JPH08332562A - Production of sliding member - Google Patents

Production of sliding member

Info

Publication number
JPH08332562A
JPH08332562A JP14174095A JP14174095A JPH08332562A JP H08332562 A JPH08332562 A JP H08332562A JP 14174095 A JP14174095 A JP 14174095A JP 14174095 A JP14174095 A JP 14174095A JP H08332562 A JPH08332562 A JP H08332562A
Authority
JP
Japan
Prior art keywords
aluminum
powder
solid lubricant
sliding member
based metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14174095A
Other languages
Japanese (ja)
Inventor
Koji Saito
浩二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14174095A priority Critical patent/JPH08332562A/en
Publication of JPH08332562A publication Critical patent/JPH08332562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE: To easily produce a sliding member excellent in machinability and aluminum adhesion resistance by compacting/sintering the mixed powder consisting of iron base metal powder and solid lubricant having covered layer and impregnating Al base metal in pores of sintered body. CONSTITUTION: A mixed powder consisting of iron base metal powder and solid lubricant having covered layer covered with metal or ceramic is compacted to a green compact. Successively, the green compact is sintered to sintered compact having pores in the inside. By this method, adhesion strength with matrix is improved, even in heating to 1000-1200 deg.C at sintering process and 800-850 deg.C at impregnating aluminum base metal, decomposition of solid lubricant is prevented due to existence of covered layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関のピストンリ
ング溝などに用いられる摺動用部材の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a sliding member used in a piston ring groove of an internal combustion engine.

【0002】[0002]

【従来の技術】近年のエンジン燃焼温度の上昇やピスト
ンリングの硬度の上昇に伴い、ピストンリング溝の摩耗
対策が種々講じられている。例えばアルミニウム基金属
にアルミナ−シリカ繊維を複合化したAl基MMC材料
が知られ、それをピストントップリング溝に用いた例が
知られている(特開昭58−93835号公報など)。
2. Description of the Related Art With the recent increase in engine combustion temperature and increase in hardness of piston rings, various measures have been taken against wear of piston ring grooves. For example, an Al-based MMC material in which an alumina-silica fiber is compounded with an aluminum-based metal is known, and an example in which it is used for a piston top ring groove is known (Japanese Patent Laid-Open No. 58-93835, etc.).

【0003】また特開平6−264079号公報には、
炭素質粉末と、表面をAu,Pt,Agなどの金属で被
覆した固体潤滑剤と、アルミニウム基金属とからなる摺
動材料が開示されている。この摺動材料によれば、特定
の金属を被覆した固体潤滑剤を用いているので、固体潤
滑剤とアルミニウム基金属との反応が防止され長寿命と
することができる。
Japanese Patent Laid-Open No. 6-264079 discloses that
A sliding material is disclosed which comprises a carbonaceous powder, a solid lubricant whose surface is coated with a metal such as Au, Pt, or Ag, and an aluminum-based metal. According to this sliding material, since the solid lubricant coated with a specific metal is used, the reaction between the solid lubricant and the aluminum-based metal is prevented and the life can be extended.

【0004】しかし上記のAl基MMC材料を用いたデ
ィーゼルエンジン用ピストントップリング溝では、近年
のディーゼルエンジンの出力向上とそれに伴うピストン
リング溝部の温度上昇により、ピストンリングとの間に
凝着(以下、アルミ凝着という)の発生が懸念される。
また特開平6−264079号公報に開示の摺動材料に
おいても、アルミニウムマトリックスであるためピスト
ンリング溝用としては耐熱性が十分でなく、強度も十分
とはいえない。
However, in the piston top ring groove for a diesel engine using the above Al-based MMC material, due to the recent increase in the output of the diesel engine and the temperature rise in the piston ring groove portion, the adhesion between the piston ring and the piston ring (hereinafter , Aluminum adhesion) is a concern.
Also, the sliding material disclosed in Japanese Patent Laid-Open No. 6-264079 does not have sufficient heat resistance and sufficient strength for a piston ring groove because it is an aluminum matrix.

【0005】そこでアルミニウム基金属を鉄基金属に置
換することが想起され、従来よりニレジスト鋳鉄にてピ
ストンリング溝部を形成することが行われている。この
ようにすればアルミ凝着を効果的に防止することができ
る。
Therefore, it has been conceived to replace the aluminum-based metal with the iron-based metal, and conventionally, the piston ring groove is formed by Ni-resist cast iron. In this way, aluminum adhesion can be effectively prevented.

【0006】[0006]

【発明が解決しようとする課題】ところが鉄基金属が多
くなるにつれて硬度が著しく上昇し、機械加工性が著し
く低下する。そこで固体潤滑剤を添加し、機械加工時の
刃具と材料の間の切削抵抗を下げることが考えられる。
しかし鉄基金属粉末を多く含む混合粉末を焼結するには
1000〜1200℃の温度が必要であるため、焼結時
に固体潤滑剤が分解するという問題がある。特開平6−
264079号公報に開示のような金属で被覆された固
体潤滑剤粉末であっても、800℃までは保護され得る
が1000℃以上の焼結温度では保護されず分解が生じ
てしまう。
However, as the amount of iron-based metal increases, the hardness increases remarkably and the machinability deteriorates remarkably. Therefore, it is conceivable to add a solid lubricant to reduce the cutting resistance between the cutting tool and the material during machining.
However, since a temperature of 1000 to 1200 ° C. is required to sinter the mixed powder containing a large amount of iron-based metal powder, there is a problem that the solid lubricant decomposes during sintering. JP-A-6-
Even the solid lubricant powder coated with a metal as disclosed in Japanese Patent No. 264079 can be protected up to 800 ° C., but is not protected at a sintering temperature of 1000 ° C. or higher and decomposes.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、鉄基金属をマトリックスとし固体潤滑剤を
含む摺動用部材を、固体潤滑剤の分解を防止しつつ製造
することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to manufacture a sliding member containing an iron-based metal as a matrix and containing a solid lubricant while preventing the solid lubricant from being decomposed. To do.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する第1
発明の摺動用部材の製造方法は、鉄基金属粉末と金属又
はセラミックスで被覆された被覆層をもつ固体潤滑剤と
の混合粉末を成形して成形体とする成形工程と、成形体
を焼結して内部に空孔をもつ焼結体とする焼結工程と、
焼結体の空孔にアルミニウム基金属を含浸する含浸工程
と、よりなることを特徴とする。
Means for Solving the Problems A first method for solving the above problems is described below.
The method for manufacturing a sliding member of the invention comprises a molding step of molding a mixed powder of an iron-based metal powder and a solid lubricant having a coating layer coated with metal or ceramics to form a molded body, and sintering the molded body. And a sintering process for forming a sintered body having pores inside,
And a step of impregnating the pores of the sintered body with an aluminum-based metal.

【0009】また第3発明の摺動用部材の製造方法は、
鉄基金属粉末と金属又はセラミックスで被覆された被覆
層をもつ固体潤滑剤とアルミニウム又はアルミニウム合
金の粉末とが混合された混合粉末を素材に溶射して形成
することを特徴とする。そして得られた摺動用部材の組
成は、体積比で鉄基金属が40〜70%、固体潤滑剤が
1〜20%及びアルミニウム基金属が10〜50%の構
成とすることが望ましい。
The method of manufacturing the sliding member of the third invention is
It is characterized in that a mixed powder, in which an iron-based metal powder, a solid lubricant having a coating layer coated with a metal or ceramics, and aluminum or aluminum alloy powder are mixed, is sprayed on a material. The composition of the obtained sliding member is preferably 40 to 70% iron-based metal, 1 to 20% solid lubricant and 10 to 50% aluminum based metal in terms of volume ratio.

【0010】[0010]

【作用】第1発明の製造方法では、成形体中に含まれる
固体潤滑剤には金属又はセラミックスからなる被覆層が
形成されている。したがってマトリックスとの密着強度
が向上し、かつ焼結工程において1000〜1200℃
に加熱されても、またアルミニウム基金属の含浸時に8
00〜850℃程度に加熱されても、被覆層の存在によ
り固体潤滑剤の分解が防止されている。
In the manufacturing method of the first aspect of the invention, the solid lubricant contained in the molded body has a coating layer made of metal or ceramics. Therefore, the adhesion strength with the matrix is improved, and 1000 to 1200 ° C. in the sintering process.
Even when heated to 8 ° C when impregnated with aluminum-based metal
The presence of the coating layer prevents the solid lubricant from being decomposed even when heated to about 00 to 850 ° C.

【0011】そして例えばアルミニウム基金属製母材の
製造時には、焼結体をインサートとして母材が形成され
る。この時、焼結体に形成された空孔に母材を構成する
アルミニウム基金属が含浸され、その投錨効果により母
材と焼結体とは一体的に結合して母材表面に摺動部が形
成される。したがって得られた摺動用部材では、鉄基金
属がマトリックスを構成しアルミニウム基金属の体積率
が従来より減少しているので、アルミ凝着の発生が防止
される。また固体潤滑剤の存在により切削抵抗が小さい
ので、機械加工性が良好である。
Then, for example, when the aluminum base metal base material is manufactured, the base material is formed by using the sintered body as an insert. At this time, the pores formed in the sintered body are impregnated with the aluminum-based metal that constitutes the base material, and the anchoring effect causes the base material and the sintered body to be integrally bonded and slide on the surface of the base material. Is formed. Therefore, in the obtained sliding member, since the iron-based metal constitutes the matrix and the volume ratio of the aluminum-based metal is smaller than that of the conventional one, the occurrence of aluminum adhesion is prevented. Further, since the cutting resistance is small due to the presence of the solid lubricant, the machinability is good.

【0012】また第3発明の製造方法では、鉄基金属粉
末と固体潤滑剤とアルミニウム又はアルミニウム合金の
粉末との混合粉末を溶射することにより摺動部が製造さ
れる。溶射の場合には短時間ではあるが固体潤滑剤は1
000〜1500℃の高温に曝される。しかし被覆層の
存在により固体潤滑剤の分解が防止されている。そして
第1発明又は第3発明により形成された摺動用部材の組
成が、体積比で鉄基金属が40〜70%、固体潤滑剤が
1〜20%及びアルミニウム基金属が10〜50%であ
れば、アルミニウム基金属の体積率は従来より小さくア
ルミ凝着が防止され、かつ固体潤滑剤の存在により機械
加工性に優れている。
In the manufacturing method of the third invention, the sliding portion is manufactured by spraying a mixed powder of the iron-based metal powder, the solid lubricant and the powder of aluminum or aluminum alloy. In the case of thermal spraying, the solid lubricant is 1
It is exposed to a high temperature of 000 to 1500 ° C. However, the presence of the coating layer prevents decomposition of the solid lubricant. The composition of the sliding member formed according to the first invention or the third invention may be such that the volume ratio of the iron-based metal is 40 to 70%, the solid lubricant is 1 to 20%, and the aluminum based metal is 10 to 50%. For example, the volume ratio of the aluminum-based metal is smaller than in the past, aluminum adhesion is prevented, and the presence of the solid lubricant provides excellent machinability.

【0013】[0013]

【実施例】【Example】

〔発明の具体例〕鉄基金属材料としては炭素鋼、工具
鋼、軸受鋼、耐熱鋼などの鉄又は鉄系合金から選ばれ、
摺動部中には40〜70体積%の範囲で含まれることが
望ましい。40体積%より少ないと硬度が低くなって相
手部材との摺動時に表層部で塑性流動が発生しやすくな
り、表面の酸化膜が破壊されて新生面が露出するため相
手部材との間にアルミ凝着が発生しやすくなる。また7
0体積%より多くなると、固体潤滑剤を配合しても従来
のAl基MMC材料に比べて切削性が低下する。
[Examples of the invention] The iron-based metal material is selected from iron or iron-based alloys such as carbon steel, tool steel, bearing steel, and heat-resistant steel,
It is desirable that the sliding portion contains 40 to 70% by volume. If it is less than 40% by volume, the hardness will be low and plastic flow will easily occur in the surface layer when sliding with the mating member, and the oxide film on the surface will be destroyed and the new surface will be exposed. Wearing is easy to occur. Again 7
If it is more than 0% by volume, the machinability will be lower than that of the conventional Al-based MMC material even if a solid lubricant is blended.

【0014】アルミニウム基金属材料としては、アルミ
ニウム又はアルミニウム系合金から選ばれ、摺動部中に
は10〜50体積%の範囲で含まれることが望ましい。
アルミニウム基金属が50体積%より多くなると、表層
部で塑性流動が発生しやすくなり、表面の酸化膜が破壊
されて新生面が露出するため相手部材との間にアルミ凝
着が発生するようになる。
The aluminum-based metal material is selected from aluminum and aluminum-based alloys, and it is desirable that the sliding portion contains 10 to 50% by volume.
If the amount of aluminum-based metal is more than 50% by volume, plastic flow is likely to occur in the surface layer portion, the oxide film on the surface is destroyed, and the new surface is exposed, so that aluminum adhesion occurs with the mating member. .

【0015】また10体積%より少ないと、第1発明に
おいて空孔に含浸するアルミニウム基金属の含浸量が少
ないために焼結体との界面強度が低くなる。これはアル
ミニウム基の基材と組合せて用いる場合、基材と焼結体
との熱膨張係数の差によるものであるが、この差を小さ
くして界面強度を高く維持するには10体積%以上の含
浸が必要となる。また第3発明では、アルミニウム基金
属が10体積%未満になると、アルミニウム基の基材を
用いた場合に、熱膨張係数の差により基材と溶射層との
間に界面剥離が生じる。さらに溶射時の付着効率が極端
に低下し、量産性も低下する。
On the other hand, if it is less than 10% by volume, the interfacial strength with the sintered body becomes low because the amount of the aluminum-based metal impregnating the pores in the first invention is small. This is due to the difference in the thermal expansion coefficient between the base material and the sintered body when used in combination with an aluminum-based base material. To reduce this difference and maintain high interfacial strength, 10% by volume or more. Impregnation is required. Further, in the third invention, when the aluminum-based metal is less than 10% by volume, when an aluminum-based base material is used, interfacial peeling occurs between the base material and the sprayed layer due to the difference in thermal expansion coefficient. Furthermore, the adhesion efficiency during thermal spraying is extremely reduced, and mass productivity is also reduced.

【0016】固体潤滑剤としては、MoS2 ,WS2
BNなどが用いられる。この固体潤滑剤は、摺動部に1
〜20体積%の範囲で用いられる。1体積%未満である
と切削抵抗の低減が困難となり、20体積%より多く用
いると強度の低下やマトリックスからの固体潤滑剤の脱
落が生じる。なお10体積%以上とすれば、相手材への
固体潤滑膜の移着が生じて高い摺動性能が得られるの
で、10〜20体積%とするのが望ましい。
Solid lubricants include MoS 2 , WS 2 ,
BN or the like is used. This solid lubricant has 1
Used in the range of up to 20% by volume. If it is less than 1% by volume, it becomes difficult to reduce the cutting resistance, and if it is more than 20% by volume, the strength is lowered and the solid lubricant is dropped from the matrix. If it is 10% by volume or more, transfer of the solid lubricating film to the mating material occurs and high sliding performance can be obtained, so it is desirable to set it to 10 to 20% by volume.

【0017】被覆層としては、Fe,Mo,Cuなどの
金属のコーティング膜、TiN,CrNなどのセラミッ
クスのコーティング膜、Ni−P,Ni−Bなどのメッ
キ膜とすることができる。その膜厚は5〜20μmが望
ましい。5μm未満では膜厚が不均一となる傾向があ
り、薄い部分で固体潤滑剤が熱により分解する恐れがあ
る。また20μmより厚くすると、被覆層にクラックが
発生する場合があるとともにコーティング時間が長くな
るため好ましくない。なお、コーティング方法としては
スパッタリングや蒸着などのPVD処理法、無電解メッ
キ法など公知の方法を利用できる。 〔実施例〕以下、実施例により具体的に説明する。 (実施例1)先ずMoS2 粉末表面に、スパッタリング
法にてFeからなる被覆層を形成した。被覆層の膜厚は
5μmである。
The coating layer may be a metal coating film of Fe, Mo, Cu or the like, a ceramic coating film of TiN, CrN or the like, or a plating film of Ni-P, Ni-B or the like. The film thickness is preferably 5 to 20 μm. If it is less than 5 μm, the film thickness tends to be non-uniform, and the solid lubricant may be decomposed by heat in a thin portion. If the thickness is more than 20 μm, cracks may occur in the coating layer and the coating time becomes long, which is not preferable. As a coating method, a known method such as a PVD treatment method such as sputtering or vapor deposition, an electroless plating method can be used. [Examples] Hereinafter, specific examples will be described. Example 1 First, a coating layer made of Fe was formed on the surface of MoS 2 powder by a sputtering method. The film thickness of the coating layer is 5 μm.

【0018】次にFe−1%Cの高炭素鋼粉末と、上記
被覆層が形成されたMoS2 粉末を体積比で49:1と
なるように混合し、型に詰め加圧して成形体を得た。そ
して成形体を加圧下で800〜1200℃に加熱し、多
孔質の焼結体を製造した。この焼結体を鋳型の所定部位
に配置し、600〜800℃のアルミニウム合金(AC
8A)の溶湯を高圧鋳造した。鋳造時に溶湯は焼結体の
空孔内に含浸され、焼結体が母材と一体的に結合された
所定形状の試験片が得られた。
Next, Fe-1% C high carbon steel powder and MoS 2 powder having the above coating layer were mixed in a volume ratio of 49: 1, packed in a mold and pressed to form a compact. Obtained. Then, the molded body was heated to 800 to 1200 ° C. under pressure to manufacture a porous sintered body. This sintered body is placed in a predetermined portion of a mold, and an aluminum alloy (AC
The molten metal of 8A) was cast under high pressure. At the time of casting, the molten metal was impregnated into the pores of the sintered body, and a test piece having a predetermined shape was obtained in which the sintered body was integrally bonded to the base material.

【0019】試験片の摺動部の材料組成は、鉄基金属と
固体潤滑剤及びアルミニウム基金属が体積比で49:
1:50の比率となっている。次に、この試験片を用い
て加工性及び耐アルミ凝着性の評価を行った。加工性の
評価は、外径90mmの円柱の外周部に筒状の焼結体が
一体化された形状の試験片を用い、切削により評価し
た。切削チップは「BN−100」(住友電工(株)
製)を用い、切削速度100〜200m/min、切込
み0.04mm/revの加工条件で加工した。そして
切削動力計により主分力、送分力及び背分力を測定し、
二乗和の平方根を算出して合成力を求めることで切削抵
抗を算出した。そして各切削速度における切削抵抗を算
出し、その平均値を求めて結果を表3に示す。
The material composition of the sliding portion of the test piece was 49: volume ratio iron-based metal, solid lubricant and aluminum-based metal.
The ratio is 1:50. Next, using this test piece, workability and aluminum adhesion resistance were evaluated. The workability was evaluated by cutting using a test piece in which a cylindrical sintered body was integrated with the outer peripheral portion of a cylinder having an outer diameter of 90 mm. Cutting tip is "BN-100" (Sumitomo Electric Co., Ltd.)
(Made by the manufacturer) was used and the processing speed was 100 to 200 m / min and the cutting depth was 0.04 mm / rev. Then, measure the main component force, feed component force and back force component with a cutting dynamometer,
The cutting resistance was calculated by calculating the square root of the sum of squares and determining the combined force. Then, the cutting resistance at each cutting speed was calculated, the average value was calculated, and the results are shown in Table 3.

【0020】耐アルミ凝着性の評価には、リングオンプ
レートタイプの試験機(叩き−すべり)を使用し、プレ
ート形状の試験片と相手材のリング(SUS430相当
材に窒化処理を施し表面硬度Hv1000以上のもの)
と表1の条件で摺動させてアルミ凝着の有無を調べた。
結果を表3に示す。
To evaluate the aluminum adhesion resistance, a ring-on-plate type tester (beating-sliding) was used, and the plate-shaped test piece and the ring of the mating material (SUS430-equivalent material were subjected to nitriding treatment and surface hardness). Hv1000 or more)
Then, it was slid under the conditions of Table 1 and examined for aluminum adhesion.
The results are shown in Table 3.

【0021】[0021]

【表1】 (実施例2〜4)高炭素鋼粉末とMoS2 粉末の配合量
及びAC8Aの含浸量を表3に示すように異ならせたこ
と以外は実施例1と同様にして試験片を製造し、同様に
して切削抵抗とアルミ凝着の有無を測定し結果を表3に
示す。 (実施例5〜6)被覆層をMoのスパッタリングにて形
成し、高炭素鋼粉末とMoS2 粉末の配合量及びAC8
Aの含浸量を表3に示すように異ならせたこと以外は実
施例1と同様にして試験片を製造し、同様にして切削抵
抗とアルミ凝着の有無を測定し結果を表3に示す。 (実施例7)MoS2 の代わりにBN粉末を用い、高炭
素鋼粉末の代わりに軸受鋼(SUJ2)粉末を用いて、
鉄基金属と固体潤滑剤及びアルミニウム基金属を体積比
で40:10:50の比率としたこと以外は実施例1と
同様にして試験片を製造し、同様にして切削抵抗とアル
ミ凝着の有無を測定し結果を表3に示す。 (実施例8)工具鋼(SKD11)粉末と、PVD処理
法によりTiNが5μmの厚さで形成された被覆層をも
つWS2 粉末及びAl−Si合金粉末とを、体積比で7
0:20:10となるように混合して混合粉末を調製し
た。
[Table 1] (Examples 2 to 4) Test pieces were manufactured in the same manner as in Example 1 except that the compounding amounts of the high carbon steel powder and MoS 2 powder and the impregnated amount of AC8A were changed as shown in Table 3, and the same. The cutting resistance and the presence or absence of aluminum adhesion were measured and the results are shown in Table 3. (Examples 5 to 6) The coating layer was formed by sputtering of Mo, and the blending amount of the high carbon steel powder and MoS 2 powder and AC8.
A test piece was manufactured in the same manner as in Example 1 except that the impregnation amount of A was changed as shown in Table 3, and the cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner, and the results are shown in Table 3. . (Example 7) BN powder was used in place of MoS 2 , and bearing steel (SUJ2) powder was used in place of the high carbon steel powder.
A test piece was manufactured in the same manner as in Example 1 except that the volume ratio of the iron-based metal to the solid lubricant and the aluminum-based metal was 40:10:50, and cutting resistance and aluminum adhesion were similarly prepared. The presence or absence was measured and the results are shown in Table 3. (Example 8) A tool steel (SKD11) powder, a WS 2 powder having a coating layer in which TiN was formed to a thickness of 5 μm by a PVD method, and an Al-Si alloy powder were mixed in a volume ratio of 7
Mixed powders were prepared by mixing so as to be 0:20:10.

【0022】次にAC8Aよりなる試験片の溶射する部
位をショットブラストにより清浄化した後、METOC
O社製のプラズマ溶射装置を用いて表2に示す条件で上
記混合粉末を溶射して溶射層をもつ試験片を形成した。
Next, the sprayed portion of the test piece of AC8A was cleaned by shot blasting, and then METOC was used.
The mixed powder was sprayed under the conditions shown in Table 2 using a plasma spraying apparatus manufactured by Company O to form a test piece having a sprayed layer.

【0023】[0023]

【表2】 得られた試験片について実施例1と同様にして切削抵抗
とアルミ凝着の有無を測定し、結果を表3に示す。 (実施例9〜11)溶射層の工具鋼粉末とWS2 及びA
l−Si合金粉末の組成比を表3に示すように異ならせ
たこと以外は実施例8と同様にして試験片を製造し、実
施例1と同様にして切削抵抗とアルミ凝着の有無を測定
し結果を表3に示す。 (実施例12)先ずWS2 粉末表面に、PVD処理法に
てCrNからなる被覆層を形成した。被覆層の膜厚は5
μmである。
[Table 2] With respect to the obtained test piece, cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner as in Example 1, and the results are shown in Table 3. (Examples 9 to 11) Tool steel powder of the sprayed layer and WS 2 and A
A test piece was manufactured in the same manner as in Example 8 except that the composition ratio of the 1-Si alloy powder was changed as shown in Table 3, and the cutting resistance and the presence or absence of aluminum adhesion were determined in the same manner as in Example 1. The measurement results are shown in Table 3. (Example 12) First, a coating layer made of CrN was formed on the surface of WS 2 powder by a PVD treatment method. The thickness of the coating layer is 5
μm.

【0024】次に工具鋼(SKD11)粉末と、上記被
覆層が形成されたWS2 粉末を体積比で45:5となる
ように混合し、型に詰め加圧して成形体を得た。この成
形体を用いて実施例1と同様にして試験片を製造し、同
様にして切削抵抗とアルミ凝着の有無を測定し結果を表
3に示す。 (実施例13〜14)工具鋼(SKD61)粉末と、無
電解メッキによりNi−Pが10μm及び20μmの厚
さでそれぞれ形成された被覆層をもつMoS2 粉末及び
Al−Si合金粉末を、表3に示す比率で混合して混合
粉末を調製した。そして実施例8と同様にして溶射層を
もつ試験片を形成し、実施例1と同様にして切削抵抗と
アルミ凝着の有無を測定し、結果を表3に示す。 (実施例15〜16)工具鋼(SKD61)粉末と、無
電解メッキによりNi−Bが5μm及び10μmの厚さ
でそれぞれ形成された被覆層をもつMoS2 粉末及びA
l−Si合金粉末を、表3に示す比率で混合して混合粉
末を調製した。そして実施例8と同様にして溶射層をも
つ試験片を形成し、実施例1と同様にして切削抵抗とア
ルミ凝着の有無を測定し、結果を表3に示す。 (比較例1)先ずMoS2 粉末表面に、スパッタリング
にてCuからなる被覆層を形成した。被覆層の膜厚は5
μmである。
Next, the tool steel (SKD11) powder and the WS 2 powder having the above-mentioned coating layer were mixed in a volume ratio of 45: 5, packed in a mold and pressed to obtain a molded body. Using this molded body, a test piece was manufactured in the same manner as in Example 1, and the cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner, and the results are shown in Table 3. (Examples 13 to 14) A tool steel (SKD61) powder, a MoS 2 powder and a Al-Si alloy powder having a coating layer in which Ni-P was formed to a thickness of 10 μm and 20 μm by electroless plating, respectively, Mixed powders were prepared by mixing in the ratios shown in 3. Then, a test piece having a sprayed layer was formed in the same manner as in Example 8, the cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner as in Example 1, and the results are shown in Table 3. (Examples 15 to 16) Tool steel (SKD61) powder, MoS 2 powder and A having a coating layer on which Ni-B was formed by electroless plating to a thickness of 5 μm and 10 μm, respectively.
The 1-Si alloy powder was mixed in the ratio shown in Table 3 to prepare a mixed powder. Then, a test piece having a sprayed layer was formed in the same manner as in Example 8, the cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner as in Example 1, and the results are shown in Table 3. Comparative Example 1 First, a coating layer made of Cu was formed on the surface of MoS 2 powder by sputtering. The thickness of the coating layer is 5
μm.

【0025】次に工具鋼(SKD61)粉末と、上記被
覆層が形成されたMoS2 粉末を体積比で49.5:
0.5となるように混合し、型に詰め加圧して成形体を
得た。この成形体を用いて実施例1と同様にして試験片
を製造し、同様にして切削抵抗とアルミ凝着の有無を測
定し結果を表3に示す。試験片の摺動部は、工具鋼とM
oS2 とACA8とが体積比で49.5:0.5:50
の比率で構成されている。 (比較例2〜3)工具鋼(SKD61)粉末とMoS2
粉末の配合量及びAC8Aの含浸量を表3に示すように
異ならせたこと以外は実施例1と同様にして試験片を製
造し、同様にして切削抵抗とアルミ凝着の有無を測定し
結果を表3に示す。 (比較例4〜6)被覆層をFeのスパッタリングにて形
成し、工具鋼(SKD61)粉末とMoS2 粉末の配合
量及びAC8Aの含浸量を表3に示すように異ならせた
こと以外は実施例1と同様にして試験片を製造し、同様
にして切削抵抗とアルミ凝着の有無を測定し結果を表3
に示す。 (比較例7〜8)工具鋼(SKD61)粉末と、スパッ
タリングによりMoが3μm及び25μmの厚さでそれ
ぞれ形成された被覆層をもつMoS2 粉末及びAl−S
i合金粉末を、表3に示す体積比で混合して混合粉末を
調製した。
Next, the tool steel (SKD61) powder and the MoS 2 powder on which the above-mentioned coating layer is formed are in a volume ratio of 49.5:
The mixture was mixed to be 0.5, filled in a mold and pressurized to obtain a molded body. Using this molded body, a test piece was manufactured in the same manner as in Example 1, and the cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner, and the results are shown in Table 3. The sliding part of the test piece is made of tool steel and M
The volume ratio of oS 2 and ACA8 is 49.5: 0.5: 50.
It is composed of a ratio of. (Comparative Examples 2-3) Tool steel (SKD61) powder and MoS 2
A test piece was manufactured in the same manner as in Example 1 except that the compounding amount of the powder and the impregnated amount of AC8A were changed as shown in Table 3, and the cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner, and the result Is shown in Table 3. (Comparative Examples 4 to 6) Except that the coating layer was formed by sputtering Fe and the compounding amounts of the tool steel (SKD61) powder and MoS 2 powder and the impregnation amount of AC8A were changed as shown in Table 3. A test piece was manufactured in the same manner as in Example 1, and the cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner, and the results are shown in Table 3.
Shown in (Comparative Examples 7 to 8) Tool steel (SKD61) powder, MoS 2 powder and Al-S having a coating layer in which Mo is formed by sputtering to have a thickness of 3 μm and 25 μm, respectively.
The i alloy powder was mixed in a volume ratio shown in Table 3 to prepare a mixed powder.

【0026】この混合粉末を用い、実施例8と同様に溶
射して溶射層をもつ試験片を形成した。得られた試験片
について実施例1と同様にして切削抵抗とアルミ凝着の
有無を測定し、結果を表3に示す。 (比較例9)工具鋼(SKD61)粉末と、被覆層をも
たないMoS2 粉末及びAl−Si合金粉末を体積比で
50:10:40の比率で混合した混合粉末を用い、実
施例8と同様にして溶射層をもつ試験片を形成した。得
られた試験片について実施例1と同様にして切削抵抗と
アルミ凝着の有無を測定し、結果を表3に示す。 (参考例1〜2)被覆層をもたないBN粉末と軸受鋼
(SUJ2)粉末を用いて実施例1と同様に試験片を形
成し、同様にして切削抵抗とアルミ凝着の有無を測定し
結果を表3に示す。 (参考例3〜4)ニレジスト鋳鉄と、アルミニウム基金
属にアルミナ−シリカ繊維を複合化したAl基MMC材
料についてそれぞれ試験片を形成し、実施例1と同様に
して切削抵抗とアルミ凝着の有無を測定し、結果を表3
に示す。
This mixed powder was sprayed in the same manner as in Example 8 to form a test piece having a sprayed layer. With respect to the obtained test piece, cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner as in Example 1, and the results are shown in Table 3. (Comparative Example 9) tool steel and (SKD61) powder, a mixed powder mixed in a ratio of 50:10:40 of MoS 2 powder and Al-Si alloy powder having no coating layer in a volume ratio, Example 8 A test piece having a sprayed layer was formed in the same manner as in. With respect to the obtained test piece, cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner as in Example 1, and the results are shown in Table 3. (Reference Examples 1 and 2) Test pieces were formed in the same manner as in Example 1 using BN powder having no coating layer and bearing steel (SUJ2) powder, and cutting resistance and the presence or absence of aluminum adhesion were measured in the same manner. The results are shown in Table 3. (Reference Examples 3 to 4) Test pieces were formed for Ni-resist cast iron and Al-based MMC material in which alumina-silica fiber was composited with aluminum-based metal, and cutting resistance and presence or absence of aluminum adhesion in the same manner as in Example 1. Was measured and the results are shown in Table 3.
Shown in

【0027】[0027]

【表3】 (*印は面荒れが大きいことを示す)[Table 3] (* Indicates that the surface is rough)

【0028】(評価)表3より、本発明の製造方法によ
り得られた摺動用部材は、切削抵抗が低くアルミ凝着発
生も認められないことから、加工性及び耐アルミ凝着性
の両性能に優れていることが明らかである。
(Evaluation) From Table 3, the sliding member obtained by the manufacturing method of the present invention has a low cutting resistance and no occurrence of aluminum adhesion. Therefore, both the workability and the aluminum adhesion resistance are obtained. It is clear that it is superior to.

【0029】なお、参考例1〜2のように高温まで安定
した性能をもつBNなどの固体潤滑剤を用いると、被覆
層がなくても良好な性能を示し被覆層の作用効果は明ら
かではない。しかし比較例9と実施例13〜16を比較
すれば、MoS2 などの固体潤滑剤を用いた摺動用部材
は被覆層の存在により加工性及び耐アルミ凝着性が向上
していることが明らかである。
When a solid lubricant such as BN having stable performance up to high temperature as in Reference Examples 1 and 2 is used, good performance is exhibited without a coating layer, and the effect of the coating layer is not clear. . However, by comparing Comparative Example 9 with Examples 13 to 16, it is clear that the sliding member using a solid lubricant such as MoS 2 has improved workability and aluminum adhesion resistance due to the presence of the coating layer. Is.

【0030】比較例1のように固体潤滑剤が1体積%未
満では、切削抵抗が高く、相手材への固体潤滑剤の移着
が生じにくいことから耐アルミ凝着性にも劣っている。
一方、比較例2のように固体潤滑剤が20体積%を越え
ると、摺動部材体積中の固体潤滑剤の割合が多くなるた
め保持力が低下し、固体潤滑剤自体の脱落が生じて面荒
れが発生するとともに切削抵抗も高くなっている。
When the content of the solid lubricant is less than 1% by volume as in Comparative Example 1, the cutting resistance is high and the transfer of the solid lubricant to the mating material hardly occurs, so that the aluminum adhesion resistance is also poor.
On the other hand, if the solid lubricant exceeds 20% by volume as in Comparative Example 2, the proportion of the solid lubricant in the volume of the sliding member increases and the holding power decreases, causing the solid lubricant itself to drop off. Roughness occurs and cutting resistance is also high.

【0031】比較例3のように鉄基金属が40体積%未
満では、塑性流動が防止できずアルミ凝着が発生してい
る。また比較例4のように70体積%を越えると、固体
潤滑剤による切削性の改良が認められなくなる。比較例
5のようにAl基金属が10体積%未満では、焼結層又
は溶射層と母材との界面でクラックが発生しやすく、ま
た鉄基金属が多くなる分切削抵抗も高くなっている。一
方、比較例6のようにAl基金属が50体積%を越える
と、鉄基金属がAl基金属を保持できず塑性流動が発生
しアルミ凝着が発生している。
When the iron-based metal is less than 40% by volume as in Comparative Example 3, plastic flow cannot be prevented and aluminum adhesion occurs. On the other hand, if it exceeds 70% by volume as in Comparative Example 4, no improvement in machinability due to the solid lubricant can be observed. When the Al-based metal is less than 10% by volume as in Comparative Example 5, cracks are likely to occur at the interface between the sintered layer or the sprayed layer and the base material, and the cutting resistance is increased due to the increase in the iron-based metal. . On the other hand, when the Al-based metal exceeds 50% by volume as in Comparative Example 6, the iron-based metal cannot hold the Al-based metal, plastic flow occurs, and aluminum adhesion occurs.

【0032】また、実施例2と比較例7〜8との比較よ
り、被覆層の厚さが3μmと薄くなっても25μmと厚
くなり過ぎても切削抵抗が高くなっていることがわか
る。さらに参考例3〜4に示すように、従来の材料であ
るニレジスト鋳鉄は良好な耐アルミ凝着性を示すが切削
抵抗が高く、Al基MMC材料は切削抵抗は低いものの
使用環境が厳しい場合にはアルミ凝着が発生している。 (実施例17)エンジン用ピストンのピストンリング溝
に本発明の摺動用部材を適用した例を以下に示す。
From the comparison between Example 2 and Comparative Examples 7 to 8, it can be seen that the cutting resistance is high even if the coating layer is as thin as 3 μm or too thick as 25 μm. Further, as shown in Reference Examples 3 to 4, Niresist cast iron, which is a conventional material, exhibits good aluminum adhesion resistance, but has high cutting resistance, and Al-based MMC material has low cutting resistance, but is used when the operating environment is severe. Has aluminum adhesion. (Embodiment 17) An example in which the sliding member of the present invention is applied to the piston ring groove of an engine piston is shown below.

【0033】先ずMoS2 粉末表面に、スパッタリング
法にてFeからなる被覆層を形成した。被覆層の膜厚は
5μmである。次にFe−1%Cの高炭素鋼粉末と、上
記被覆層が形成されたMoS2 粉末を体積比で50:2
0となるように混合し、型に詰め加圧してピストンリン
グ溝形状の成形体を得た。
First, a coating layer made of Fe was formed on the surface of MoS 2 powder by a sputtering method. The film thickness of the coating layer is 5 μm. Next, the high carbon steel powder of Fe-1% C and the MoS 2 powder having the coating layer formed thereon were mixed at a volume ratio of 50: 2.
The mixture was mixed so as to be 0, filled in a mold, and pressurized to obtain a piston ring groove-shaped molded body.

【0034】そして成形体を加圧下で800〜1200
℃に加熱し、多孔質の焼結体を製造した。この焼結体を
鋳型の所定部位に配置し、600〜800℃のアルミニ
ウム合金(AC8A)の溶湯を高圧鋳造してピストンリ
ングを製造した。鋳造時に溶湯は焼結体の空孔内に含浸
され、焼結体がピストンリング溝部に一体的に結合され
た所定形状のピストンリングが得られた。
Then, the molded body is pressed under a pressure of 800 to 1200.
It heated at 0 degreeC and manufactured the porous sintered compact. This sintered body was placed in a predetermined portion of a mold, and a molten aluminum alloy (AC8A) at 600 to 800 ° C. was subjected to high pressure casting to manufacture a piston ring. During casting, the molten metal was impregnated into the pores of the sintered body, and a piston ring having a predetermined shape was obtained in which the sintered body was integrally joined to the piston ring groove.

【0035】ピストンリング溝部の材料組成は、鉄基金
属と固体潤滑剤及びアルミニウム基金属が体積比で5
0:20:30の比率であり、前記実施例3と同様の構
成となっている。 (実施例18)Fe−1%Cの高炭素鋼粉末と、スパッ
タリングによりFeが5μmの厚さで形成された被覆層
をもつMoS2 粉末及びAl−Si合金粉末とを、体積
比で50:20:30となるように混合して混合粉末を
調製した。
The material composition of the piston ring groove portion is such that the iron base metal, the solid lubricant and the aluminum base metal are 5 in volume ratio.
The ratio is 0:20:30, and the structure is the same as that of the third embodiment. (Example 18) A high carbon steel powder of Fe-1% C, a MoS 2 powder having a coating layer in which Fe was formed to a thickness of 5 μm by sputtering, and an Al-Si alloy powder were mixed in a volume ratio of 50: Mixed powder was prepared by mixing so as to be 20:30.

【0036】次にAC8Aよりなるピストンリングのピ
ストンリング溝部をショットブラストにより清浄化した
後、METOCO社製のプラズマ溶射装置を用いて表2
に示す条件で上記混合粉末を溶射して、ピストンリング
溝部に溶射層を形成した。溶射層は、鉄基金属と固体潤
滑剤及びアルミニウム基金属が体積比で50:20:3
0の比率であり、前記実施例3と同様の構成となってい
る。 (比較例10)従来のニレジスト鋳鉄により形成された
ピストンリング溝部をもつAC8A製ピストンを形成し
た。 (試験)上記の各ピストンをそれぞれ実施例1と同様に
して切削加工し、切削抵抗を測定した。結果を表5に示
す。またそれぞれ実機に取付け、表4に示す試験条件で
アルミ凝着の発生の有無とピストンリング溝部の摩耗深
さを測定した。結果を表5に示す。
Next, after the piston ring groove portion of the piston ring made of AC8A was cleaned by shot blasting, a plasma spraying apparatus manufactured by METOCO was used to obtain Table 2
The mixed powder was sprayed under the conditions shown in to form a sprayed layer in the piston ring groove. The thermal sprayed layer contains iron-based metal, solid lubricant, and aluminum-based metal in a volume ratio of 50: 20: 3.
The ratio is 0, which is the same as that of the third embodiment. Comparative Example 10 An AC8A piston having a piston ring groove formed of conventional Ni-resist cast iron was formed. (Test) Each of the above pistons was cut in the same manner as in Example 1 and the cutting resistance was measured. The results are shown in Table 5. Also, each was mounted on an actual machine, and the presence or absence of aluminum adhesion and the wear depth of the piston ring groove were measured under the test conditions shown in Table 4. The results are shown in Table 5.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 表5より、本発明の摺動用部材はニレジスト鋳鉄と同様
にアルミ凝着の発生がなく、かつニレジスト鋳鉄に比べ
て切削抵抗が低く、摩耗量も少ないことが明らかであ
る。
[Table 5] It is clear from Table 5 that the sliding member of the present invention does not cause aluminum adhesion like Niresist cast iron, has a lower cutting resistance and a smaller wear amount than Niresist cast iron.

【0039】[0039]

【発明の効果】すなわち本発明の摺動用部材の製造方法
によれば、固体潤滑剤の分解及び脱落が防止されている
ので、鉄基金属を用いて機械加工性に優れ、かつ耐アル
ミ凝着性に優れた摺動用部材を容易にしかも確実に製造
することができる。すなわち本発明により得られた摺動
用部材は、耐摩耗性に優れると同時に切削性、潤滑性に
極めて優れている。
That is, according to the method for producing a sliding member of the present invention, the solid lubricant is prevented from being decomposed and dropped off, so that it is excellent in machinability using an iron-based metal and is resistant to aluminum adhesion. It is possible to easily and reliably manufacture a sliding member having excellent properties. That is, the sliding member obtained by the present invention has excellent wear resistance, and at the same time, extremely excellent machinability and lubricity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鉄基金属粉末と金属又はセラミックスで
被覆された被覆層をもつ固体潤滑剤との混合粉末を成形
して成形体とする成形工程と、 該成形体を焼結して内部に空孔をもつ焼結体とする焼結
工程と、 該焼結体の該空孔にアルミニウム基金属を含浸する含浸
工程と、よりなることを特徴とする摺動用部材の製造方
法。
1. A molding step of molding a mixed powder of an iron-based metal powder and a solid lubricant having a coating layer coated with a metal or ceramics to obtain a molded body, and sintering the molded body to form an internal body. A method for manufacturing a sliding member, comprising: a sintering step of forming a sintered body having pores; and an impregnation step of impregnating the pores of the sintered body with an aluminum-based metal.
【請求項2】 前記摺動用部材は、体積比で前記鉄基金
属が40〜70%、前記固体潤滑剤が1〜20%及び前
記アルミニウム基金属が10〜50%の構成であること
を特徴とする請求項1記載の摺動用部材の製造方法。
2. The sliding member has a volume ratio of 40 to 70% of the iron base metal, 1 to 20% of the solid lubricant, and 10 to 50% of the aluminum base metal. The method for manufacturing a sliding member according to claim 1.
【請求項3】 鉄基金属粉末と、金属又はセラミックス
で被覆された被覆層をもつ固体潤滑剤と、アルミニウム
又はアルミニウム合金の粉末とが混合された混合粉末を
素材に溶射して形成することを特徴とする摺動用部材の
製造方法。
3. Forming by spraying a mixed powder obtained by mixing iron-based metal powder, a solid lubricant having a coating layer coated with a metal or ceramics, and aluminum or aluminum alloy powder onto a material. A method for manufacturing a sliding member having the characteristics.
【請求項4】 前記摺動用部材は、体積比で前記鉄基金
属が40〜70%、前記固体潤滑剤が1〜20%及び前
記アルミニウム基金属が10〜50%の構成であること
を特徴とする請求項3記載の摺動用部材の製造方法。
4. The sliding member has a volume ratio of 40 to 70% of the iron base metal, 1 to 20% of the solid lubricant, and 10 to 50% of the aluminum base metal. The method for manufacturing a sliding member according to claim 3.
JP14174095A 1995-06-08 1995-06-08 Production of sliding member Pending JPH08332562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14174095A JPH08332562A (en) 1995-06-08 1995-06-08 Production of sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14174095A JPH08332562A (en) 1995-06-08 1995-06-08 Production of sliding member

Publications (1)

Publication Number Publication Date
JPH08332562A true JPH08332562A (en) 1996-12-17

Family

ID=15299107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14174095A Pending JPH08332562A (en) 1995-06-08 1995-06-08 Production of sliding member

Country Status (1)

Country Link
JP (1) JPH08332562A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877203B2 (en) * 2005-02-08 2011-01-25 Mitsubishi Electric Corporation Map information processing apparatus and storage medium of map information
WO2016043284A1 (en) * 2014-09-19 2016-03-24 Ntn株式会社 Slide member and method for producing same
JP2016065638A (en) * 2014-09-24 2016-04-28 Ntn株式会社 Sliding member and method of manufacturing the same
CN106687236A (en) * 2014-09-19 2017-05-17 Ntn株式会社 Slide member and method for producing same
CN109790869A (en) * 2016-09-28 2019-05-21 Ntn株式会社 Sliding component
JP2019218606A (en) * 2018-06-20 2019-12-26 大阪富士工業株式会社 Self-lubricating composite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877203B2 (en) * 2005-02-08 2011-01-25 Mitsubishi Electric Corporation Map information processing apparatus and storage medium of map information
WO2016043284A1 (en) * 2014-09-19 2016-03-24 Ntn株式会社 Slide member and method for producing same
CN106687236A (en) * 2014-09-19 2017-05-17 Ntn株式会社 Slide member and method for producing same
CN106687236B (en) * 2014-09-19 2019-05-14 Ntn株式会社 Slide unit and its manufacturing method
US10323689B2 (en) 2014-09-19 2019-06-18 Ntn Corporation Slide member and method for producing same
JP2016065638A (en) * 2014-09-24 2016-04-28 Ntn株式会社 Sliding member and method of manufacturing the same
CN109790869A (en) * 2016-09-28 2019-05-21 Ntn株式会社 Sliding component
JP2019218606A (en) * 2018-06-20 2019-12-26 大阪富士工業株式会社 Self-lubricating composite

Similar Documents

Publication Publication Date Title
CA2417167C (en) Porous metal article, metal composite material using the article and method for production thereof
US4029000A (en) Injection pump for injecting molten metal
KR20040066937A (en) Sinterable metal powder mixture for the production of sintered components
EP2511388B1 (en) Sintered sliding member
JPWO2017057464A1 (en) Sintered valve seat
JPH08332562A (en) Production of sliding member
JP2007314839A (en) Spray deposit film for piston ring, and the piston ring
JP2003013163A (en) Sliding member made from powder aluminum alloy, and combination of cylinder and piston ring
EP3825442A1 (en) Sliding member
JP2012509993A (en) Bearing material
JPH09111365A (en) Sliding material, piston, and their production
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JP3942136B2 (en) Iron-based sintered alloy
JPH11107848A (en) Cylinder liner made of powder aluminum alloy
JPH06192784A (en) Wear resistant sintered sliding member
JPH10299568A (en) Cylinder liner
JP3749618B2 (en) Sliding member with excellent wear resistance in the presence of lubricating oil
JPH10140265A (en) Wear resistant composite material
JPH0543963A (en) Self-lubricating aluminum composite material
JP2000170601A (en) Aluminum alloy piston
JP2003105518A (en) Slide member or internal combustion engine and method of forming the same
JPH04339A (en) Copper-base sintered alloy excellent in wear resistance at high temperature
JPH0456101B2 (en)
JPH04335A (en) Copper-base sintered alloy excellent in wear resistance at high temperature
JP3230140B2 (en) Internal-combustion engine tappet member having high joining strength with chip material