JPH0833370B2 - Colloidal particle electrophoretic mobility measurement method - Google Patents

Colloidal particle electrophoretic mobility measurement method

Info

Publication number
JPH0833370B2
JPH0833370B2 JP61126472A JP12647286A JPH0833370B2 JP H0833370 B2 JPH0833370 B2 JP H0833370B2 JP 61126472 A JP61126472 A JP 61126472A JP 12647286 A JP12647286 A JP 12647286A JP H0833370 B2 JPH0833370 B2 JP H0833370B2
Authority
JP
Japan
Prior art keywords
electrophoretic
particles
migration
mobility
colloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61126472A
Other languages
Japanese (ja)
Other versions
JPS62284254A (en
Inventor
英彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61126472A priority Critical patent/JPH0833370B2/en
Publication of JPS62284254A publication Critical patent/JPS62284254A/en
Publication of JPH0833370B2 publication Critical patent/JPH0833370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はコロイド粒子電気泳動度測定方法に関す
る。さらに詳しくは懸濁液中のコロイド、生物細胞等の
粒子の真の電気泳動度(または電気泳動移動度)を測定
する方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring electrophoretic mobility of colloidal particles. More specifically, it relates to a method for measuring the true electrophoretic mobility (or electrophoretic mobility) of particles such as colloids and biological cells in suspension.

(ロ)従来の技術 一般にコロイド粒子を含有する泳動媒体を泳動管内で
電気泳動させる場合、該媒体は印加した電圧によって発
生した電気浸透流(背景流)(第4図)により泳動管内
の長さの方向にそれ自体が速度を持ち、見掛け上のコロ
イド粒子速度は第5図に示すような分布を持つことが知
られている。すなわち上記電気浸透流の速度は、泳動管
内の中央付近で大きく、泳動管内周壁に近付くに従って
コロイド粒子の移動度よりも小さくなるため、泳動管の
内周壁面近傍に、コロイド粒子の移動度がゼロになる静
止面が存在している。
(B) Conventional technology When an electrophoretic medium containing colloidal particles is electrophoresed in a migration tube, the length of the medium in the migration tube is changed by an electroosmotic flow (background flow) (Fig. 4) generated by an applied voltage. It is known that the particles themselves have a velocity in the direction of and the apparent colloidal particle velocity has a distribution as shown in FIG. That is, the velocity of the electroosmotic flow is large in the vicinity of the center of the migration tube and becomes smaller than the mobility of the colloidal particles as it approaches the inner wall of the migration tube. There is a stationary surface that becomes.

従来、コロイド粒子電気泳動度測定方法は、管内のど
の粒子の速度を測定するかで2種類の方法に別れる。1
つの方法は上記静止面に測定顕微鏡の視野を合わせて、
その静止面に浮かんだコロイド粒子の速度を測定する方
法であり、もう1つの方法は泳動管の断面中央部すなわ
ち該泳動管の中心軸上近傍に測定顕微鏡の視野を合わせ
て該軸上近傍のコロイド粒子の速度を測定する方法(以
下中心計測法という)である。
Conventionally, the method for measuring electrophoretic mobility of colloidal particles is classified into two types depending on which particle velocity in a tube is measured. 1
One method is to match the field of view of the measuring microscope to the stationary surface,
Another method is to measure the velocity of the colloidal particles floating on the stationary surface. Another method is to adjust the field of view of the measuring microscope to the central part of the cross section of the migration tube, that is, near the central axis of the migration tube. This is a method of measuring the velocity of colloidal particles (hereinafter referred to as the central measurement method).

(ハ)発明が解決しようとする問題点 上記後者の方法(中心計測法)では前者の方法に比べ
てコロイド粒子の信号スペクトルがシャープにでき、泳
動管内壁の界面状態の影響が小さく、光学部材の熱膨張
や固定ビスのゆるみ等によって視野がずれてもコロイド
粒子の移動度が変動しない等信号の品質、光学系の安定
度等の点で優れているが、しかしこの方法では測定され
た速度は、真の粒子速度に電気浸透流が重畳されている
ために、そのままでは電気泳動度やゼータ電位への変換
が不可能で応用領域が限られてくる。また、何種類かの
較正用サンプルによる校正法では、泳動媒体の種類が変
わるたびに較正用サンプルの真の泳動速度を別の装置で
計る必要がある。
(C) Problems to be Solved by the Invention In the latter method (center measurement method), the signal spectrum of colloidal particles can be made sharper than in the former method, and the influence of the interface state of the inner wall of the migration tube is small. The mobility of colloidal particles does not fluctuate even if the field of view shifts due to thermal expansion of the lens and loosening of fixing screws. It is excellent in terms of signal quality, optical system stability, etc. Since the electroosmotic flow is superimposed on the true particle velocity, it cannot be converted into electrophoretic mobility or zeta potential as it is, and its application area is limited. Further, in the calibration method using several kinds of calibration samples, it is necessary to measure the true migration speed of the calibration sample with another device every time the kind of the migration medium is changed.

この発明はかかる状況に鑑み為されたものであり、こ
とに任意のコロイド粒子の任意の泳動媒体中での真のコ
ロイド粒子電気泳動度を測定する方法を提供しようとす
るものである。
The present invention has been made in view of the above circumstances, and particularly aims to provide a method for measuring the true electrophoretic mobility of colloidal particles in an electrophoretic medium of arbitrary colloidal particles.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、コロイド試料粒子を含む
泳動媒体が注入された泳動管の両端に電圧を印加して電
気泳動に付し、上記泳動管中心軸付近での上記コロイド
試料粒子の泳動速度に基づいて該コロイド試料粒子の電
気泳動度を測定する方法からなり、 上記コロイド試料粒子についての泳動速度から算出さ
れる見掛け上の電気泳動度Vxと、泳動管内面構成材料と
同じ材料の微粒子についての泳動速度から算出される見
掛け上の電気泳動度Vsを求め、これらの値からコロイド
試料粒子の泳動媒体に対する真の電気泳動度Vを下式; に基づいて算出することを特徴とするコロイド粒子電気
泳動度測定方法が提供される。
(D) Means for Solving the Problems Thus, according to the present invention, a voltage is applied to both ends of an electrophoretic tube into which an electrophoretic medium containing colloidal sample particles is injected for electrophoresis, and the electrophoretic tube center axis is moved. It consists of a method of measuring the electrophoretic mobility of the colloid sample particles based on the migration velocity of the colloid sample particles in the vicinity, and an apparent electrophoretic mobility Vx calculated from the migration velocity of the colloid sample particles, The apparent electrophoretic mobility Vs calculated from the migration velocity of fine particles of the same material as the inner surface of the tube is obtained, and the true electrophoretic mobility V of the colloidal sample particles with respect to the migration medium is calculated by the following formula; A method for measuring electrophoretic mobility of colloidal particles is provided, which is characterized in that

この発明の方法の最も特徴とするところは、目的とす
るコロイド粒子とは別に泳動管内面構成材料と同じ材料
からなる微粒子についての泳動速度を測定し、目的とす
るコロイド粒子の真の電気泳動度を求めることである。
The most characteristic feature of the method of the present invention is that the migration velocity of a fine particle composed of the same material as the inner surface of the migration tube is measured separately from the target colloid particle, and the true electrophoretic mobility of the target colloid particle is measured. Is to ask.

この発明の方法には、試料のコロイド試料懸濁液を注
入する泳動管と、該泳動管の両端に電圧を印加する手段
と、上記泳動管の中心軸上のコロイド粒子の電気泳動度
を測定する手段とが用いられる。この電気泳動度測定手
段には上記泳動管内の上記コロイド粒子および上記微粒
子のそれぞれの移動速度を光学的に測定する光学測定手
段が用いられる。
The method of the present invention comprises a migration tube for injecting a colloidal sample suspension of a sample, means for applying a voltage across the migration tube, and measurement of the electrophoretic mobility of colloidal particles on the central axis of the migration tube. And means for doing so. As this electrophoretic mobility measuring means, an optical measuring means for optically measuring the moving speed of each of the colloidal particles and the fine particles in the migration tube is used.

この発明の方法に用いられる泳動管内面構成材料と同
じ材料の微粒子は、泳動媒体中にコロイド粒子として懸
濁しうる粒径を有するものが適し、通常平均粒径が4μ
m以上のものが好ましい。また材質としては例えば泳動
管構成材料が石英ガラスからなる場合は、石英微粒子が
用いられる。
As the fine particles of the same material as the inner surface of the migration tube used in the method of the present invention, those having a particle size capable of being suspended as colloidal particles in the migration medium are suitable, and usually have an average particle size of 4 μm.
It is preferably m or more. Further, as the material, for example, when the migration tube constituent material is quartz glass, quartz fine particles are used.

上記微粒子の泳動速度の測定は、前記コロイド試料粒
子を含有する泳動媒体と同じ媒体に懸濁して独立して測
定してもよいが、測定を意図するコロイド試料粒子を含
有する泳動媒体に上記微粒子を懸濁して同時に測定を行
ってもよい。なお、上記微粒子の測定は該微粒子が懸濁
液中に浮遊している間に行われる。
The migration velocity of the fine particles may be measured independently by suspending in the same medium as the migration medium containing the colloidal sample particles, but the migration rate of the fine particles in the migration medium containing the colloidal sample particles intended to be measured. It is also possible to suspend and measure simultaneously. The measurement of the fine particles is performed while the fine particles are suspended in the suspension.

上記のごとく測定される前記微粒子の電気泳動度は、
該微粒子と泳動媒体との間のゼータ電位に起因するもの
であり、このゼータ電位は泳動管内壁と泳動媒体との間
のそれに等しいことから、すなわち泳動管内壁での電気
浸透流の速度を示していることになる。また一方電気浸
透流の速度分布の解析では、電気浸透流の管壁での速度
と泳動管断面中央部での速度とは、大きさが同じで方向
が逆であることが知られているので、前記電気泳動度測
定値は、泳動管断面中央部の電気浸透流の速度に管壁に
おける電気浸透流を加えた値として用いられる。従って
この値の1/2が泳動媒体に発生する電気浸透流の速度と
して与えられる。
The electrophoretic mobility of the fine particles measured as described above is
This is due to the zeta potential between the particles and the electrophoretic medium, which is equal to that between the inner wall of the electrophoretic tube and the electrophoretic medium, that is, it indicates the velocity of electroosmotic flow on the inner wall of the electrophoretic tube. Will be. On the other hand, in the analysis of the velocity distribution of the electroosmotic flow, it is known that the velocity at the tube wall of the electroosmotic flow and the velocity at the center of the cross section of the migration tube have the same size and opposite directions. The electrophoretic mobility measurement value is used as a value obtained by adding the electroosmotic flow in the tube wall to the velocity of the electroosmotic flow in the central portion of the cross section of the migration tube. Therefore, 1/2 of this value is given as the velocity of the electroosmotic flow generated in the electrophoretic medium.

このことからコロイド粒子の泳動媒体に対する真の電
気泳動度は、該コロイド粒子の前記電気泳動度測定値か
ら微粒子の前記電気泳動度測定値の半分の値を減じるこ
とにより得られることとなる。
From this, the true electrophoretic mobility of the colloidal particles with respect to the electrophoretic medium can be obtained by subtracting half the electrophoretic mobility measured value of the fine particles from the electrophoretic mobility measured value of the colloidal particles.

(ホ)作用 この発明によれば、同一の泳動媒体中に懸濁されたコ
ロイド試料粒子および泳動管内面構成材料と同じ材料の
微粒子をそれぞれの泳動速度測定値から算出されるそれ
ぞれの見掛け上の電気泳動度、VxおよびVsを下式; に代入して演算することにより、電気浸透流による移動
度を除いたコロイド粒子の泳動媒体に対する真の電気泳
動度が得られる。
(E) Action According to the present invention, the apparent sample particles of the colloidal sample particles suspended in the same electrophoretic medium and the fine particles of the same material as the inner surface of the electrophoretic tube are calculated from the respective electrophoretic velocity measurement values. The electrophoretic mobility, Vx and Vs are calculated as follows; Then, the true electrophoretic mobility of the colloidal particles with respect to the electrophoretic medium can be obtained by excluding the mobility due to the electroosmotic flow.

以下実施例によりこの発明を詳細に説明するが、これ
によりこの発明は限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(ヘ)実施例 第1図は、中心計測型コロイド粒子電気泳動度測定装
置(1)例の全体構成を示すものである。
(F) Example FIG. 1 shows the overall configuration of an example of a center-measuring colloidal particle electrophoretic mobility measuring device (1).

(2)はコロイド試料粒子(例えば無機粒子、赤血
球、リンパ球など)であり、これらの粒子を含有する泳
動媒体を送液する送液路(3)が円筒状の泳動管(4)
に接続されている。
Reference numeral (2) is colloidal sample particles (for example, inorganic particles, red blood cells, lymphocytes, etc.), and a liquid feed path (3) for feeding an electrophoretic medium containing these particles has a cylindrical migration tube (4).
It is connected to the.

(5)は泳動管(4)内の試料粒子(2)の移動度を
光学的に測定する光学測定部である。この光学測定部は
泳動管(4)の泳動方向の所定位置における該泳動管
(4)断面の中心を視野として泳動管(4)外にのびる
1つの光路上の光学部材(6)と、この光学部材の光信
号を検出する光検出部(7)とからなる。前記光学部材
(6)は、泳動管(4)側から順に設置する対物レンズ
(8)と、グレーディング(9)と、集光レンズ(10)
と、ホトセル(11)とからなるとともに、光検出部
(7)は、アンプ(12)とFFT(フーリエ変換器)(1
3)とからなる。
(5) is an optical measuring unit for optically measuring the mobility of the sample particles (2) in the migration tube (4). The optical measuring section has an optical member (6) on one optical path extending outside the migration tube (4) with the center of the cross section of the migration tube (4) at a predetermined position in the migration direction of the migration tube (4) as a field of view. And a photodetector (7) for detecting an optical signal of the optical member. The optical member (6) includes an objective lens (8), a grading (9), and a condenser lens (10), which are sequentially installed from the migration tube (4) side.
And a photocell (11), the photodetector (7) includes an amplifier (12) and an FFT (Fourier transformer) (1
3) consists of and.

次に以上の構成からなるコロイド粒子電気泳動測定装
置(1)を用いて試料粒子(2)の移動度を測定する方
法を説明する。
Next, a method for measuring the mobility of the sample particles (2) using the colloidal particle electrophoresis measuring device (1) having the above configuration will be described.

コロイド試料粒子(例えば羊赤血球)を泳動媒体(例
えば生理食塩水)中に所定の割合(例えば107個/ml)混
合して試料溶液を調製すると共に、この溶液中に泳動管
内面構成材料(例えば石英)と同質の微粒子を少量混合
して懸濁液を調製する。
A sample solution is prepared by mixing colloidal sample particles (eg, sheep red blood cells) in an electrophoretic medium (eg, physiological saline) at a predetermined ratio (eg, 10 7 particles / ml), and a material for the inner surface of the electrophoretic tube ( A small amount of fine particles of the same quality as quartz, for example, is mixed to prepare a suspension.

次にこの懸濁液1mlを泳動管(4)に送液する。そし
て泳動管(4)の視野に向け照明用のレーザー光(14)
を照射すると共に、対物レンズ(8)の焦点を視野に合
わせて懸濁液内のコロイド試料粒子および泳動媒体に浮
遊している泳動管内面構成材料の微粒子を電気泳動させ
る。そしてこれらの粒子の移動度または電気泳動度をグ
レーディング法によって光学測定部(5)で測定する。
Next, 1 ml of this suspension is sent to the electrophoresis tube (4). Then, a laser beam (14) for illumination is directed toward the field of view of the migration tube (4).
At the same time, the objective lens (8) is focused on the visual field, and the colloidal sample particles in the suspension and the fine particles of the migration tube inner surface constituent material suspended in the migration medium are electrophoresed. Then, the mobility or electrophoretic mobility of these particles is measured by an optical measuring section (5) by a grading method.

この結果、コロイド試料粒子の移動度Vx(μm/s/V/c
m)および泳動管内面構成材料の微粒子の移動度Vs(μm
/s/V/cm)が第2図に示すピークとして得られる。
As a result, the mobility of colloid sample particles Vx (μm / s / V / c
m) and the mobility Vs (μm) of the particles of the inner surface of the migration tube
/ s / V / cm) is obtained as the peak shown in FIG.

上記移動度のうちVxはコロイド試料粒子の真の電気泳
動度に泳動管断面中央部に発生している電気浸透流によ
る移動度が加わった見掛けの移動度であり、一方Vsは石
英微粒子の真の電気泳動度に泳動管断面中央部に発生し
ている電気浸透流による移動度が加わった見掛けの移動
度である。この後者の測定値すなわちVsから理論的に上
記泳動管断面中央部に発生している電気浸透流による移
動度が算出されることとなる。
Of the above mobilities, Vx is the apparent mobility obtained by adding the mobility due to the electroosmotic flow generated at the center of the cross section of the migration tube to the true electrophoretic mobility of the colloidal sample particles, while Vs is the true mobility of the quartz particles. Is an apparent mobility obtained by adding the mobility due to the electroosmotic flow generated in the central part of the cross section of the migration tube to the electrophoretic mobility of. From the latter measured value, that is, Vs, the mobility due to the electroosmotic flow theoretically generated in the center of the cross section of the migration tube can be calculated.

すなわち、泳動管内面と泳動媒体の間には、その間に
発生するゼータ電位をζとすると なる移動度(μm/s/V/cm)(すなわち電気浸透流による
移動度)が発生する。ここでゼータ電位は泳動管内面と
泳動媒体の界面のみによって決まり、面の形状にはよら
ない。
That is, if the zeta potential generated between the inner surface of the migration tube and the migration medium is ζ, Mobility (μm / s / V / cm) (that is, mobility due to electroosmotic flow) is generated. Here, the zeta potential is determined only by the interface between the inner surface of the migration tube and the migration medium, and does not depend on the shape of the surface.

また一方、泳動媒体の泳動粒子(球形と仮定)の間に
発生する移動度、ここでは石英微粒子の移動度は、 であることが分かっている。fは補正定数といわれるも
ので、1−1電解質の泳動媒体を用い、1mMのイオン強
度の媒体ならば、4μmφ以上の粒子を使えばf≒1で
あることが分かっており(D.C.Henry;Proc.Roy.Soc.A,V
ol.133,p106〜[1971])、上記本願の対象となるコロ
イド粒子の場合そのまま適用できる。
On the other hand, the mobility generated between the electrophoretic particles (assuming to be spherical) of the electrophoretic medium, here the mobility of the quartz particles, I know that. It is known that f is a correction constant, and if a migration medium of 1-1 electrolyte is used and a medium having an ionic strength of 1 mM is used, f≈1 if particles of 4 μmφ or more are used (DCHenry; Proc. Roy.Soc.A, V
ol.133, p106- [1971]), and can be applied as it is in the case of the colloidal particles to which the present invention is applied.

上記u1とu2に含まれているζはいずれも石英と泳動媒
体間に発生しているものであるから同じ値となり、また
第3図の泳動管内の速度分布図から、電気浸透流の速度
分布(イ)の解析では泳動管内面と泳動媒体間の速度u1
E(Eは電位勾配)は、泳動管断面の中央部における泳
動媒体の速度と方向が逆で大きさが等しいことが分かっ
ているので、泳動管内面構成材料(石英)で作った微粒
子の速度分布(ロ)における泳動管断面中央部での石英
微粒子の見掛けの移動度Vsは、Vs=u1+u2=2u1とな
る。従って泳動管断面中央部に発生している電気浸透流
による移動度は1/2Vsで与えられることとなる。
Ζ contained in the above u 1 and u 2 has the same value because both are generated between quartz and the electrophoretic medium, and from the velocity distribution diagram in the electrophoretic tube in FIG. In the analysis of velocity distribution (a), the velocity u 1 between the inner surface of the migration tube and the migration medium
It is known that E (E is a potential gradient) has the same direction and the same size as the velocity of the migration medium in the center of the cross section of the migration tube, so the velocity of the fine particles made of the inner material of the migration tube (quartz) is In the distribution (b), the apparent mobility Vs of quartz fine particles at the center of the cross section of the migration tube is Vs = u 1 + u 2 = 2u 1 . Therefore, the mobility due to the electroosmotic flow generated in the central part of the cross section of the migration tube is given by 1/2 Vs.

上記のことから、コロイド試料粒子についての泳動速
度から算出される見掛け上の電気泳動度Vxと、泳動管内
面構成材料と同じ材料の微粒子についての泳動速度から
算出される見掛け上の電気泳動度Vsを求め、これらの値
を下式; に基づいて演算することにより、上記コロイド試料粒子
の真の電気泳動度(V)を求めることができる。
From the above, the apparent electrophoretic mobility Vx calculated from the migration velocity of colloidal sample particles and the apparent electrophoretic mobility Vs calculated from the migration velocity of fine particles of the same material as the inner surface material of the migration tube. And calculate these values as The true electrophoretic mobility (V) of the colloidal sample particles can be obtained by performing calculation based on

(ハ)発明の効果 この発明の方法によれば、中心計測法の特徴である光
学系の安定性、スペクトルのシャープはそのまま保持さ
れるのに加えて、どのような泳動媒体中であっても該媒
体中のコロイド粒子の真の移動度を正しく計測できるの
で、従来の腫よう診断、移植適合試験等の臨床応用への
用途以外に、基礎コロイド化学、物理化学等への応用も
ひらけてくる。
(C) Effect of the Invention According to the method of the present invention, the stability of the optical system and the sharpness of the spectrum, which are the characteristics of the central measurement method, are retained as they are, and in addition to any electrophoretic medium. Since the true mobility of colloidal particles in the medium can be accurately measured, it can be applied to basic colloid chemistry, physical chemistry, etc., in addition to the conventional clinical application such as tumor diagnosis and transplant compatibility test. .

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に係るコロイド粒子電気泳動度測定に
用いる中心計測型装置の一実施例を示す構成説明図、第
2図は第1図の装置により測定されたコロイド試料粒子
の移動度および泳動管内面構成材料の微粒子の移動度を
ピークとして示すグラフ図、第3図は泳動管内の電気浸
透流の速度分布図、第4図は泳動管内の電気浸透により
起こる泳動媒体の流れを説明する説明図、第5図は泳動
管内における見掛け上のコロイド粒子速度の分布を示す
速度分布図である。 (1)……中心計測型コロイド粒子電気泳動度測定装
置、(2)……コロイド粒子、(3)……送液路、
(4)……泳動管、(5)……光学測定部、(6)……
光学部材、(7)……光検出部、(8)……対物レン
ズ、(9)……グレーディング、(10)……集光レン
ズ、(11)……ホトセル、(12)……アンプ、(13)…
…FFT。
FIG. 1 is a structural explanatory view showing an embodiment of a central measurement type device used for colloidal particle electrophoretic mobility measurement according to the present invention, and FIG. 2 is a mobility of colloidal sample particles measured by the device of FIG. FIG. 3 is a graph showing the mobility of fine particles of the inner surface of the migration tube as a peak, FIG. 3 is a velocity distribution diagram of electroosmotic flow in the migration tube, and FIG. 4 is a flow chart of migration medium caused by electroosmosis in the migration tube. FIG. 5 is a velocity distribution diagram showing an apparent velocity distribution of colloidal particles in the migration tube. (1) …… Center-measuring colloidal particle electrophoretic mobility analyzer, (2) …… Colloidal particles, (3) …… Liquid transfer path,
(4) …… Electrophoresis tube, (5) …… Optical measurement section, (6) ……
Optical member, (7) ... Photodetector, (8) ... Objective lens, (9) ... Grading, (10) ... Condensing lens, (11) ... Photocell, (12) ... Amplifier, (13)…
… FFT.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コロイド試料粒子を含む泳動媒体が注入さ
れた泳動管の両端に電圧を印加して電気泳動に付し、上
記泳動管中心軸付近での上記コロイド試料粒子の泳動速
度に基づいて該コロイド試料粒子の電気泳動度を測定す
る方法からなり、 上記コロイド試料粒子についての泳動速度から算出され
る見掛け上の電気泳動度Vxと、泳動管内面構成材料と同
じ材料の微粒子についての泳動速度から算出される見掛
け上の電気泳動度Vsを求め、これらの値からコロイド試
料粒子の泳動媒体に対する真の電気泳動度Vを下式; に基づいて算出することを特徴とするコロイド粒子電気
泳動度測定方法。
1. A voltage is applied to both ends of an electrophoretic tube into which an electrophoretic medium containing colloidal sample particles is applied for electrophoresis, and the electrophoretic velocity of the colloidal sample particles near the central axis of the electrophoretic tube is determined based on the migration speed. The method comprises measuring the electrophoretic mobility of the colloidal sample particles, wherein the apparent electrophoretic mobility Vx calculated from the migration velocity of the colloidal sample particles and the migration velocity of the fine particles of the same material as the inner surface of the migration tube. The apparent electrophoretic mobility Vs calculated from is calculated from these values, and the true electrophoretic mobility V of the colloidal sample particles to the electrophoretic medium is calculated from the following formula; A method for measuring electrophoretic mobility of colloidal particles, which is characterized in that
JP61126472A 1986-05-31 1986-05-31 Colloidal particle electrophoretic mobility measurement method Expired - Fee Related JPH0833370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126472A JPH0833370B2 (en) 1986-05-31 1986-05-31 Colloidal particle electrophoretic mobility measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126472A JPH0833370B2 (en) 1986-05-31 1986-05-31 Colloidal particle electrophoretic mobility measurement method

Publications (2)

Publication Number Publication Date
JPS62284254A JPS62284254A (en) 1987-12-10
JPH0833370B2 true JPH0833370B2 (en) 1996-03-29

Family

ID=14936063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126472A Expired - Fee Related JPH0833370B2 (en) 1986-05-31 1986-05-31 Colloidal particle electrophoretic mobility measurement method

Country Status (1)

Country Link
JP (1) JPH0833370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361772B (en) * 2000-04-29 2004-05-19 Malvern Instr Ltd Mobility and effects arising from surface charge

Also Published As

Publication number Publication date
JPS62284254A (en) 1987-12-10

Similar Documents

Publication Publication Date Title
Jaffe et al. An ultrasensitive vibrating probe for measuring steady extracellular currents
US5395502A (en) Apparatus for performing and universally detecting capillary isoelectric focusing without mobilization using concentration gradient imaging systems
EP0595290B1 (en) Method for driving liquid
US4456513A (en) Method of and apparatus for measuring electrophoretic mobility
US4351709A (en) Method of obtaining the mean electrophoretic mobility of particles
Krol et al. Local mechanical oscillations of the cell surface within the range 0.2–30 Hz
Uzgiris Laser Doppler methods in electrophoresis
Smith et al. Apparatus and methods for laser Doppler electrophoresis
US5784154A (en) Electrophoresis separation in a capillary passage
JP2002005888A (en) Mobility and effect caused by surface charge
US4679439A (en) Method and apparatus for measuring the unsteady sedimentation potential of colloidal particles
Dukhin et al. Zeta-potential measurements
Mohan et al. Laser Doppler spectroscopy as applied to electrophoresis in protein solutions
Lim et al. Measurement of diffusion coefficient and electrophoretic mobility with a quasielastic light‐scattering–band‐electrophoresis apparatus
Sotomayor-Pérez et al. Mean net charge of intrinsically disordered proteins: experimental determination of protein valence by electrophoretic mobility measurements
JPH0833370B2 (en) Colloidal particle electrophoretic mobility measurement method
Catsimpoolas et al. Electrophoresis with continuous scanning densitometry: Separation of cells in a density gradient
US4239612A (en) Automatic electrophoresis apparatus
Grönwall On paper electrophoresis in the clinical laboratory
Hjertén Zone electrophoresis, isoelectric focusing, and displacement electrophoresis (isotachophoresis) in carrier-free solution
Rimai et al. Electrophoretic mobilities of RNA tumor viruses. Studies by Doppler-shifted light scattering spectroscopy
Goetz System 3000 automated electrokinetics analyzer for biomedical applications
RU2225446C2 (en) Method for detecting viral concentration in liquid biological material and device for its implementation
Abramson et al. Some recent developments in electrokinetic methods and their application to biology and medicine
Firestone et al. Capillary isoelectric focusing using an LKB 2127 Tachophor isotachophoretic analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees