JPH08334205A - Waste-heat boiler tube excellent in anticorrosion - Google Patents

Waste-heat boiler tube excellent in anticorrosion

Info

Publication number
JPH08334205A
JPH08334205A JP16682195A JP16682195A JPH08334205A JP H08334205 A JPH08334205 A JP H08334205A JP 16682195 A JP16682195 A JP 16682195A JP 16682195 A JP16682195 A JP 16682195A JP H08334205 A JPH08334205 A JP H08334205A
Authority
JP
Japan
Prior art keywords
stainless steel
outer layer
steel
layer made
boiler tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16682195A
Other languages
Japanese (ja)
Inventor
Tsutomu Shimizu
勉 清水
Kanji Tokushima
幹治 徳島
Setsuo Fujino
摂央 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16682195A priority Critical patent/JPH08334205A/en
Publication of JPH08334205A publication Critical patent/JPH08334205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To achieve excellent anticorrosion under a corrosive environment of a garbage incinerator by arranging an inner layer made of carbon steel, low alloy steel or stainless steel and an outer layer made of the stainless steel while the outer layer is formed by spray coating or deposit welding. CONSTITUTION: A boiler tube 4 used for a combustion chamber 2 of a garbage incinerator comprises an inner layer made of carbon steel, low alloy steel or stainless steel and an outer layer made of the stainless steel. The outer layer of the stainless steel is formed by spray coating or deposit welding. As a result, a melted part is solidified immediately after the stray coating or deposit welding. But as the cooling speed at this point is by far large as compared with that during the casting period, the growth of gain particles is blocked to obtain a very fine crystal texture. In the very fine crystal texture, a smaller particle size of Cr carbide deposited allows a reduction in difference of the concentration of Cr between the Cr carbide and a base near the Cr carbide thereby achieving excellent anticorrosion of the Cr even under a severely corrosive environment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市の生活ごみ焼却炉
内で使用される廃熱回収用ボイラーチューブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste heat recovery boiler tube used in a domestic refuse incinerator.

【0002】[0002]

【従来の技術】近年、資源の有効利用の観点から、ごみ
発電に注目が集められている。ごみ発電とは、図1に示
す如きごみ焼却炉において、クレーンバケット(1)から
燃焼室(2)の中に投入された生活ごみ(3)を燃焼する際に
発生する燃焼熱を利用して、ボイラーチューブ(4)内に
供給された水を高温・高圧の蒸気に転換し、その蒸気を
発電機(5)に供給して発電を行なうものである。
2. Description of the Related Art In recent years, attention has been paid to waste power generation from the viewpoint of effective use of resources. Garbage power generation uses the combustion heat generated when combusting domestic waste (3) put into the combustion chamber (2) from the crane bucket (1) in the waste incinerator as shown in Fig. 1. The water supplied to the boiler tube (4) is converted into high-temperature and high-pressure steam, and the steam is supplied to the generator (5) for power generation.

【0003】ボイラーチューブ材料として、従来より、
炭素鋼鋼管(STB;JIS G 3461)、低合金鋼鋼
管(STBA;JIS G 3462)、ステンレス鋼鋼管
(SUS310TB等;JIS G 3463)が知られて
いる。
Conventionally, as a boiler tube material,
Carbon steel pipe (STB; JIS G 3461), low alloy steel pipe (STBA; JIS G 3462), stainless steel pipe
(SUS310TB etc .; JIS G 3463) is known.

【0004】ところで、都市の生活ごみは、プラスチッ
ク、種々の食品等を含んでいるから、これらを焼却炉で
燃焼させると、その燃焼廃ガスには、水蒸気の他に硫酸
塩や塩化物塩を含有するダストが多量に含まれる。HC
l、SO2等の腐食性ガスがボイラーチューブの表面に
付着すると、水蒸気との複合作用によって腐食が著しく
促進される傾向がある。
By the way, since municipal waste contains plastics, various foods, etc., when these are burned in an incinerator, the combustion waste gas contains not only water vapor but also sulfate or chloride salt. A large amount of dust is contained. HC
When a corrosive gas such as 1, SO 2 or the like adheres to the surface of the boiler tube, the corrosion tends to be significantly promoted by the combined action with water vapor.

