JPH0833346B2 - Atomization furnace for atomic absorption spectrophotometer - Google Patents

Atomization furnace for atomic absorption spectrophotometer

Info

Publication number
JPH0833346B2
JPH0833346B2 JP2253852A JP25385290A JPH0833346B2 JP H0833346 B2 JPH0833346 B2 JP H0833346B2 JP 2253852 A JP2253852 A JP 2253852A JP 25385290 A JP25385290 A JP 25385290A JP H0833346 B2 JPH0833346 B2 JP H0833346B2
Authority
JP
Japan
Prior art keywords
cuvette
measurement
atomic absorption
furnace
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2253852A
Other languages
Japanese (ja)
Other versions
JPH04131748A (en
Inventor
智満 柳沼
克彦 剣持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2253852A priority Critical patent/JPH0833346B2/en
Publication of JPH04131748A publication Critical patent/JPH04131748A/en
Publication of JPH0833346B2 publication Critical patent/JPH0833346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子吸光光度計用原子化炉に用いられるグ
ラファイト製発熱体、通常、キュベットと呼ばれるグラ
ファイトヒーターの改善に関し、特に、測定操作性が顕
著に改善され、且つ測定値信頼性の高い微量金属不純物
類の分析に好適な原子吸光光度計用原子化炉に関するも
のである。
TECHNICAL FIELD The present invention relates to improvement of a graphite heating element used in an atomization furnace for an atomic absorption spectrophotometer, usually a graphite heater called a cuvette, and particularly, measurement operability. The present invention relates to an atomization furnace for an atomic absorption spectrophotometer, which is suitable for the analysis of trace metal impurities having a significantly improved measurement value and high reliability of measured values.

〔従来の技術〕[Conventional technology]

近年、原子吸光光度計の原子化炉は、バーナーのフレ
ームによる加熱方式に代えて、大電流によってグラファ
イトキュベットを加熱するフレームレス加熱方式が採用
されるようになった。このフレームレス原子吸光光度計
用原子化炉は、この炉体が通電によって自己発熱するグ
ラファイト製の円筒体であって、測定試料を高温で原子
化するものである。該炉は測定光を発する光源部と原子
化炉を通過する光を測定する測定部の間に配置され、光
源部から出てキュベットの中空部に入る測定光は原子化
された原子により吸収され、測定部において透過光量が
測定されて吸光量が算出される。
In recent years, the atomization furnace of an atomic absorption photometer has adopted a flameless heating method of heating a graphite cuvette with a large current, instead of a heating method using a flame of a burner. This flameless atomic absorption spectrophotometer atomization furnace is a graphite cylindrical body that self-heats when the furnace body is energized, and atomizes a measurement sample at a high temperature. The furnace is arranged between a light source section that emits measurement light and a measurement section that measures light passing through the atomization furnace, and the measurement light that exits the light source section and enters the hollow part of the cuvette is absorbed by atomized atoms. The amount of transmitted light is measured in the measuring unit and the amount of absorption is calculated.

グラファイトキュベットは、中央に測定試料注入用小
貫通孔が形成された円筒状のいわゆる原子化部と、その
両側に適度に張り出した円筒部とが一体形成され、その
両端部には通電用電極が面接触状に取り付けられる。
The graphite cuvette is integrally formed with a cylindrical so-called atomization portion having a small through-hole for injection of a measurement sample formed in the center, and a cylindrical portion appropriately overhanging on both sides thereof, and energizing electrodes at both ends thereof. Mounted in surface contact.

測定の単位操作は次のように行われる。すなわち、キ
ュベットの両端部から中空部へ一定の流速で、例えば、
アルゴンガスのような不活性ガスを両側の電極ホルダか
らキュベット方向に連続的に導入しながら、ほゞ室温に
冷えた状態のキュベットの上記中央部の注入孔から装置
操作により測定用液状試料を注入し、これを約200℃ま
でゆっくり昇温,乾燥させて、600℃前後で灰化させた
後、急激に約3000℃まで昇温させて試料を原子蒸気化
し、これによる測定光の吸収量を計測する。
The unit operation of measurement is performed as follows. That is, at a constant flow rate from both ends of the cuvette to the hollow part, for example,
While continuously introducing an inert gas such as argon gas from the electrode holders on both sides in the direction of the cuvette, inject a liquid sample for measurement by operating the device through the injection hole in the center of the cuvette that has been cooled to about room temperature. Then, the sample is slowly heated to about 200 ° C, dried and ashed at about 600 ° C, and then rapidly heated to about 3000 ° C to vaporize the sample into atomic vapor, and the absorption of measurement light by this is increased. measure.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このようなフレームレス原子吸光光度計を用いた検量
線法による測定においては、使用する原子化炉に基づい
て予め検量線が作られ、その検量線作成と同一操作条件
で試料の測定,定量が行われる。通常、この原子化炉
は、交流電気により、例えば、約3000℃もの高温に加熱
され、また、好ましくは、バックグラウンド補正の目的
で原子化部に外部磁場が印加される。このような測定操
作においては、原子化炉は一回の測定毎に約3000℃と椎
温との間の急速な加熱と冷却とが繰り返され、そのたび
に、キュベットが約1mm程度の伸縮を繰り返し、また炉
自体の消耗も徐々に進行して測定精度が悪くなるので、
検量線を適宜チェックし、再現性が所望限度を超えて低
下した場合には、検量線を作成しなおさねばならなかっ
た。更に、繰返しの測定操作において、しばしば試料の
注入がスムーズにできなくなるという不都合が生じた。
このような測定精度の悪化と試料注入における不都合
は、特に外部磁場を印加してバックグラウンド補正を行
うゼーマン型フレームレス原子吸光光度計において大き
な問題となっていた。
In the measurement by the calibration curve method using such a flameless atomic absorption spectrophotometer, a calibration curve is created in advance based on the atomization furnace used, and the measurement and quantification of the sample can be performed under the same operating conditions as the creation of the calibration curve. Done. Usually, this atomization furnace is heated to a high temperature of, for example, about 3000 ° C. by AC electricity, and preferably, an external magnetic field is applied to the atomization part for the purpose of background correction. In such a measurement operation, the nuclear reactor is rapidly heated and cooled between about 3000 ° C. and the vertebral temperature for each measurement, and the cuvette expands and contracts about 1 mm each time. Repeatedly, the consumption of the furnace itself gradually progresses and the measurement accuracy deteriorates.
The calibration curve was appropriately checked, and if the reproducibility fell below the desired limit, the calibration curve had to be recreated. Further, in the repeated measurement operation, the inconvenience that the sample cannot be injected often occurs.
Such deterioration of measurement accuracy and inconvenience in sample injection have been a serious problem particularly in the Zeeman type flameless atomic absorption spectrophotometer which performs background correction by applying an external magnetic field.

従って、本発明の課題は、一度作成された検量線で、
できるだけ多くの高精度の測定をすることができる原子
化炉を提供することにある。また、他の課題は、測定試
料の注入操作に不都合を生じることのない実用的に優れ
た原子化炉を提供することにある。
Therefore, the object of the present invention is to prepare a calibration curve once,
It is to provide an atomic reactor capable of performing as many highly accurate measurements as possible. Another object is to provide a practically excellent atomization furnace that does not cause inconvenience in the injection operation of the measurement sample.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記課題を解決し得る原子吸光光度計
用原子化炉について研究を重ねた結果、実用的に極めて
望ましい原子化炉を開発した。
As a result of repeated research on an atomization furnace for an atomic absorption photometer capable of solving the above problems, the present inventors have developed a practically highly desirable atomization furnace.

すなわち、本発明は、原子吸光光度計に用いる円筒状
原子化炉において、グラファイトキュベットの一方の端
部外周表面に、軸に垂直でない少なくとも一つの平面を
電極対応面とマッチさせて形成させて成る測定安定性の
優れた原子吸光光度計原子化炉を要旨とするものであ
る。
That is, the present invention is a cylindrical atomization furnace used for an atomic absorption spectrophotometer, in which at least one plane not perpendicular to the axis is formed on the outer peripheral surface of one end of the graphite cuvette so as to match with the electrode corresponding surface. The main point is an atomic absorption photometer atomization furnace with excellent measurement stability.

本発明に係るフレームレス原子吸光光度計原子化炉の
キュベットは、例えば内径4mm〜5mm,外形7mm〜8mmで、
長さが約30mm程度の小さなグラファイト製円筒体であっ
て、その中央部に測定試料注入用の直径1〜1.5mmの貫
通小孔があけられ、該円筒体の中央部の長さ7〜8mmが
原子化部として機能するように構成されてなるものであ
り、その筒状両端縁稜線部は面取り状円錐面に形成され
る。かかる原子化炉の両端部は、これを嵌合状に受け入
れるそれら外形にマッチする接触内表面を持った対向す
るリング状の電極ブロックで保持される。
The cuvette of the flameless atomic absorption spectrophotometer atomization furnace according to the present invention has, for example, an inner diameter of 4 mm to 5 mm and an outer diameter of 7 mm to 8 mm,
A small graphite cylinder having a length of about 30 mm, in which a small through hole having a diameter of 1 to 1.5 mm for injecting a measurement sample is formed in the central portion, and the length of the central portion of the cylindrical body is 7 to 8 mm. Is configured so as to function as an atomization portion, and the cylindrical end edge ridge portions thereof are formed into chamfered conical surfaces. Both ends of such an atomization furnace are held by opposing ring-shaped electrode blocks having contact inner surfaces that match their contours to fit them in a mating fashion.

このような本発明の原子化炉は、特に、キュベットの
円筒状の端部の一方の外面に、その円筒軸に垂直でない
少なくとも一つの平面を形成させることが特徴的であっ
て、これを嵌入保持する電極保持部は、その外形にマッ
チさせた接合凹面に形成される。キュベットの一方の端
部に形成させる円筒軸に垂直でない少なくとも一つの平
面は、円筒軸に並行又は傾斜状の平面であって、そのよ
うな平面は円筒曲面を残して一面のみを形成させてもよ
いが、通常、複数の平面、例えば、二面ないし八面が実
用的に有利に形成される。また、これらの複数の平面
は、軸に関して非対称でもよいが、好ましくは対称に形
成させることが一層有利である。
Such an atomizing furnace of the present invention is particularly characterized in that at least one flat surface that is not perpendicular to the cylinder axis is formed on one outer surface of the cylindrical end portion of the cuvette, and this is inserted. The electrode holding part to hold is formed in the joining concave surface matched with the outer shape. At least one plane that is not perpendicular to the cylinder axis formed at one end of the cuvette is a plane parallel or inclined to the cylinder axis, and such a plane may have only one surface with a cylindrical curved surface left. Although good, a plurality of planes, for example, two or eight planes are usually formed practically and advantageously. Further, the plurality of planes may be asymmetric with respect to the axis, but it is more advantageous to form the planes preferably symmetrically.

本発明は、キュベットの一端部外面にこのような平面
を形成することによって、キュベットを電極に取り付け
る際の位置決めや、原子化炉の組立が極めてスムーズ且
つ正確にでき、しかも繰返し測定における優れた操作性
と吸光光度測定における安定した高い測定精度が得られ
るという実用的に極めて望ましい事実が見出されたこと
に基づいている。
According to the present invention, by forming such a flat surface on the outer surface of one end of the cuvette, positioning when attaching the cuvette to the electrode and assembly of the atomic reactor can be performed extremely smoothly and accurately, and excellent operation in repeated measurement is possible. It is based on the fact that the practically highly desirable fact that stable and high measurement accuracy in the measurement of absorptivity and absorptiometry is obtained has been found.

このような平面は、キュベットの一方の端部外表面に
のみ形成することが重要で、両端部に平面を形成する
と、電極に対するキュベットの左右の位置合わせが難し
く、しかも微妙なずれが生ずるためと思われるが、安定
した測定が得られない。更に、原子吸光光度計用原子化
炉の組立及び操作性と測定精度を考慮するときは、キュ
ベットの一方の端部外表面に形成される平面は、例え
ば、若干端縁側に接近するように傾斜した四面、五面、
六面のあるいは八面を円筒面を残さずに、且つ端部側に
若干先細りの戴頭角錐状、特に正角錐状の傾斜平面群に
形成させることが最適である。
It is important to form such a flat surface only on the outer surface of one end of the cuvette, and if the flat surfaces are formed at both ends, it is difficult to position the cuvette on the left and right with respect to the electrodes, and a slight deviation occurs. It seems that stable measurement cannot be obtained. Further, when considering the assembly and operability of the atomic absorption photometer atomization furnace and the measurement accuracy, the plane formed on the outer surface of one end of the cuvette is inclined, for example, slightly closer to the edge side. All four, five,
It is optimum to form the six or eight surfaces into a slanted flat surface group having a truncated pyramid shape, especially a regular pyramid shape, with no cylindrical surface left and slightly tapered on the end side.

本発明を添付図面により、更に具体的に説明する。 The present invention will be described more specifically with reference to the accompanying drawings.

第1図は、本発明の原子化炉を含む原子吸光光度計の
一例の説明用模式図で、第2図は、本発明に係る代表的
キュベットの正面図(図a),左側面図(図b)及び右
側面図(図c)であう。また、第3図は、従来の代表的
キュベットの同様な図で、その図(a)は正面図、図
(b)は左側面図及び図(c)は右側面図である。
FIG. 1 is a schematic diagram for explaining an example of an atomic absorption spectrophotometer including an atomization furnace of the present invention, and FIG. 2 is a front view (FIG. A) and a left side view (of a typical cuvette according to the present invention). Fig. B) and right side view (Fig. C). Further, FIG. 3 is a similar view of a conventional representative cuvette, in which FIG. 3 (a) is a front view, FIG. 3 (b) is a left side view and FIG. 3 (c) is a right side view.

円筒状原子化炉は、第1図に描かれるように、上方に
向けられた試料注入用口2を中央部に有する円筒状キュ
ベット1の両端部を、不活性ガス注入用小孔5,5′が形
成された各筒状電極ホルダ4,4′にそれぞれ取り付けら
れた筒状電極ブロック3,3′の内側に嵌入状に保持させ
て組み立てられる。試料注入用口2から入れられた試料
液は、電源装置6により通電加熱されたキュベット内で
加熱され、原子化された金属成分を含むキュベット空間
部に光源装置7から出る特定波長の光が照射されて、そ
の透過光が測光装置8で測定される。その間、小孔5,
5′からは不活性ガス、通常、アルゴンガスが一定のス
ピードで送入され、入射光量と透過光量との差から吸収
光量、すなわち金属成分量が算出される。
As shown in FIG. 1, the cylindrical atomizer has two end portions of a cylindrical cuvette 1 having a sample injection port 2 directed upward in the central portion and small holes 5, 5 for injecting an inert gas. The cylindrical electrode holders 4 and 4'formed with ′ are assembled by holding the cylindrical electrode blocks 3 and 3 ′ attached to the cylindrical electrode blocks 3 and 3 ′, respectively. The sample liquid introduced from the sample injection port 2 is heated in the cuvette that is electrically heated by the power supply device 6, and the cuvette space containing the atomized metal component is irradiated with light of a specific wavelength emitted from the light source device 7. Then, the transmitted light is measured by the photometric device 8. Meanwhile, small hole 5,
From 5 ', an inert gas, usually argon gas, is fed at a constant speed, and the absorbed light amount, that is, the metal component amount is calculated from the difference between the incident light amount and the transmitted light amount.

第2図には、そのキュベットの両端部の特徴的状態の
理解を容易にするために、正面図のほかに両側面図が描
かれている。図の左側の端部には、軸にほゞ並行である
が若干傾斜状の正六角錐状の外周表面9が形成されてい
る。この部分を嵌入状に保持する前記筒状電極ブロック
3の対応する内側面の形状は、その正六角柱状の表面外
形とマッチした正六角錐状空洞凹型に形成されている。
これに対し、キュベットの右側端部は従来と同様な円筒
状に形成されている。
In addition to the front view, both side views are shown in FIG. 2 in order to facilitate understanding of the characteristic state of both ends of the cuvette. An outer peripheral surface 9 having a regular hexagonal pyramid shape, which is substantially parallel to the axis but slightly inclined, is formed at the end portion on the left side of the drawing. The shape of the corresponding inner side surface of the cylindrical electrode block 3 that holds this portion in a fitting shape is formed as a regular hexagonal pyramidal hollow concave shape that matches the surface contour of the regular hexagonal column shape.
On the other hand, the right end of the cuvette is formed in a cylindrical shape similar to the conventional one.

第3図は、その従来のキュベットの同様の図で、その
両端部はいずれも面取りされた円筒状に形成されて成る
ものである。
FIG. 3 is a similar view of the conventional cuvette in which both end portions are both formed into a chamfered cylindrical shape.

〔作 用〕[Work]

本発明の原子化炉は、装置への取付が極めて容易で電
極間に極めて安定に保持され、これまで例えば、1時間
ごとにキュベットの位置合わせをやり直したり、感度チ
ェックをする必要があったのに対し、本発明の原子化炉
では、一日に200回近い測定操作を繰り返しても測定の
再現性が高度に保持され、朝一回の検量線の作成で終日
高い信頼度の測定を行うことができる。
The atomization furnace of the present invention is extremely easy to attach to the apparatus and is extremely stably held between the electrodes, and thus far, it was necessary to re-align the cuvette every hour or check the sensitivity. On the other hand, in the nuclear reactor of the present invention, the reproducibility of the measurement is highly maintained even if the measurement operation is repeated nearly 200 times a day, and it is possible to perform a highly reliable measurement all day by creating a calibration curve once in the morning. You can

〔実施例〕〔Example〕

次に、具体例により、本発明を更に詳細に説明する。
なお、例中の部数は、ことわりない限り重量による。
Next, the present invention will be described in more detail with reference to specific examples.
The numbers of parts in the examples are by weight unless otherwise specified.

実施例 1 石英ガラス中の銅(Cu)の定量 検量線の作成: 各種銅濃度の標準水溶液、すなわち、0ppb,10ppb,20p
pb及び30ppbの銅を含有する標準水溶液を調製し、それ
ぞれについて次のようにして検量線を作成した。
Example 1 Quantification of copper (Cu) in quartz glass Preparation of calibration curve: Standard aqueous solutions with various copper concentrations, that is, 0 ppb, 10 ppb, 20 p
A standard aqueous solution containing pb and 30 ppb copper was prepared, and a calibration curve was prepared for each as follows.

標準水溶液をサンプルカップに取り、キュベットへの
試料注入はオートサンプラーを用いた。加熱温度プログ
ラムは、80℃〜200℃の温度で40秒間乾燥、600℃で30秒
間予備加熱、2700℃の温度に5秒加熱してCuを原子蒸気
化させ、波長324.8nmの光をキュベット内に通し、その
透過光を分光光度計で測定して吸光度を求めた。得られ
た上記各銅濃度標準水溶液の吸光度は、それぞれ0.093
2,0.1864及び0.2796で、これらをプロットして、第4図
のような銅濃度−吸光度の関係を示す検量線を得た。
The standard aqueous solution was placed in a sample cup, and an autosampler was used to inject the sample into the cuvette. The heating temperature program is as follows: Drying at a temperature of 80 ° C to 200 ° C for 40 seconds, preheating at 600 ° C for 30 seconds, heating at a temperature of 2700 ° C for 5 seconds to atomize Cu, and light with a wavelength of 324.8 nm in the cuvette And the transmitted light was measured with a spectrophotometer to obtain the absorbance. The absorbance of each of the obtained copper concentration standard aqueous solution was 0.093.
These values were plotted at 2, 0.1864 and 0.2796 to obtain a calibration curve showing the relationship between copper concentration and absorbance as shown in FIG.

次に、測定用試料として石英ガラス3gを正確に評量
し、50%ふっ酸20mlと共に密閉容器に入れ、約160℃の
温度で完全に溶解させた後、これを50mlメスフラスコに
移し、純水で容量調整して試料溶液を作成した。
Next, accurately measure 3 g of quartz glass as a sample for measurement, put it in a closed container together with 20 ml of 50% hydrofluoric acid, completely dissolve it at a temperature of about 160 ° C., and transfer it to a 50 ml volumetric flask. The volume was adjusted with water to prepare a sample solution.

この試料溶液を検量線作成条件と全く同様に操作し
て、波長324.8nmの光で吸光度を測定した。同一試料に
ついて3回測定を行い、それらの測定平均値から銅の濃
度を求めた。3つの測定値の検量線から得られた試料溶
液中の銅の濃度は、それぞれ1.30ppb,1.31ppb及び1.28p
pbであった。その平均値1.297ppbを次の換算式によって
算出された石英ガラス中の銅不純物含有濃度は、22ppb
であった。
This sample solution was operated in exactly the same manner as the conditions for preparing the calibration curve, and the absorbance was measured with light having a wavelength of 324.8 nm. The same sample was measured three times, and the copper concentration was determined from the average value of the measurements. The concentrations of copper in the sample solution obtained from the calibration curves of the three measured values were 1.30 ppb, 1.31 ppb and 1.28 pp, respectively.
It was pb. The average concentration of 1.297 ppb was calculated by the following conversion formula, and the copper impurity content concentration in the silica glass was 22 ppb.
Met.

式中、Cは、試料溶液中の銅含有量(ppb) Wは、石英ガラス採取量(g) Vは、メスフラスコの容量(ml) Xは、ガラス中の銅含有量(ppb)である。 In the formula, C is the copper content in the sample solution (ppb) W is the quartz glass collection amount (g) V is the volume of the volumetric flask (ml) X is the copper content in the glass (ppb) .

また、この石英ガラスを、その日の第60番目の試料と
して全く同様に操作して測定し、その平均値から上記検
量線により求めたガラス中の銅の含有量は22ppbであっ
た。この測定値は、さきの第1試料の測定値と全く同じ
であり、本発明の原子化炉は、多くの試料測定によって
も測定精度が低下せず、高く保持されることが判る。
Further, this quartz glass was operated and measured in exactly the same manner as the 60th sample of the day, and the copper content in the glass determined from the average value by the above calibration curve was 22 ppb. This measurement value is exactly the same as the measurement value of the first sample, and it can be seen that the measurement accuracy of the atomization furnace of the present invention does not decrease even when many samples are measured and is kept high.

更に、感度チェックの目的で銅10ppbの標準水溶液に
ついて測定を行ったところ、その吸光度は0.0930で、初
回の測定に比べて無視し得る感度変化であった。従っ
て、その間に検量線の感度チェックや検量線の再作成な
どは全く不要であることが理解されよう。
Furthermore, when a standard aqueous solution of 10 ppb of copper was measured for the purpose of sensitivity check, the absorbance was 0.0930, which was a sensitivity change that was negligible compared to the first measurement. Therefore, it will be understood that the sensitivity check of the calibration curve and the re-creation of the calibration curve are completely unnecessary during that period.

本発明の原子化炉は、1日の所定時間内に測定し得る
最大試料数60を、検量線のチェックと再作成の必要なし
に高精度で測定することができる。
The atomic reactor of the present invention can measure the maximum number of samples 60 that can be measured within a predetermined time of day with high accuracy without the need to check and recreate the calibration curve.

比較例 1 従来の原子化炉を用いて、同様に石英ガラス中の含有
銅の定量を行った場合には、4試料ごとに10ppb標準溶
液で感度チェックを行うことが必要であり、しかも20試
料(60回)の測定を行った時点で、検量線の再作成を行
う不利が避けられず、このため1日に40試料を測定する
のがせいぜいである。
Comparative Example 1 When the amount of copper contained in quartz glass is similarly quantified using a conventional atomization furnace, it is necessary to perform a sensitivity check with a 10 ppb standard solution for every 4 samples, and 20 samples. At the time of (60 times) measurements, the disadvantage of recreating the calibration curve is unavoidable, and therefore it is at best possible to measure 40 samples per day.

〔発明の効果〕〔The invention's effect〕

本発明の原子化炉は、その日の朝に作成された検量線
を終日チェックする必要がなく、また炉の再調整を行う
必要もないので、例えば、測定試料数を従来のものに比
べて5割も飛躍的に増大させることができる高い測定効
率を有する。更に、従来のそれのように、オペレータが
常時監視する必要がなく、無人自動運転により、しかも
優れた精度で測定が遂行できるので、その実用的価値は
極めて高い。
Since the atomization furnace of the present invention does not need to check the calibration curve prepared in the morning of the day throughout the day and does not need to readjust the furnace, for example, the number of measurement samples is 5 compared with the conventional one. It has a high measurement efficiency that can be significantly increased. Further, unlike the conventional method, it is not necessary for the operator to constantly monitor, and unmanned automatic operation can perform measurement with excellent accuracy, so that it has a very high practical value.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の原子化炉を含む原子吸光光度計の説
明用模式図、第2図の(図a),(図b)及び(図c)
は、それぞれその原子化炉のキュベットの正面図,左側
面図及び右側面図で、第3図の(図a),(図b)及び
(図c)は、それぞれ従来の代表的キュベットの同様な
正面図,左側面図及び右側面図である。また、第4図は
実施例1で作成された検量線である。 図中の符号: 1……グラファイトキュベット 2……試料注入孔、3……電極ブロック 4……電極ホルダ、5……不活性ガス導入孔 6……電源装置、7……光源装置 8……測光装置
FIG. 1 is a schematic diagram for explaining an atomic absorption photometer including an atomization furnace of the present invention, and FIGS. 2 (a), 2 (b) and 2 (c).
Are the front view, left side view and right side view of the cuvette of the nuclear reactor, respectively, and (Fig. A), (Fig. B) and (Fig. C) of Fig. 3 are similar to the conventional typical cuvette, respectively. It is a front view, a left side view, and a right side view. Moreover, FIG. 4 is a calibration curve prepared in Example 1. Symbols in the figure: 1 ... Graphite cuvette 2 ... Sample injection hole, 3 ... Electrode block, 4 ... Electrode holder, 5 ... Inert gas introduction hole, 6 ... Power supply device, 7 ... Light source device, 8 ... Photometric device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子吸光光度計に用いる円筒状原子化炉に
おいて、グラファイトキュベットの一方の端部外周表面
に、該キュベットの軸に垂直でない少なくとも一つの平
面を電極対応面とマッチさせて形成させて成る測定安定
性の優れた原子吸光光度計用原子化炉。
1. A cylindrical atomization furnace used in an atomic absorption spectrophotometer, wherein at least one plane not perpendicular to the axis of the cuvette is formed on the outer peripheral surface of one end of the graphite cuvette so as to match with the electrode corresponding surface. Atomic absorption furnace for atomic absorption spectrophotometer with excellent measurement stability.
【請求項2】端部外周表面に形成され、電極対応面とマ
ッチさせて形成される平面が複数であって、それらの面
をキュベット軸に対して対称に形成させて成る請求項1
記載の原子化炉。
2. A plurality of flat surfaces formed on the outer peripheral surface of the end portion so as to match with the electrode corresponding surfaces, the flat surfaces being formed symmetrically with respect to the cuvette axis.
Atomic reactor described.
【請求項3】複数の対称な面が、正四角形,正六角形又
は正八角形の断面形状に形成された請求項2記載の原子
化炉。
3. The atomic reactor according to claim 2, wherein the plurality of symmetrical planes are formed in a regular quadrangular, regular hexagonal or regular octagonal sectional shape.
JP2253852A 1990-09-21 1990-09-21 Atomization furnace for atomic absorption spectrophotometer Expired - Fee Related JPH0833346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253852A JPH0833346B2 (en) 1990-09-21 1990-09-21 Atomization furnace for atomic absorption spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253852A JPH0833346B2 (en) 1990-09-21 1990-09-21 Atomization furnace for atomic absorption spectrophotometer

Publications (2)

Publication Number Publication Date
JPH04131748A JPH04131748A (en) 1992-05-06
JPH0833346B2 true JPH0833346B2 (en) 1996-03-29

Family

ID=17257033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253852A Expired - Fee Related JPH0833346B2 (en) 1990-09-21 1990-09-21 Atomization furnace for atomic absorption spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0833346B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425745U (en) * 1987-08-04 1989-02-13
DE3802968A1 (en) * 1988-02-02 1989-08-10 Bodenseewerk Perkin Elmer Co TUBULAR OVEN FOR THE ELECTROTHERMAL ATOMIZATION OF SAMPLES

Also Published As

Publication number Publication date
JPH04131748A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
Amos et al. Carbon rod atomizer in atomic absorption and fluorescence spectrometry and its clinical application
Gregoire Determination of platinum, palladium, ruthenium and iridium geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrothermal vaporisation
De Galan et al. Measurement of the free atom fraction of 22 elements in an acetylene-air flame
US4407582A (en) Method and apparatus for reduction of matric interference in electrothermal atomizer for atomic absorption spectroscopy
Bratzel Jr et al. A new, simple atom reservoir for atomic fluorescence spectrometry
Woodriff et al. Electrothermal atomization for atomic absorption analysis
Batchelor et al. Determination of cadmium with a portable, battery-powered tungsten coil atomic absorption spectrometer
Winefordner et al. Atomization Efficiency of Total Consumption Atomizer-Burners in Flame Photometry.
Chang et al. Determination of Copper, Cadmium and Lead in Biological Samples byElectrothermal Vaporization Isotope Dilution Inductively Coupled PlasmaMass Spectrometry
Kratzer et al. Feasibility of in situ trapping of selenium hydride in a DBD atomizer for ultrasensitive Se determination by atomic absorption spectrometry studied with a 75 Se radioactive indicator
Bertholf et al. The determination of bismuth in serum and urine by electrothermal atomic absorption spectrometry
US3893769A (en) Graphite tube furnace
JPS6057018B2 (en) Atomic absorption spectrometer
Lundgren et al. A temperature-controlled graphite tube furnace for the determination of trace metals in solid biological tissue
JPH0833346B2 (en) Atomization furnace for atomic absorption spectrophotometer
Matusiewicz et al. An electrothermal sample introduction system for ICP spectrometry
JP2768477B2 (en) Crucible for electrothermal atomization and for graphite atomization
Adriaenssens et al. A study of the optimal conditions for flameless atomic absorption spectrometry of iridium, platinum and rhodium
Molnar et al. Construction and evaluation of a versatile graphite filament atomizer for atomic absorption spectrometry
Brooks et al. Sample introduction device for use with a microwave-induced plasma
Costantini et al. Application of ZrC-coated tubes to the determination of aluminum in serum by graphite furnace atomic absorption spectroscopy
AU734744B2 (en) Longitudinally or transversely heated tubular atomising furnace
Adams et al. The application of optical pyrometric and two-line atomic absorption techniques to the determination of temperatures in a graphite furnace atomizer
CN107764800A (en) The assay method of sodium sulphate content in a kind of electrolyte
US5949538A (en) Longitudinally or transversely heated tubular atomizing furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees