JPH08327725A - Underwater-sonar designing system - Google Patents

Underwater-sonar designing system

Info

Publication number
JPH08327725A
JPH08327725A JP7130044A JP13004495A JPH08327725A JP H08327725 A JPH08327725 A JP H08327725A JP 7130044 A JP7130044 A JP 7130044A JP 13004495 A JP13004495 A JP 13004495A JP H08327725 A JPH08327725 A JP H08327725A
Authority
JP
Japan
Prior art keywords
vibration
matrix
piezoelectric element
analysis means
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7130044A
Other languages
Japanese (ja)
Inventor
Hironori Shiohata
宏規 塩幡
Hisaharu Ohata
寿春 大畠
Hajime Fujita
肇 藤田
Mitsuhiko Nanri
光彦 南利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7130044A priority Critical patent/JPH08327725A/en
Publication of JPH08327725A publication Critical patent/JPH08327725A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To achieve the shortening of designing period and the high performance of the underwater sonar as an object by arbitrarily changing the design parameters such as the materials and shapes of piezoelectric elements and other structures, and readily analyzing the electric vibration characteristics and the sound pressure characteristics. CONSTITUTION: Element-matrix forming parts 5, 6 and 7 based on a finite element method are provided so as to facilitate the analysis of an electricity- structure compound. Analysis data required for a vibration analysis means 10 are formed in an element-matrix forming part 8 of the structure system. The vibration response obtained in the vibration analysis means 10 is used as the external force. The radiated vibration sound is analyzed in a sound analysis means 11, and fluid load is adequately evaluated in a fluid-load operating part 12. The adequate element is obtained in a correcting part 13. The element matrix obtained in this way and the element matrix, which is obtained from the finite element method of the electric system are used, and the dynamic behavior of the structure-electric system is obtained in analysis means 15. Furthermore, the radiated vibration sound is obtained in a sound analysis means 16, and the result is displayed on a display means 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水中ソーナの適切な電気
的及び振動放射音の周波数特性を得るための構造を設計
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for designing a structure for obtaining appropriate electric and vibration radiation frequency characteristics of an underwater sonar.

【0002】[0002]

【従来の技術】水中音響機器のうち水中ソーナは圧電素
子及びこの圧電素子と一般構造物とを接着剤を用いて結
合して構成され、この圧電素子に交流電圧を加えて圧電
素子を含めた構造物を加振させて振動放射音を発生し、
この音波の伝播を利用している。
2. Description of the Related Art Among underwater acoustic devices, an underwater sonar is constructed by connecting a piezoelectric element and this piezoelectric element and a general structure with an adhesive, and includes a piezoelectric element by applying an AC voltage to this piezoelectric element. Vibrates the structure to generate vibrating sound,
This propagation of sound waves is used.

【0003】このとき、圧電素子の電気特性は圧電素
子,一般構造物及び接着剤とから構成される構造体の機
械特性に変換され、さらに音に変換される。この圧電素
子の動特性上の特徴は交流電圧を加えたとき、加振周波
数と一致する圧電素子の固有振動数で共振現象となり振
動速度や振動放射音はピークを示す。一方、外部からこ
の圧電素子にある周波数を持つ音波で加振されたとき、
この加振周波数が圧電素子の固有振動数に一致したと
き、圧電素子にピーク電圧が発生する。圧電素子に他の
構造物を結合することにより共振周波数を変えることが
できる。
At this time, the electrical characteristics of the piezoelectric element are converted into mechanical characteristics of a structure composed of the piezoelectric element, a general structure and an adhesive, and further converted into sound. A characteristic of the piezoelectric element in terms of dynamic characteristics is that when an AC voltage is applied, a resonance phenomenon occurs at the natural frequency of the piezoelectric element that matches the excitation frequency, and the vibration speed and vibration radiation sound show peaks. On the other hand, when the piezoelectric element is excited by a sound wave with a certain frequency,
When this excitation frequency matches the natural frequency of the piezoelectric element, a peak voltage is generated in the piezoelectric element. The resonance frequency can be changed by coupling another structure to the piezoelectric element.

【0004】このような水中ソーナを設計するために、
MASONはPhysical Acoustic IPART A (ACADEMIC P
RESS PP234〜247(1964))で圧電素子の電気特性と機械
特性を等価な電気回路に置き換えてその動特性を求める
方法を提案している。また、圧電素子の電気特性と機械
特性を有限要素法を用いて離散化してその動特性を解析
する手法が日本音響学会誌37巻7号(1981)に報
告されている。
In order to design such an underwater sonar,
MASON is Physical Acoustic IPART A (ACADEMIC P
RESS PP234〜247 (1964)) proposed a method to find the dynamic characteristics by replacing the electric and mechanical characteristics of the piezoelectric element with an equivalent electric circuit. In addition, a method of discretizing the electrical characteristics and mechanical characteristics of a piezoelectric element using the finite element method and analyzing the dynamic characteristics is reported in Journal of Acoustical Society of Japan, Volume 37, No. 7 (1981).

【0005】[0005]

【発明が解決しようとする課題】上記した従来技術で
は、圧電素子の電気,機械特性,圧電素子に結合してい
る一般構造物の機械特性及び圧電素子と一般構造物とを
結合している接着剤の特性、さらに圧電素子と一般構造
物とからなる構造体の振動放射音を連成させて予測する
ことは、解析精度や設計の効率化という点で不十分であ
った。さらには水等の媒体をいかにモデル化して解析の
中に考慮するかが困難である。
In the above-mentioned prior art, the electrical and mechanical characteristics of the piezoelectric element, the mechanical characteristics of the general structure connected to the piezoelectric element, and the bonding for connecting the piezoelectric element and the general structure. It has been insufficient to predict the characteristics of the agent by coupling the vibration radiation sound of the structure including the piezoelectric element and the general structure in terms of analysis accuracy and design efficiency. Furthermore, it is difficult to model a medium such as water and consider it in the analysis.

【0006】本発明の目的は、設計者が、高精度の水中
ソーナを効率よくしかも簡便に設計するための設計シス
テムを提供することにある。
An object of the present invention is to provide a design system for a designer to design a highly accurate underwater sonar efficiently and simply.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、圧電素子に対して電気特性及び構造振動特性を求め
るために有限要素法に基づいて離散化する要素マトリッ
クス生成部,接着剤及び一般構造物に対してその振動特
性を求めるために有限要素法に基づいて離散化する要素
マトリックス生成部,圧電素子の電気特性及び構造振動
特性を求めるために必要な要素マトリックス生成部,こ
れら離散化された構造系の要素についての運動方程式を
重ね合わせる構造系要素マトリックス生成部,これら構
造系要素マトリックス生成部のデータを用いて構造系の
振動特性を求める構造振動解析手段,これより得られる
振動速度を基に水中の流体負荷を評価する流体負荷解析
手段,流体負荷解析手段によって得られた付加質量及び
付加減衰を構造系要素マトリックス生成部の質量マトリ
ックス,減衰マトリックス,剛性マトリックスに重ね合
わせて格納する構造系要素マトリックスの補正部、これ
ら要素マトリックス及び圧電素子の要素マトリックス生
成部の電気系要素マトリックスとを用いて構造−電気結
合系要素マトリックス生成部でマトリックスの重ね合わ
せを行い、このマトリックスを用いて構造−電気結合系
の動特性解析手段で構造系の振動応答や電気系の入力ア
ドミッタンスを求め、さらに構造系の振動速度を外力と
して、音響解析手段で水中に放射される音圧を境界要素
法に基づいて求め、表示手段により電気系の入力アドミ
ッタンスや圧電素子への入力電圧に対する振動境界面か
ら1m離れた位置の構造系から放射される振動放射音圧
である送波電圧感度を表示する。
In order to achieve the above-mentioned object, an element matrix generating section, an adhesive, and the like, which are discretized based on the finite element method for obtaining electric characteristics and structural vibration characteristics of a piezoelectric element, An element matrix generator that discretizes the structure based on the finite element method to determine its vibration characteristics, an element matrix generator that determines the electrical characteristics and structural vibration characteristics of the piezoelectric element, and these are discretized. The structural element matrix generator that superimposes the equations of motion for the elements of the structural system, the structural vibration analysis means that obtains the vibration characteristics of the structural system using the data of these structural element matrix generators, and the vibration velocity obtained from this Fluid load analysis means for evaluating the fluid load in water based on the structural system, and the additional mass and additional damping obtained by the fluid load analysis means Using the mass matrix, damping matrix, and correction matrix of the structural element matrix stored in the rigidity matrix of the elementary matrix generation section and the electrical system element matrix of the element matrix generation section of the piezoelectric element, the structure-electricity The coupling element matrix generating unit superimposes the matrices, and using this matrix, the dynamic response analysis means of the structure-electric coupling system determines the vibration response of the structural system and the input admittance of the electric system, and further the vibration velocity of the structural system. With external force as the external force, the sound pressure radiated into the water by the acoustic analysis means is obtained based on the boundary element method, and the structure at a position 1 m away from the vibration boundary surface with respect to the input admittance of the electric system and the input voltage to the piezoelectric element by the display means The sensitivity of the transmitted voltage, which is the oscillating radiation sound pressure emitted from the system, is displayed.

【0008】また、水中にある構造体の振動モデルを求
めるにあたり、空気中で圧電素子を含めた構造系を有限
要素法に基づいて離散化して質量マトリックス,剛性マ
トリックス及び減衰マトリックスを導き、個々の要素か
ら導かれる運動方程式を重ね合わせて、得られた合成方
程式から構造系の固有振動数を求め、ついで構造系に任
意の加振力を加えて、構造系から発生する振動放射音を
近接する水中位置で求め、この音圧から放射インピーダ
ンスを求め、流体の付加質量及び付加減衰を求めて、前
記離散化されたマトリックスに加え、再び固有振動数の
計算を行う。このような計算を繰り返し、固有振動数が
一定値に到達する付加質量及び付加減衰を求め、流体の
振動モデルを求める。
In order to obtain a vibration model of a structure in water, a structural system including a piezoelectric element in air is discretized based on the finite element method to derive a mass matrix, a stiffness matrix and a damping matrix, and By superposing the equations of motion derived from the elements, obtaining the natural frequency of the structural system from the obtained synthetic equation, and then applying an arbitrary excitation force to the structural system, the vibration radiation sound generated from the structural system is brought close The radiant impedance is obtained from the sound pressure, the radiative impedance is obtained from the sound pressure, the additional mass and the additional attenuation of the fluid are obtained, and the natural frequency is calculated again in addition to the discretized matrix. By repeating such calculations, the additional mass and additional damping at which the natural frequency reaches a constant value are obtained, and the vibration model of the fluid is obtained.

【0009】さらに計算結果を基に圧電素子の評価を可
能とするよう表示することとし、効率のよい設計が可能
となる。
Further, the piezoelectric element is displayed so that the piezoelectric element can be evaluated based on the calculation result, which enables efficient design.

【0010】[0010]

【作用】本発明によれば、圧電素子の電気特性及び圧電
素子を含む構造体の振動特性を有限要素法に基づいて連
成挙動として解析し、圧電素子に電圧を加えたときの電
気インピーダンスの周波数特性を求め表示する。この電
気インピーダンスの周波数特性表示で、圧電素子や一般
構造物の材質や形状を設計パラメータとして求めた電気
インピーダンス特性を表示することを特徴とする。これ
により、圧電素子と一般構造物を結合した水中ソーナの
目標とする電気インピーダンスを満たす圧電素子及び一
般構造物の形状や材料を効果的に設計可能となる。
According to the present invention, the electric characteristics of the piezoelectric element and the vibration characteristics of the structure including the piezoelectric element are analyzed as a coupled behavior based on the finite element method, and the electric impedance of the piezoelectric element when a voltage is applied to the piezoelectric element is analyzed. Obtain and display the frequency characteristics. The frequency characteristic display of the electric impedance is characterized in that the electric impedance characteristic obtained by using the material and shape of the piezoelectric element or the general structure as a design parameter is displayed. This makes it possible to effectively design the shapes and materials of the piezoelectric element and the general structure that satisfy the target electrical impedance of the underwater sonar in which the piezoelectric element and the general structure are combined.

【0011】また、本発明によれば圧電素子と一般構造
物を結合した水中ソーナにおいて、水の負荷を構造体へ
の付加質量及び付加減衰として評価して構造体の質量及
びモード減衰比に加えて、圧電素子の電気特性及び圧電
素子を含む構造系の振動特性を有限要素法に基づいての
連成挙動を解析することを特徴とする。これにより、水
中ソーナの動的挙動を精度よく評価できる。
Further, according to the present invention, in the underwater sonar in which the piezoelectric element and the general structure are combined, the load of water is evaluated as the additional mass and additional damping to the structure, and added to the mass and modal damping ratio of the structure. Then, the coupled behavior of the piezoelectric element and the vibration characteristic of the structural system including the piezoelectric element is analyzed based on the finite element method. Thereby, the dynamic behavior of the underwater sonar can be evaluated accurately.

【0012】更に本発明によれば、振動放射音解析手段
によって、圧電素子に単位電圧を加えたときの圧電素子
の電気特性及び圧電素子を含む構造体の振動特性を有限
要素法に基づいて連成挙動として周波数振動応答解析を
行い、この結果を用いて構造系の振動境界面から1mの
位置における構造系から発生する振動放射音圧で表され
る送波電圧感度を計算し、表示することを特徴とする。
この送波電圧感度の周波数特性表示で、圧電素子や一般
構造物の材質や形状を設計パラメータとして求めた送波
電圧感度特性を表示することを特徴とする。これによ
り、圧電素子と一般構造物を結合した水中ソーナの目標
とする送波電圧感度を満たす圧電素子及び一般構造物の
形状や材料を効果的に設計可能となる。
Further, according to the present invention, the vibration radiation sound analysis means links the electric characteristics of the piezoelectric element when a unit voltage is applied to the piezoelectric element and the vibration characteristics of the structure including the piezoelectric element based on the finite element method. Frequency vibration response analysis is performed as the behavior, and by using this result, the transmitted voltage sensitivity expressed by the vibration radiation sound pressure generated from the structural system at the position 1 m from the vibration boundary surface of the structural system is calculated and displayed. Is characterized by.
The frequency characteristic of the transmitted voltage sensitivity is characterized in that the transmitted voltage sensitivity characteristic obtained by using the material and shape of the piezoelectric element or the general structure as design parameters is displayed. This makes it possible to effectively design the shapes and materials of the piezoelectric element and the general structure that satisfy the target transmission voltage sensitivity of the underwater sonar in which the piezoelectric element and the general structure are combined.

【0013】[0013]

【実施例】以下、本発明を実施例により詳細に説明す
る。本実施例の特徴とする点は流体負荷演算部13,構
造物要素マトリックスの補正部14,構造−電気結合系
要素マトリックス生成部15,構造−電気結合系動特性
の解析手段16,表示手段18を設けたことである。図
1は本発明のシステムの一実施例を示すブッロク図で、
図2に圧電素子が一般構造物に接着剤を介して結合して
いる状態を示す。図2中、101が圧電素子、102が
接着剤、103が一般構造物を示す。図1に示す本発明
のシステムの一実施例を基に以下詳述する。要素データ
生成部1,2はそれぞれ一般構造物及び一般構造物と圧
電素子結合するときの接着剤を有限要素に分割し、属性
データ生成部4で生成された属性データを用いて、5,
6の要素マトリックス生成部で構造振動解析に必要な剛
性マトリックス及び質量マトリックスを生成する。ま
た、圧電素子要素生成部3で圧電素子を有限要素に分割
し、属性データ生成部4で生成された圧電素子の属性値
を用いて、有限要素法に基づいて、要素マトリックス生
成部7によって圧電素子の電気系及び機械系の有限要素
モデルが生成される。この有限要素モデルは以下で与え
られる。
EXAMPLES The present invention will be described in detail below with reference to examples. The feature of this embodiment is that the fluid load calculation unit 13, the structure element matrix correction unit 14, the structure-electric coupling system element matrix generating unit 15, the structure-electric coupling system dynamic characteristic analysis unit 16, and the display unit 18 are provided. Is provided. FIG. 1 is a block diagram showing an embodiment of the system of the present invention.
FIG. 2 shows a state in which the piezoelectric element is bonded to a general structure via an adhesive. In FIG. 2, 101 is a piezoelectric element, 102 is an adhesive, and 103 is a general structure. Detailed description will be made below based on an embodiment of the system of the present invention shown in FIG. The element data generation units 1 and 2 respectively divide the general structure and the adhesive used to bond the general structure with the piezoelectric element into finite elements, and use the attribute data generated by the attribute data generation unit 4
The element matrix generation unit 6 generates the rigidity matrix and mass matrix required for structural vibration analysis. Further, the piezoelectric element element generation unit 3 divides the piezoelectric element into finite elements, and the attribute value of the piezoelectric element generated by the attribute data generation unit 4 is used to generate the piezoelectric elements by the element matrix generation unit 7 based on the finite element method. Finite element models of the electrical and mechanical systems of the device are generated. This finite element model is given below.

【0014】圧電素子の属性データ生成部を基に要素マ
トリックス生成部7で圧電現象の数1が与えられる。
The number 1 of the piezoelectric phenomenon is given by the element matrix generator 7 based on the attribute data generator of the piezoelectric element.

【0015】[0015]

【数1】 [Equation 1]

【0016】数1を有限要素法に基づいて離散化する
と、次式が与えられる。
When the equation 1 is discretized based on the finite element method, the following equation is given.

【0017】[0017]

【数2】 [Equation 2]

【0018】ここで、 [Kp]:剛性マトリックス [Mp]:質量マトリックス [Θp]:電気・機械結合マトリックス [Gp]:静電マトリックス {dp}:振動変位 {Q}:電極電位 ω:角振動数 p:圧電素子 要素マトリックス生成部7では数2[Kp],[Mp],
[Θp],[Gp]が保存される。
[0018] Here, [K p]: stiffness matrix [M p]: Weight Matrix [theta p]: electromechanical coupling matrix [G p]: electrostatic matrix {d p}: vibration displacement {Q}: electrode Potential ω: Angular frequency p: Piezoelectric element In the element matrix generation unit 7, the number 2 [K p ], [M p ],
p ] and [G p ] are stored.

【0019】次に構造系要素マトリックス生成部8によ
って要素マトリックス生成部5,6,7で生成された一
般構造物,接着剤,圧電素子の質量マトリックス[M
s ],[Ma],[Mp],剛性マトリックス[Ks],[K
a],[Kp]が、図3の301,302,303に示す
ように各要素の節点共通の部分を重ね合わせて300に
示すように構造系要素マトリックス[M],[K]を得
る。
Next, the mass matrix [M of the general structure, the adhesive and the piezoelectric element generated by the structural element matrix generating section 8 in the element matrix generating sections 5, 6, 7 [M
s ], [M a ], [M p ], stiffness matrix [K s ], [K
a ] and [K p ] are superposed as shown in 301, 302 and 303 of FIG. 3 on the common nodes of the respective elements, and as shown in 300, structural system element matrices [M] and [K] are obtained. .

【0020】この構造系要素マトリックス及び属性デー
タ生成部4から得られる減衰係数や境界条件等を用いて
構造振動解析手段10により構造物の固有振動数及び周
波数応答を求める。一方、構造振動からの振動放射音を
解析するために必要な受音点データ等は、音響解析デー
タ生成部9で生成され、構造振動解析手段10で求めら
れた周波数応答を外力として、音響解析手段11で音圧
の周波数応答が境界要素法に基づいて求められる。さら
に、構造物が流体中にあるとき流体負荷演算部12で流
体を付加質量,付加減衰として評価する必要がある。以
下ではこの付加質量,付加減衰を求める方法を説明す
る。図4に解析のフローを示す。
The structural vibration analysis means 10 finds the natural frequency and frequency response of the structure using the structural element matrix and the damping coefficient and boundary conditions obtained from the attribute data generator 4. On the other hand, sound receiving point data and the like necessary for analyzing the vibration radiation sound from the structural vibration are generated by the acoustic analysis data generation unit 9 and acoustic analysis is performed by using the frequency response obtained by the structural vibration analysis means 10 as an external force. The means 11 determines the frequency response of sound pressure based on the boundary element method. Further, when the structure is in the fluid, the fluid load calculation unit 12 needs to evaluate the fluid as additional mass and additional damping. The method for obtaining the additional mass and additional damping will be described below. FIG. 4 shows a flow of analysis.

【0021】離散化された構造系の任意要素iの振動速
度をui 、構造物の振動境界面から微小距離離れた位置
に構造物と同じ形状及び面積si を持つ受音面を設定
し、この位置の音圧Pi を境界要素法を用いて求める。
このとき構造物の放射インピーダンスZRiは次式で定義
される
A vibration velocity of an arbitrary element i of the discretized structure system is set to u i , and a sound receiving surface having the same shape and area s i as the structure is set at a position a minute distance from the vibration boundary surface of the structure. , The sound pressure P i at this position is obtained using the boundary element method.
At this time, the radiation impedance Z Ri of the structure is defined by the following equation.

【0022】[0022]

【数3】 (Equation 3)

【0023】ここでRRi,XRiはそれぞれ放射インピー
ダンスZRiの実数部及び虚数部であり、jは虚数単位
を、pi は音圧を表す。いま振動放射音が流体中を伝播
して減衰するとき流体負荷を質量と減衰が直列結合する
振動モデルとして仮定する。このとき構造物の要素i
(i=1,…,N)に作用する力Fi と振動速度ui
ら定義される機械インピーダンスZi
Here, R Ri and X Ri are the real and imaginary parts of the radiation impedance Z Ri , respectively, j is the imaginary unit, and p i is the sound pressure. Now, assume that the fluid load is a vibration model in which the mass and the damping are coupled in series when the vibration radiation sound propagates in the fluid and is damped. At this time, the element i of the structure
(I = 1, ..., N ) mechanical impedance Z i which is defined from the force F i and the vibration velocity u i which acts on the

【0024】[0024]

【数4】 [Equation 4]

【0025】構造物の機械インピーダンスと放射インピ
ーダンスを等しいとおいて、要素iの質量及び減衰係数
は数5で得られる。
Assuming that the mechanical impedance and the radiation impedance of the structure are equal, the mass and damping coefficient of the element i can be obtained by equation (5).

【0026】[0026]

【数5】 (Equation 5)

【0027】数5で得られる質量及び減衰係数が構造物
に作用する流体の付加質量及び付加減衰係数である。
The mass and damping coefficient obtained by the equation 5 are the added mass and damping coefficient of the fluid acting on the structure.

【0028】数5で求めた付加質量及び付加減衰係数を
構造解析の質量マトリックスおよび属性データ生成部4
から得られる減衰マトリックスに重ね合わせて再び振動
解析を行い固有振動数および周波数応答を求める。求め
た固有振動数が解析手段10で求めた固有振動数と異な
る場合、さらに周波数応答計算,放射音計算を行いこの
結果を基に、数5を用いて再び流体付加質量及び付加減
衰係数を算出し、構造振動解析を行い、固有振動数を求
め前回計算した固有振動数の値と比較する。このような
過程を繰り返し、固有振動数が一定となる時の流体の付
加質量及び付加減衰係数を評価する。
The additional mass and additional damping coefficient obtained by the equation 5 are used for the structural analysis mass matrix and attribute data generation unit 4
Vibration analysis is performed again by superposing it on the damping matrix obtained from, and the natural frequency and frequency response are obtained. When the calculated natural frequency is different from the natural frequency calculated by the analyzing means 10, frequency response calculation and radiation sound calculation are further performed, and based on the results, the fluid added mass and the additional damping coefficient are calculated again using Equation 5. Then, structural vibration analysis is performed to obtain the natural frequency and compare it with the previously calculated value of the natural frequency. By repeating this process, the additional mass and additional damping coefficient of the fluid when the natural frequency becomes constant are evaluated.

【0029】次に、流体負荷演算部12で求めた流体の
付加質量及び付加減衰係数を、構造物要素マトリックス
の補正部13により、8の構造物要素マトリックス生成
部で生成された要素マトリックスの同じ節点位置のとこ
ろで重ね合わせを行う。
Next, the additional mass and the additional damping coefficient of the fluid obtained by the fluid load calculation unit 12 are the same as those of the element matrix generated by the structure element matrix generation unit 8 by the structure element matrix correction unit 13. Superimpose at the node position.

【0030】以上により、振動解析に必要な圧電素子を
含む構造系のデータは求められた。
From the above, the data of the structural system including the piezoelectric element necessary for the vibration analysis was obtained.

【0031】構造系要素マトリックス補正部13から得
られる質量,減衰,剛性マトリックスと要素マトリック
ス生成部7から得られる圧電素子の静電マトリックス及
び電気・機械結合マトリックスを用いて構造−電気結合
系要素マトリックス生成部14で全体系のマトリックス
[A(ω)]が求められる。このときの方程式を数6に
示し、要素マトリックス,状態ベクトルを数7で示す。
The structure-electric coupling element matrix is formed by using the mass, damping, and stiffness matrices obtained from the structural element matrix correcting section 13 and the electrostatic matrix and the electromechanical coupling matrix of the piezoelectric element obtained from the element matrix generating section 7. The generator 14 obtains the matrix [A (ω)] of the entire system. The equation at this time is shown in Equation 6, and the element matrix and the state vector are shown in Equation 7.

【0032】[0032]

【数6】 (Equation 6)

【0033】[0033]

【数7】 (Equation 7)

【0034】ただし、添字sは一般構造物、aは接着
剤、pは圧電素子を示す。また(s)は一般構造物、
(s)−(a)−(p)は一般構造物,接着剤,圧電素子を
重ね合わせたときの振動変位、(p)eは圧電素子の電位
を示す。数7は接着剤の面積が圧電素子の面積と同じで
かつ同じ位置にある場合である。
However, the subscript s indicates a general structure, a indicates an adhesive, and p indicates a piezoelectric element. (S) is a general structure,
(S)-(a)-(p) is a vibration displacement when a general structure, an adhesive, and a piezoelectric element are piled up, and (p) e is a potential of the piezoelectric element. Expression 7 is a case where the area of the adhesive is the same as the area of the piezoelectric element and at the same position.

【0035】構造−電気結合系要素マトリックス生成部
14で生成された要素マトリックスを用いて構造−電気
結合系動特性の解析手段15により次の方程式を解く。
Using the element matrix generated by the structure-electric coupling system element matrix generating section 14, the structure-electric coupling system dynamic characteristic analyzing means 15 solves the following equation.

【0036】[0036]

【数8】 (Equation 8)

【0037】ただし、{dA}は構造系の振動変位、
{φp}は電気系の電位を表す。また{FA }は構造系
に働く一般的な外力であり、{Q}は電極に加えられた
電荷である。数8で一般的な外力である{FA }は与え
られる。また電気系の電位{φp }も与えられるとき、
構造系の振動応答を数8で解析できる。数8で単位電位
を与え一般的な外力が与えられたとしたとき、圧電素子
に働く電荷{Q}が求められる。この節点iの電荷をQ
i とすると電荷Qi と電流Ii は次式となる。
Where {d A } is the vibration displacement of the structural system,
p } represents the electric potential of the electric system. Further, {F A } is a general external force acting on the structural system, and {Q} is the electric charge applied to the electrode. The general external force {F A } is given by Equation 8. When the electric potential {φ p } is also given,
The vibration response of the structural system can be analyzed by Equation 8. When a unit potential is given and a general external force is given by the equation (8), the electric charge {Q} acting on the piezoelectric element can be obtained. The charge at this node i is Q
When i is set, the charge Q i and the current I i are given by the following expressions.

【0038】[0038]

【数9】 [Equation 9]

【0039】電極を構成する全要素の和をとると入力ア
ドミッタンスYinは次式で与えられる。
The input admittance Y in is given by the following equation when the sum of all the elements constituting the electrode is taken.

【0040】[0040]

【数10】 [Equation 10]

【0041】数10で求められる入力アドミッタンスY
inは複素数であり、実数部と虚数部に分けて次のように
表せる。
Input admittance Y found by equation 10
in is a complex number and can be expressed as follows by dividing it into a real number part and an imaginary number part.

【0042】[0042]

【数11】 [Equation 11]

【0043】入力アドミッタンスYinは圧電素子の材質
や一般構造物の材質や形状を設計パラメータとして、角
振動数ωの関数として得られる。このときの設計パラメ
ータとしてkを用いると、k=ki のときの送波電圧感
度を求めて、表示手段17を用いて複素平面上に表して
図5を得る。また、表示手段17を用いて入力アドミッ
タンスYinの絶対値、及び入力アドミッタンスYinの実
数部B(ω)の絶対値を周波数の関数とし、さらに圧電
素子や一般構造物の材質や形状を設計パラメータとした
表示として図6,図7を得る。この図5,図6,図7を
用いて水中ソーナの電気特性を考慮した設計が可能とな
る。
The input admittance Y in is obtained as a function of the angular frequency ω with the material of the piezoelectric element and the material and shape of the general structure as design parameters. When k is used as the design parameter at this time, the transmitted voltage sensitivity when k = k i is obtained and displayed on the complex plane using the display means 17 to obtain FIG. Also, the absolute value of the input admittance Y in and the absolute value of the real part B (ω) of the input admittance Y in are used as a function of frequency by using the display means 17, and the material and shape of the piezoelectric element and the general structure are designed. 6 and 7 are obtained as display using parameters. It is possible to design in consideration of the electrical characteristics of the underwater sonar by using FIGS. 5, 6 and 7.

【0044】次に、数8で任意電圧を与えたときの構造
系の振動応答が求められる。この振動応答を外力として
音響解析手段17を用いて振動境界面から任意距離離れ
た位置の音圧分布を計算できる。この時、圧電素子の設
計において、伝播する音圧特性を効果的に評価するため
に、1m離れた位置での圧電素子の入力電圧に対する音
圧特性があり、これを送波電圧感度と呼んでいる。この
送波電圧感度は周波数の関数として計算される。この電
圧感度の大小によって、目標とする水中ソーナの設計指
針が決められる。そこで、この送波電圧感度は振動境界
面カら1m離れた任意の受音点i(i+1,…,)で、
一般構造物や圧電素子の材質や形状を設計パラメータと
して与えられる。この時の送波電圧感度を図8,図9に
示す。図8は送波電圧感度の周波数応答を受音点i,設
計パラメータをkとしたときの値を示す。また図9は受
音点番号と送波電圧感度と周波数を三次元的に示したも
のである。
Next, the vibration response of the structural system when an arbitrary voltage is applied is obtained by the equation (8). Using the vibration analysis as an external force, the acoustic analysis means 17 can be used to calculate the sound pressure distribution at a position distant from the vibration boundary surface by an arbitrary distance. At this time, in the design of the piezoelectric element, in order to effectively evaluate the propagating sound pressure characteristic, there is a sound pressure characteristic with respect to the input voltage of the piezoelectric element at a position 1 m apart, and this is called the transmission voltage sensitivity. There is. This transmitted voltage sensitivity is calculated as a function of frequency. The target design guideline for the underwater sonar is determined by the magnitude of this voltage sensitivity. Therefore, this transmitted voltage sensitivity is at an arbitrary sound receiving point i (i + 1, ...,) 1 m away from the vibration boundary surface,
Materials and shapes of general structures and piezoelectric elements are given as design parameters. The transmitted voltage sensitivity at this time is shown in FIGS. FIG. 8 shows values when the frequency response of the transmitted voltage sensitivity is the sound receiving point i and the design parameter is k. Further, FIG. 9 shows the sound receiving point number, the transmission voltage sensitivity and the frequency three-dimensionally.

【0045】以上のように、入力アドミッタンスYin
送波電圧感度を求めて、表示手段で上記のように表すこ
とにより、電気系及び構造系の設計パラメータに対する
特性を容易に評価できるため圧電素子を含めた水中ソー
ナを効率よく設計できる。
As described above, by obtaining the input admittance Y in and the transmitted voltage sensitivity and expressing them on the display means as described above, the characteristics with respect to the design parameters of the electric system and the structural system can be easily evaluated, and thus the piezoelectric element. The underwater sonar including can be efficiently designed.

【0046】[0046]

【発明の効果】本発明によれば、水中ソーナの設計にあ
たり、設計者は圧電素子の材質や形状、及び一般構造物
の材質や形状がその電気的特性や音圧特性にどのように
影響を及ぼすかの判断を、表示画面を見ながら容易に行
えるため、設計期間の短縮や設計が効率的に行える。
According to the present invention, when designing an underwater sonar, the designer should consider how the material and shape of the piezoelectric element and the material and shape of the general structure influence their electrical characteristics and sound pressure characteristics. Since it is possible to easily determine whether or not to affect the display screen, the design period can be shortened and the design can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の設計システムの一実施例を示すブロッ
ク図。
FIG. 1 is a block diagram showing an embodiment of a design system of the present invention.

【図2】圧電素子が一般構造物に接着剤によって結合し
ている状態を示す説明図。
FIG. 2 is an explanatory view showing a state where a piezoelectric element is bonded to a general structure with an adhesive.

【図3】構造系の要素マトリックスを重ね合わせて構造
系の要素マトリックス生成を示すブロック図。
FIG. 3 is a block diagram showing generation of a structural system element matrix by superposing structural system element matrices.

【図4】流体負荷を付加質量及び付加減衰にモデル化す
る手順を示すフローチャート。
FIG. 4 is a flow chart showing a procedure for modeling a fluid load into additional mass and additional damping.

【図5】圧電素子や一般構造物の材質や形状で表される
設計パラーメータのおける圧電素子の入力インピーダン
スを複素平面上に表した特性図。
FIG. 5 is a characteristic diagram showing the input impedance of the piezoelectric element in the design parameter represented by the material and shape of the piezoelectric element and the general structure on a complex plane.

【図6】入力インピーダンスの絶対値の周波数特性を任
意の設計パラメータに対して示した特性図。
FIG. 6 is a characteristic diagram showing the frequency characteristic of the absolute value of the input impedance for arbitrary design parameters.

【図7】入力インピーダンスの実数部の絶対値の周波数
特性を任意の設計パラメータに対して示した特性図。
FIG. 7 is a characteristic diagram showing the frequency characteristic of the absolute value of the real part of the input impedance for arbitrary design parameters.

【図8】任意受音点及びある設計パラメータに対して送
波電圧感度を示す特性図。
FIG. 8 is a characteristic diagram showing transmission voltage sensitivity with respect to an arbitrary sound receiving point and a certain design parameter.

【図9】送波電圧感度を任意受音点及び設計パラメータ
に対して示した特性図。
FIG. 9 is a characteristic diagram showing the transmitted voltage sensitivity with respect to an arbitrary sound receiving point and design parameters.

【符号の説明】[Explanation of symbols]

8…構造系要素マトリックス生成部、10…構造振動解
析手段、11,16…音響解析手段、12…音響負荷演
算部、13…構造系要素マトリックスの補正部、14…
構造−電気結合系要素マトリックス生成部、15…構造
−電気結合系動特性の解析手段、16…表示手段。
8 ... Structural element matrix generation unit, 10 ... Structural vibration analysis means, 11, 16 ... Acoustic analysis means, 12 ... Acoustic load calculation unit, 13 ... Structural element matrix correction unit, 14 ...
Structure-electric coupling system element matrix generation unit, 15 ... Structure-electric coupling system dynamic characteristic analysis means, 16 ... Display means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南利 光彦 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuhiko Minami 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Hitachi Ltd. Information & Communication Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般構造物と圧電素子とを接着剤で結合し
圧電素子に電圧を加えて構造物及び圧電素子を励振させ
て振動放射音を発生させる水中ソーナを設計するシステ
ムにおいて、一般構造物と接着剤のを有限要素法に基づ
いて離散化された要素マトリックスを生成する部分と、
圧電素子の電気−構造を有限要素法に基づいて離散化
し、前記一般構造物と接着剤の離散化された要素マトリ
ックスと圧電素子の離散化された要素マトリックスのう
ち構造に関する要素マトリックスとを重ね合わせる構造
系要素マトリックス生成部と、前記構造系の要素マトリ
ックスを用いて固有振動数及び振動応答等の振動特性を
求める構造振動解析手段と、振動解析手段から得た周波
数応答解析結果を外力として、構造物の振動によって発
生する振動放射音の音圧を求める音響解析手段と、前記
振動解析手段と音響解析手段とから流体の負荷特性を求
める流体負荷演算手段と、前記流体負荷演算手段で得ら
れた流体負荷と前記構造物で得られた有限要素モデルと
を合成して保存する構造系の保存された構造系の要素マ
トリックスと圧電素子の離散化された電気系のマトリッ
クスとを重ね合わせる構造−電気結合系要素マトリック
ス生成部と、該要素マトリックスと境界条件等を入力し
てある属性データ生成部とから構造−電気結合系動特性
を解析する手段と、この解析手段から得られた振動応答
を外力として振動放射音圧を計算する音響解析手段と、
構造−電気結合系動特性解析手段から得られた電気的入
力アドミッタンスや音響解析手段から得られた送波電圧
感度等を表示する表示手段とを備え、設計者が表示画面
を見ながら圧電素子の機械特性や電気特性を判断してそ
の構造と電気特性を設計できることを特徴とする水中ソ
ーナ設計システム。
1. A system for designing an underwater sonar for connecting a general structure and a piezoelectric element with an adhesive and applying a voltage to the piezoelectric element to excite the structure and the piezoelectric element to generate vibration radiation sound. A part that generates a discretized element matrix of the object and the adhesive based on the finite element method,
The electric-structure of the piezoelectric element is discretized based on the finite element method, and the discretized element matrix of the general structure and the adhesive and the discretized element matrix of the piezoelectric element are superposed. A structural element matrix generation unit, a structural vibration analysis unit that obtains vibration characteristics such as a natural frequency and a vibration response using the structural element matrix, and a frequency response analysis result obtained from the vibration analysis unit as an external force. The acoustic analysis means for obtaining the sound pressure of the vibration radiation sound generated by the vibration of the object, the fluid load calculation means for obtaining the load characteristics of the fluid from the vibration analysis means and the acoustic analysis means, and the fluid load calculation means are obtained. An element matrix and a piezoelectric element of a conserved structure system for composing and storing a fluid load and a finite element model obtained in the structure Of the structure-electric coupling system element matrix generation unit that superimposes the discretized electric system matrix of, and the structure-electric coupling system dynamic characteristic from the attribute data generation unit that inputs the element matrix and boundary conditions. Means for analyzing, and acoustic analysis means for calculating vibration radiation sound pressure using the vibration response obtained from this analysis means as an external force,
Structure-Equipped with a display means for displaying the electrical input admittance obtained from the dynamic characteristic analysis means and the transmitted voltage sensitivity obtained from the acoustic analysis means, and the designer can see the display screen and An underwater sonar design system characterized by being able to judge its mechanical and electrical characteristics and design its structure and electrical characteristics.
【請求項2】請求項1において、構造の振動境界面から
微小距離離れた位置での放射インピーダンスをもとに流
体を付加質量および付加減衰としてモデル化する水中ソ
ーナ設計システム。
2. The underwater sonar design system according to claim 1, wherein the fluid is modeled as an additional mass and an additional damping based on the radiation impedance at a position separated from the vibration boundary surface of the structure by a minute distance.
JP7130044A 1995-05-29 1995-05-29 Underwater-sonar designing system Pending JPH08327725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7130044A JPH08327725A (en) 1995-05-29 1995-05-29 Underwater-sonar designing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7130044A JPH08327725A (en) 1995-05-29 1995-05-29 Underwater-sonar designing system

Publications (1)

Publication Number Publication Date
JPH08327725A true JPH08327725A (en) 1996-12-13

Family

ID=15024737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7130044A Pending JPH08327725A (en) 1995-05-29 1995-05-29 Underwater-sonar designing system

Country Status (1)

Country Link
JP (1) JPH08327725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954725B2 (en) 2000-12-12 2005-10-11 Fujitsu Limited Multi-physics analysis method, method for setting analysis conditions therefor, and storage medium
JP2014178330A (en) * 2014-05-28 2014-09-25 Kobe Steel Ltd Total tension measuring apparatus of belt-like body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954725B2 (en) 2000-12-12 2005-10-11 Fujitsu Limited Multi-physics analysis method, method for setting analysis conditions therefor, and storage medium
JP2014178330A (en) * 2014-05-28 2014-09-25 Kobe Steel Ltd Total tension measuring apparatus of belt-like body

Similar Documents

Publication Publication Date Title
Thomas et al. Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients
Missaoui et al. A combined integro-modal approach for predicting acoustic properties of irregular-shaped cavities
Musgrave et al. Generating and tailoring structure-borne traveling waves on two-dimensional surfaces
Davis A simplified approach for predicting interaction between flexible structures and acoustic enclosures
Wein et al. Topology optimization of a piezoelectric-mechanical actuator with single-and multiple-frequency excitation
Van Niekerk et al. Active control of a circular plate to reduce transient noise transmission
TWI468030B (en) Point excitation placement in an audio transducer
Cheng et al. Three-dimensional viscous finite element formulation for acoustic fluid–structure interaction
US20020101135A1 (en) Method and device for noise damping
Hasheminejad et al. Vibro-acoustic response of an elliptical plate-cavity coupled system to external shock loads
JPH08327725A (en) Underwater-sonar designing system
JP3242260B2 (en) Vibration test apparatus for structure, vibration test method for structure, and structure
Nguyen et al. Piezoelectric–mechanical–acoustic couplings from a PZT-actuated vibrating beam and its sound radiation
Ikpe et al. Response variation of chladni patterns on vibrating elastic plate under electro-mechanical oscillation
Issanchou et al. A modal approach to the numerical simulation of a string vibrating against an obstacle: Applications to sound synthesis
Dilgen et al. Shape optimization of the time-harmonic response of vibroacoustic devices using cut elements
Niyogi et al. A coupled FE‐BE analysis of acoustic cavities confined inside laminated composite enclosures
Chin et al. Hybrid finite element formulation for periodic piezoelectric arrays subjected to fluid loading
Ducceschi et al. A physical model for the prepared piano
da Silva et al. An efficient finite element approach for reduction of structural vibration and acoustic radiation by passive shunted piezoelectric systems
Sihar et al. Implementation of the nodal discontinuous Galerkin method for the plate vibration problem using linear elasticity equations
Tsuchiya et al. Electricity generation characteristics of energy-harvesting system with piezoelectric element using mechanical-acoustic coupling
JP2019185369A (en) Sound pressure calculation method
Hwang et al. System identification of structural acoustic system using the scale correction
Miller et al. A hybrid method for creating auralizations of vibroacoustic systems