【0005】このため、ごみ焼却炉の廃熱回収用ボイラ
ーチューブは、耐食性を有するステンレス鋼が一般的に
使用されている。しかし、ステンレス鋼の場合、管体の
鋳造段階でCr炭化物が粒界に析出するため、析出した
Cr炭化物の近傍でCr濃度の希薄な部分が生じ、所望
通りの耐食性を確保できないことがあった。ごみ焼却炉
内の腐食環境の苛酷化に伴ない、耐食性のさらなる改善
が望まれている。
For this reason, stainless steel having corrosion resistance is generally used for the waste heat recovery boiler tube of the refuse incinerator. However, in the case of stainless steel, Cr carbide precipitates at the grain boundaries during the casting of the pipe, so a portion with a low Cr concentration is formed in the vicinity of the precipitated Cr carbide, and it may not be possible to ensure the desired corrosion resistance. . Along with the severer corrosive environment in the refuse incinerator, further improvement in corrosion resistance is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ごみ
焼却炉の腐食環境下ですぐれた耐食性を発揮するボイラ
ーチューブを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a boiler tube which exhibits excellent corrosion resistance in the corrosive environment of a refuse incinerator.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のボイラーチューブは、炭素鋼、低合金鋼又
はステンレス鋼の内層と、ステンレス鋼の外層とからな
り、ステンレス鋼の外層は、溶射又は肉盛溶接によって
形成するようにしたものである。
In order to achieve the above object, the boiler tube of the present invention comprises an inner layer of carbon steel, low alloy steel or stainless steel, and an outer layer of stainless steel, and the outer layer of stainless steel is It is formed by thermal spraying or overlay welding.

【0008】ボイラーチューブに要求される耐食性は、
外層のステンレス鋼によって付与されるから、腐食性ガ
スと接触しない内層の材料は、炭素鋼又は低合金鋼を用
いても差し支えない。実際、特に高温に曝される箇所で
使用するのでなければ、内層材に高価なステンレス鋼を
あえて用いる必要はなく、炭素鋼又は低合金鋼を用いる
方が経済的に有利である。
The corrosion resistance required for boiler tubes is
The material of the inner layer that does not come into contact with corrosive gas may be carbon steel or low alloy steel because it is provided by the stainless steel of the outer layer. In fact, unless it is used particularly in a place exposed to high temperatures, it is not necessary to use expensive stainless steel for the inner layer material, and it is economically advantageous to use carbon steel or low alloy steel.

【0009】外層に用いるステンレス鋼は、所望の耐食
性と高温強度を確保するため、Cr:20〜40%、N
i:20〜40%を含む高合金ステンレス鋼が望まし
い。また、Cは、溶融時の流動性を良好にし、酸化物の
混入を抑制する作用があるだけでなく、溶融後の急冷効
果が大きい。このため、外層に用いるステンレス鋼のC
量は約0.2〜0.6%程度含有させるのが好ましい。外
層の厚さは、内層の層厚を1としたとき、その約20分
の1〜5分の1となるように設定することが望ましい。
この肉厚比であれば、熱蓄積量の高い状態から冷却され
るため、外層は急冷凝固組織が得られるためである。外
層の厚さは、ボイラーチューブの管厚にもよるが、一般
的には約0.3〜2mmが望ましい。
In order to secure desired corrosion resistance and high temperature strength, the stainless steel used for the outer layer is Cr: 20-40%, N:
High alloy stainless steel containing i: 20-40% is desirable. Further, C not only has the effect of improving the fluidity during melting and suppressing the inclusion of oxides, but also has a large quenching effect after melting. Therefore, C of stainless steel used for the outer layer
The amount is preferably about 0.2 to 0.6%. It is desirable that the thickness of the outer layer is set to be about 1/20 to 1/5 of the inner layer thickness.
This is because with this wall thickness ratio, cooling is performed from a state where the heat accumulation amount is high, so that a rapidly solidified structure is obtained in the outer layer. Although the thickness of the outer layer depends on the tube thickness of the boiler tube, it is generally desired to be about 0.3 to 2 mm.

【0010】[0010]

【作用】溶射又は肉盛溶接後、溶融部分は直ちに凝固す
るが、このときの冷却速度は、鋳造時の冷却速度に比べ
て遥かに速いため、結晶粒の成長は阻害され、非常に微
細な結晶組織が得られる。微細結晶組織では、析出する
Cr炭化物の粒度が小さいため、Cr炭化物と、Cr炭
化物近傍の基地とのCrの濃度差は小さく、苛酷な腐食
環境下でもCrのすぐれた耐食性を発揮させることがで
きる。
After the thermal spraying or the overlay welding, the molten portion immediately solidifies, but the cooling rate at this time is much higher than the cooling rate at the time of casting, so that the growth of crystal grains is hindered and very fine particles are obtained. A crystal structure is obtained. In the fine crystal structure, since the grain size of the precipitated Cr carbide is small, the difference in the Cr concentration between the Cr carbide and the matrix in the vicinity of the Cr carbide is small, and the excellent corrosion resistance of Cr can be exhibited even in a severe corrosive environment. .

【0011】[0011]

【実施例】電気炉の中に供試片(10×10×4 mm)を
装入し、都市の生活ごみ焼却炉の腐食環境をシミュレー
トした腐食試験(550℃×96時間)を行なった。電気
炉から取り出した供試片は、表面の付着物をナイロンた
わしできれいにこすり取った後、寸法を測定し、電気炉
に装入する前の寸法との差を算出し、これを侵食深さと
して求めた。ごみ焼却炉の燃焼室で発生する腐食性ガス
と略同じ組成のシミュレートガスの成分、含有量及び供
給量を表1に示す。各供試片の表面には、電気炉に装入
する前に、ごみ焼却炉の燃焼室から実際に採取した燃焼
灰を40mg/cm2の割合で予め塗布しておいた。燃焼灰
の成分を表2に示す。
EXAMPLE A test piece (10 × 10 × 4 mm) was placed in an electric furnace, and a corrosion test (550 ° C. × 96 hours) simulating the corrosive environment of a municipal solid waste incinerator was conducted. . For the test piece taken out of the electric furnace, the surface deposits were scraped off thoroughly with a nylon scrubber, the dimensions were measured, and the difference from the dimensions before charging into the electric furnace was calculated to determine the erosion depth. Sought as. Table 1 shows the components, content, and supply amount of the simulated gas having substantially the same composition as the corrosive gas generated in the combustion chamber of the refuse incinerator. On the surface of each test piece, combustion ash actually collected from the combustion chamber of the refuse incinerator was applied in advance at a rate of 40 mg / cm 2 before charging into the electric furnace. Table 2 shows the components of the combustion ash.

【0012】◎

【表1】 [Table 1]

【0013】◎

【表2】 [Table 2]

【0014】供試片の化学成分、肉盛部の厚さ、及び腐
食による平均侵食深さを表3に示す。なお、供試No.
1、No.2及びNo.3は、ステンレス鋼のみから形成した
比較例、No.1A、No.2A及びNo.3Aは、溶接によ
り、ステンレス鋼の肉盛部を形成した本発明の実施例で
ある。溶接肉盛部の形成は、アルゴン気流下でTIG法
により行ない、直径1.6mmの共金電極棒を用いた。
Table 3 shows the chemical composition of the test piece, the thickness of the built-up portion, and the average erosion depth due to corrosion. The sample No.
Nos. 1, No. 2 and No. 3 are comparative examples formed only from stainless steel, and Nos. 1A, No. 2A and No. 3A are examples of the present invention in which a build-up portion of stainless steel is formed by welding. Is. The weld overlay was formed by a TIG method under an argon stream, and a co-gold electrode rod having a diameter of 1.6 mm was used.

【0015】◎

【表3】 [Table 3]

【0016】表3の結果から明らかなように、溶接によ
る肉盛部を設けた本発明の供試片No.1A、2A及び3
Aは、夫々の比較例である供試片No.1、No.2及びNo.
3よりも侵食量が少なく、耐食性にすぐれることを示し
ている。
As is clear from the results shown in Table 3, the test pieces No. 1A, 2A and 3 of the present invention provided with the weld overlay were provided.
Samples A are test pieces No. 1, No. 2 and No.
It shows that the corrosion amount is smaller than that of No. 3, and the corrosion resistance is excellent.

【0017】供試 No.1Aについて、母材と肉盛部の境
界近傍の金属組織を図2に示す。図2において、左側が
母材の組織、右側が肉盛部の組織である。図2から明ら
かなように、肉盛部は母材に比べて非常に微細な結晶組
織を有していることがわかる。
FIG. 2 shows the metal structure of the sample No. 1A near the boundary between the base metal and the overlay. In FIG. 2, the left side is the structure of the base material, and the right side is the structure of the overlay portion. As is clear from FIG. 2, it is understood that the build-up portion has a very fine crystal structure as compared with the base material.

【0018】[0018]

【発明の効果】上記の如く、本発明の2層構造のボイラ
ーチューブは、ステンレス鋼の外層を、溶射又は肉盛溶
接により急冷凝固させて形成したから、従来のステンレ
ス鋼の単層鋳造管と比べて、HCl、SO2等の腐食性
ガスに対してすぐれた耐食性を発揮し、ごみ発電のボイ
ラーチューブとして好適である。
As described above, the two-layer structure boiler tube of the present invention is formed by quenching and solidifying the outer layer of stainless steel by thermal spraying or overlay welding. In comparison, it exhibits excellent corrosion resistance against corrosive gases such as HCl and SO 2 and is suitable as a boiler tube for waste power generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】ごみ焼却炉のごみ燃焼室の概要を説明する図で
ある。
FIG. 1 is a diagram illustrating an outline of a waste combustion chamber of a waste incinerator.

【図2】本発明のボイラーチューブの溶接接合部の組織
構造を示す図面代用顕微鏡写真(×100)である。
FIG. 2 is a drawing-substitute photomicrograph (× 100) showing the structure of the welded joint of the boiler tube of the present invention.

【符号の説明】[Explanation of symbols]

(2) 燃焼室 (3) ごみ (4) ボイラーチューブ (2) Combustion chamber (3) Garbage (4) Boiler tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素鋼、低合金鋼又はステンレス鋼の内
層と、ステンレス鋼の外層とからなり、ステンレス鋼の
外層は、溶射又は肉盛溶接によって形成されていること
を特徴とする、耐食性にすぐれるごみ発電用ボイラーチ
ューブ。
1. Corrosion resistance, comprising an inner layer of carbon steel, low alloy steel or stainless steel and an outer layer of stainless steel, the outer layer of stainless steel being formed by thermal spraying or overlay welding. Boiler tube for excellent waste power generation.
JP16682195A 1995-06-07 1995-06-07 Waste-heat boiler tube excellent in anticorrosion Pending JPH08334205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16682195A JPH08334205A (en) 1995-06-07 1995-06-07 Waste-heat boiler tube excellent in anticorrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16682195A JPH08334205A (en) 1995-06-07 1995-06-07 Waste-heat boiler tube excellent in anticorrosion

Publications (1)

Publication Number Publication Date
JPH08334205A true JPH08334205A (en) 1996-12-17

Family

ID=15838297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16682195A Pending JPH08334205A (en) 1995-06-07 1995-06-07 Waste-heat boiler tube excellent in anticorrosion

Country Status (1)

Country Link
JP (1) JPH08334205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063165A1 (en) * 2007-12-19 2009-07-02 Enbw Kraftwerke Ag Method for producing corrosion protection layer on flue gas side of tube- and superheater surface in waste incineration plants or biomass combustion plant, comprises equipping areas by a weld cladding under use of a nickel based alloy
CN109023208A (en) * 2018-08-20 2018-12-18 江西恒大工程技术有限公司 Process for the ultra-thin nickel-base alloy erosion resistant coating of waste incinerator heating surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063165A1 (en) * 2007-12-19 2009-07-02 Enbw Kraftwerke Ag Method for producing corrosion protection layer on flue gas side of tube- and superheater surface in waste incineration plants or biomass combustion plant, comprises equipping areas by a weld cladding under use of a nickel based alloy
CN109023208A (en) * 2018-08-20 2018-12-18 江西恒大工程技术有限公司 Process for the ultra-thin nickel-base alloy erosion resistant coating of waste incinerator heating surface

Similar Documents

Publication Publication Date Title
Oksa et al. Nickel-based HVOF coatings promoting high temperature corrosion resistance of biomass-fired power plant boilers
Yamada et al. Hot corrosion behavior of boiler tube materials in refuse incineration environment
WO1998037253A1 (en) Heating tube for boilers and method of manufacturing the samme
CN110819929A (en) Spraying material for heating surface of boiler tube of garbage incinerator and construction process of spraying material
Prashar et al. Application of thermal spraying techniques used for the surface protection of boiler tubes in power plants: Thermal spraying to combat hot corrosion
JPH08334205A (en) Waste-heat boiler tube excellent in anticorrosion
JP3820654B2 (en) Method for manufacturing corrosion-resistant metal pipe by overlay welding
JPH08334206A (en) Waste-heat boiler tube excellent in anticorrosion
JP2005272927A (en) High temperature corrosion resistant material
JP4475998B2 (en) Method for forming corrosion-resistant laminated film and corrosion-resistant laminated film
JPH1046315A (en) Corrosion resistant heat transfer tube
CN110062815B (en) Boiler water pipe of waste incinerator and manufacturing method thereof
JP2007054887A (en) Heat resistant clad steel sheet
CN111964479A (en) High-temperature corrosion-resistant and erosion-resistant coiled pipe, coiled pipe group and manufacturing method thereof
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JP4587138B2 (en) Components for boiler area of power plant or waste incineration plant
JPH1030897A (en) Boiler high temperature pipe and manufacture thereof
JP2000119781A (en) Heat transfer tube for heat exchange, with corrosion and wear resistance, and heating furnace and incinerator using the same
KR100682234B1 (en) The boiler tube of coal fired boiler on which Fe-B-Cr-Ni-Mn-Si-Mo metamorphic alloy was coated by thermal spray process.
Dvorak et al. Assessment of HVOF coatings for wet corrosion protection
JP5171176B2 (en) Thermal spraying material coated on metal substrate surface and high temperature corrosion resistant member coated with the material
Adamiec et al. High-Temperature Corrosion of Flame-Sprayed Power Boiler Components with Nickel Alloy Powders. Materials 2023, 16, 1658
JPH0254423B2 (en)
JPH08134571A (en) Corrosion-and heat-resistant alloy for refuse incinerator
JP2005240106A (en) High-temperature corrosion resistant material and manufacturing method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000314