the flow path of the gas 12 flowing into the mixing chamber 10.
May be attached.

【0043】[0043]

【実施例】以下、本発明の実施例について説明する。図
2は、図1に示す混合室に、本発明の流量測定装置の一
実施例を取り付けた状態を示す模式図である。この図2
中に記入された符号は、図1もしくは図3に記入された
符号、もしくは、前述した各式中に表われた符号と同一
の意味を有しており、ここでは重複説明は省略する。
Embodiments of the present invention will be described below. FIG. 2 is a schematic diagram showing a state in which an embodiment of the flow rate measuring device of the present invention is attached to the mixing chamber shown in FIG. This figure 2
The code entered therein has the same meaning as the code entered in FIG. 1 or FIG. 3 or the code expressed in each of the above-mentioned formulas, and the duplicate description will be omitted here.

【0044】液体流入管13には、その管13の内部を
流れる液体11の流速を測定する、レーザドプラ流速計
(LDV)20が備えられており、流速VL,in(t)が
求められ、演算部26では、前述した(3)式に従っ
て、入力された流速VL,in(t)を基に、液体11の流
入体積速度QL,in(t)が求められる。尚、本実施例で
はLVD20と、演算部26の流速VL,in(t)を流入
体積速度QL,in(t)に換算する機能とを合わせた構成
が、本発明にいう流量センサに対応する。
The liquid inflow pipe 13 is provided with a laser Doppler velocity meter (LDV) 20 for measuring the flow velocity of the liquid 11 flowing inside the pipe 13, and the flow velocity V L, in (t) is obtained, In the calculation unit 26, the inflow volume velocity QL , in (t) of the liquid 11 is obtained based on the input flow velocity VL, in (t) according to the above-described equation (3). In the present embodiment, the flow sensor according to the present invention has a configuration in which the LVD 20 and the function of converting the flow velocity V L, in (t) of the calculation unit 26 into the inflow volume velocity QL , in (t) are combined. Correspond.

【0045】また、混合室10の壁には、音源21,圧
力センサ22,音圧センサ23が備えられている。圧力
センサ22は、混合室10の内部の気体12の静圧(も
しくはexp(jωt)と比べゆっくりと変化する準静
圧)を測定するものであり、音圧センサ23は、角周波
数ωの圧力変化を測定するものである。ここでは、名称
で区別しているが、圧力センサ22および音圧センサ2
3は各用途を満足するものであればよく、各用途を満足
する限り、同一仕様のものであってもよい。また、その
場合、気体の圧力ないし音圧を直接測定する部分は1つ
であって、フィルタ等により圧力(静圧ないし準静圧)
と音圧(角周波数ω)とに分けてもよい。
A sound source 21, a pressure sensor 22, and a sound pressure sensor 23 are provided on the wall of the mixing chamber 10. The pressure sensor 22 measures the static pressure of the gas 12 inside the mixing chamber 10 (or a quasi-static pressure that changes slowly compared to exp (jωt)), and the sound pressure sensor 23 measures the pressure of the angular frequency ω. It measures changes. Here, the pressure sensor 22 and the sound pressure sensor 2 are distinguished by name.
As long as 3 satisfies each purpose, it may have the same specifications as long as each purpose is satisfied. In that case, there is only one part that directly measures the pressure or sound pressure of the gas, and the pressure (static pressure or quasi-static pressure) is set by a filter or the like.
And sound pressure (angular frequency ω).

【0046】音源21は、その音源に入力される駆動信
号Dに応じて混合室10の内部側の面(面積A)がQO
exp(jωt)で振動する。その駆動信号Dは、振幅
Oの情報を担持する信号として、演算部26に入力さ
れる。圧力センサ22は、混合室10内部の気体12の
圧力を測定するためのセンサであり、圧力センサ22か
らの出力信号は、ローパスフィルタ24に入力され、静
圧ないし準静圧PO を表わす信号が抽出されて演算部2
6に入力される。
The sound source 21 has a surface (area A) on the inner side of the mixing chamber 10 in accordance with the drive signal D input to the sound source and has a surface area Q O.
It vibrates at exp (jωt). The drive signal D is input to the arithmetic unit 26 as a signal carrying information on the amplitude Q O. The pressure sensor 22 is a sensor for measuring the pressure of the gas 12 inside the mixing chamber 10. The output signal from the pressure sensor 22 is input to the low-pass filter 24 and is a signal representing static pressure or quasi-static pressure P O. Is extracted and the calculation unit 2
6 is input.

【0047】また、音圧センサ23は、混合室10の内
部の気体12の、角周波数ωの音圧PW を測定するため
のセンサであり、音圧センサ23からの出力信号は、バ
ンドパスフィルタ25に入力され、角周波数ωの音圧P
W を表わす信号が抽出されて演算部26に入力される。
演算部26には、この図2に示す系においてあらかじめ
測定されたγeff についてのデータが格納されており、
演算部26では、前述した(19)式に基づいて、混合
室10の内部の気体に体積VG (t)が求められる。
The sound pressure sensor 23 is a sensor for measuring the sound pressure P W of the gas 12 inside the mixing chamber 10 at the angular frequency ω, and the output signal from the sound pressure sensor 23 is a bandpass signal. The sound pressure P of the angular frequency ω is input to the filter 25.
A signal representing W is extracted and input to the arithmetic unit 26.
Data about γ eff measured in advance in the system shown in FIG. 2 is stored in the calculation unit 26,
In the calculation unit 26, the volume V G (t) of the gas inside the mixing chamber 10 is obtained based on the above-mentioned equation (19).

【0048】このようにして、演算部26では、液体1
1の流入体積速度QL,in(t)と、混合室10の内部の
気体12の体積VG (t)が求められ、さらに、前述し
た(2)式に基づいて液体11の流出体積速度QL,out
(t)が求められる。
In this way, in the calculation unit 26, the liquid 1
1 inflow volume velocity Q L, and in (t), the volume V G of the gas inside the 12 (t) is obtained in the mixing chamber 10, further outflow volume velocity of the liquid 11 on the basis of the foregoing equation (2) QL , out
(T) is required.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
噴射混相流中の液体の噴射量を、気体の噴射量とは分離
して測定することができる。
As described above, according to the present invention,
The injection amount of the liquid in the injection multiphase flow can be measured separately from the injection amount of the gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図であり、図3に示す混合室
の模式図に、各種記号を書き加えた図である。
1 is a diagram illustrating the principle of the present invention, in which various symbols are added to the schematic diagram of the mixing chamber shown in FIG.

【図2】図1に示す混合室に、本発明の流量測定装置の
一実施例を取り付けた状態を示す模式図である。
FIG. 2 is a schematic view showing a state in which an embodiment of the flow rate measuring device of the present invention is attached to the mixing chamber shown in FIG.

【図3】混合室の模式図である。FIG. 3 is a schematic view of a mixing chamber.

【符号の説明】[Explanation of symbols]

10 混合室 11 液体 12 気体 13 液体流入管 20 レーザドプラ流速計 21 音源 22 圧力センサ 23 音圧センサ 24,25 フィルタ 26 演算部 10 Mixing chamber 11 Liquid 12 Gas 13 Liquid inflow pipe 20 Laser Doppler velocity meter 21 Sound source 22 Pressure sensor 23 Sound pressure sensor 24, 25 Filter 26 Calculation unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気体と液体との双方が流入する所定の混
合室から噴射された、これらの気体と液体とが混合され
た混相流中の液体の噴出量を測定する流量測定装置であ
って、 前記混合室に流入する液体の流量を測定する流量センサ
と、 前記混合室内の気体の体積ないし体積変化を測定する体
積センサと、 前記流量センサで測定された前記流量と前記体積センサ
で測定された前記体積ないし前記体積変化とに基づい
て、前記混相流中の液体の噴出量を求める演算部とを備
えたことを特徴とする流量測定装置。
1. A flow rate measuring device for measuring the ejection amount of a liquid in a multiphase flow in which a gas and a liquid are mixed and which is ejected from a predetermined mixing chamber into which both the gas and the liquid flow. A flow sensor for measuring the flow rate of the liquid flowing into the mixing chamber, a volume sensor for measuring the volume or volume change of the gas in the mixing chamber, the flow rate measured by the flow sensor and the volume sensor. A flow rate measuring device, comprising: a calculation unit that determines the ejection amount of the liquid in the multiphase flow based on the volume or the volume change.
【請求項2】 前記体積センサが、 前記混合室内の気体中に、少なくとも所定の周波数を含
む音波を放出する音源と、 前記混合室内の圧力を測定する圧力センサと、 前記混合室内の、前記所定の周波数の音圧を測定する音
圧センサとを備えたことを特徴とする請求項1記載の流
量測定装置。
2. The sound source for emitting a sound wave having at least a predetermined frequency into the gas in the mixing chamber, the pressure sensor for measuring the pressure in the mixing chamber, and the predetermined sensor in the mixing chamber. The sound flow sensor according to claim 1, further comprising: a sound pressure sensor that measures sound pressure of the frequency.
JP14198495A 1995-06-08 1995-06-08 Flow measuring device Expired - Fee Related JP3607364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14198495A JP3607364B2 (en) 1995-06-08 1995-06-08 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14198495A JP3607364B2 (en) 1995-06-08 1995-06-08 Flow measuring device

Publications (2)

Publication Number Publication Date
JPH08334394A true JPH08334394A (en) 1996-12-17
JP3607364B2 JP3607364B2 (en) 2005-01-05

Family

ID=15304698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14198495A Expired - Fee Related JP3607364B2 (en) 1995-06-08 1995-06-08 Flow measuring device

Country Status (1)

Country Link
JP (1) JP3607364B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014203312A1 (en) * 2013-06-20 2015-01-22 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents
AU2015202197B2 (en) * 2013-06-20 2017-03-09 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014203312A1 (en) * 2013-06-20 2015-01-22 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents
AU2014203312B2 (en) * 2013-06-20 2015-02-05 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents
US9522380B2 (en) 2013-06-20 2016-12-20 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents
AU2015202197B2 (en) * 2013-06-20 2017-03-09 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents
US10421775B2 (en) 2013-06-20 2019-09-24 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents

Also Published As

Publication number Publication date
JP3607364B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
Martin et al. Viscosity and density sensing with ultrasonic plate waves
Leighton et al. Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics
CN102216739B (en) For measuring the method and apparatus of fluid parameter in vibrometer
Mitome The mechanism of generation of acoustic streaming
US4527433A (en) Method and apparatus for measuring fluid flow
WO2004063741A3 (en) Apparatus for measuring parameters of a flowing multiphase fluid mixture
Pandit et al. Measurement of bubble size distribution: an acoustic technique
EA200200632A1 (en) SIMULTANEOUS DEFINITION OF COSTS AND CONCENTRATIONS OF MULTIPLE-PHASE MIXTURE COMPONENTS
Vos et al. Method for microbubble characterization using primary radiation force
Park et al. Monitoring of void fraction and bubble size in narrow-channel bubbly-flows using ultrasonic pulses with a super bubble-resonant frequency
JPH05113359A (en) Method and device for measuring fluid flow rate
CN100405022C (en) Ultrasonic flow-velocity distribution meter/flowmeter, method of ultrasonically measuring flow velocity distribution/flowrate, program for ultrasonically measuring flow velocity distribution/flowrate
Leclercq et al. Investigation and modelling of the wall pressure field beneath a turbulent boundary layer at low and medium frequencies
US3420102A (en) Acoustic fluid metering device
Alexeev et al. Resonance gas oscillations in closed tubes: Numerical study and experiments
Handa et al. Fluidic oscillator actuated by a cavity at high frequencies
Dunham Flow-induced cavity resonance in viscous compressible and incompressible fluids
Clarke et al. A method for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state
JPH08334394A (en) Flow rate measuring instrument
Lee et al. Smart cooling technology utilizing acoustic streaming
Smith et al. Experiments concerning the Hartmann whistle
Handa et al. Experimental study of small supersonic circular jets actuated by a cavity
Raciti et al. Interferometric detection of hydrodynamic bubble–bubble interactions
Gubaidullin et al. Resonance oscillations of an aerosol in a tube with a diaphragm in the shock free-wave mode
Durst et al. Method for defined mass flow variations in time and its application to test a mass flow rate meter for pulsating flows

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees