JPH08327655A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH08327655A
JPH08327655A JP13492995A JP13492995A JPH08327655A JP H08327655 A JPH08327655 A JP H08327655A JP 13492995 A JP13492995 A JP 13492995A JP 13492995 A JP13492995 A JP 13492995A JP H08327655 A JPH08327655 A JP H08327655A
Authority
JP
Japan
Prior art keywords
region
acceleration sensor
hole
strain
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13492995A
Other languages
Japanese (ja)
Inventor
Kiyoshi Saito
潔 齋藤
Shinjiro Ueda
真二郎 上田
Akinori Hasegawa
昭典 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13492995A priority Critical patent/JPH08327655A/en
Publication of JPH08327655A publication Critical patent/JPH08327655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE: To obtain an acceleration sensor being employed in the air bag system for automobile in which both high resonance frequency and high sensitivity are satisfied. CONSTITUTION: A cantilever 1 provided with a hole 6 and rectangular notches 9a, 9b in the vicinity of border between a fixed area and a free area is secured to a moving body, e.g. an automobile, by means of screws and resistors 5a, 5b are printed in the area between the hole 6 and the notches 9a, 9b. According to this structure, concentration of stress due to curving on the outside of notches 9a, 9b is combined with superposed distribution of stress due to concentration of stress at the hole 6 and the notches 9a, 9b upon application of acceleration. Consequently, the stress is concentrated at high degree and high sensitivity can be attained even at high resonance frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のエアーバック
システム等に使用される加速度を検出する加速度センサ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor for detecting acceleration used in an air bag system of an automobile.

【0002】[0002]

【従来の技術】従来例を図6、図7を用いて説明する。2. Description of the Related Art A conventional example will be described with reference to FIGS.

【0003】図6において、片持ち梁1はビス等(図示
せず)で貫通孔2a,2bにより運動体に固定されて拘
束領域3a,3bを形成している。そのため、図中に示
したように前記片持ち梁1に自由領域と固定領域とが形
成されている。そして、前記拘束領域3a,3bと自由
領域との近傍に長方形の形状をした孔部6を設け、この
孔部6の近傍で前記自由領域が前記固定領域に接する境
界近傍に歪抵抗素子としての印刷抵抗5a,5bが形成
されている。そして、図7に示すように前記印刷抵抗5
a,5bは、バランス調整用抵抗12a,12b(図5
には図示せず)と共にブリッジ回路を構成し、印刷電極
4a〜4dにより引き出し端子7と電気的に接続されて
いる。
In FIG. 6, the cantilever 1 is fixed to the moving body by means of through holes 2a and 2b by means of screws or the like (not shown) to form restraint regions 3a and 3b. Therefore, as shown in the figure, the cantilever 1 has a free region and a fixed region. A rectangular hole 6 is provided in the vicinity of the restraint regions 3a and 3b and the free region, and a strain resistance element as a strain resistance element is provided in the vicinity of the hole 6 near the boundary where the free region contacts the fixed region. Printing resistors 5a and 5b are formed. Then, as shown in FIG.
a and 5b are balance adjusting resistors 12a and 12b (see FIG. 5).
(Not shown) to form a bridge circuit and are electrically connected to the lead terminals 7 by the printed electrodes 4a to 4d.

【0004】上記のように構成された加速度センサにつ
いて、以下その動作を説明する。前記拘束領域3a,3
bにより、自動車等の運動は前記片持ち梁1に伝えら
れ、前記自由領域が自身の慣性力により歪み、孔部6の
ために角部8a,8bが最大となるように歪が分布す
る。そして、前記印刷抵抗5a,5bの形成されている
領域に分布した歪値に応じて抵抗値が変化し、前記ブリ
ッジ回路により、その変化が前記引き出し端子7から電
気信号として取り出される。
The operation of the acceleration sensor having the above structure will be described below. The restraint regions 3a, 3
The movement of the automobile or the like is transmitted to the cantilever 1 by b, the free region is distorted by its own inertial force, and the strain is distributed so that the corners 8a and 8b are maximized due to the hole 6. Then, the resistance value changes according to the strain value distributed in the area where the printed resistors 5a and 5b are formed, and the change is taken out as an electric signal from the lead terminal 7 by the bridge circuit.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の加速度センサでは、以下の課題があった。
However, the above conventional acceleration sensor has the following problems.

【0006】第一に、前記印刷抵抗5a,5bを辺縁部
にクリアランス無しに設けると製造上欠陥ができ易くな
るため、歪分布の中で最大値をとる点である角部8a,
8b上に前記印刷抵抗5a,5bを設けることが出来な
い。そのため、最大値よりも歪値が25〜30%下がっ
た領域に前記印刷抵抗5a,5bを設けざるを得ない。
したがって、この損失を見込んで感度を高くするために
は前記片持ち梁1の自由領域について損失相当分の重量
を増加させるか、相当分の剛性を下げる必要がある。し
かし、この方法で感度を高くすると共振周波数が下が
り、高い感度と両立させることが困難になるものであっ
た。また、落下時に前記角部8a,8bに発生する歪が
高くなり過ぎ、衝撃破壊強度が小さいという欠点があっ
た。
First, if the printed resistors 5a and 5b are provided at the peripheral portions without clearance, defects are likely to occur during manufacturing. Therefore, the corners 8a, which are the maximum points in the strain distribution,
The printed resistors 5a and 5b cannot be provided on 8b. Therefore, it is unavoidable to provide the printing resistors 5a and 5b in the region where the strain value is 25 to 30% lower than the maximum value.
Therefore, in order to increase the sensitivity in consideration of this loss, it is necessary to increase the weight of the free area of the cantilever 1 corresponding to the loss or reduce the rigidity of the free area. However, if the sensitivity is increased by this method, the resonance frequency is lowered, and it is difficult to achieve high sensitivity at the same time. In addition, there is a drawback that the strain generated in the corners 8a and 8b at the time of dropping becomes too high, and the impact fracture strength is small.

【0007】第二に、前記印刷抵抗5a,5bのサイズ
は、印刷精度の関係から一定以上の大きさが必要であ
る。そのため、前記印刷抵抗5a,5bは、抵抗が形成
されている領域の歪分布の平均値に応じた変化をする
が、この領域での歪分布の最大値と最小値との差が大き
いため平均値が小さくなり、更に損失が大きくなる。
Secondly, the size of the printing resistors 5a and 5b needs to be a certain size or more in view of printing accuracy. Therefore, the printed resistors 5a and 5b change in accordance with the average value of the strain distribution in the region where the resistance is formed, but the difference between the maximum value and the minimum value of the strain distribution in this region is large, so the average The value becomes smaller and the loss becomes larger.

【0008】本発明は、このような従来の課題を解決す
るもので、歪抵抗に歪を集中させ、感度と共振周波数が
高く両立させることができる加速度センサを提供するこ
とを目的とするものである。
The present invention is intended to solve such a conventional problem, and an object thereof is to provide an acceleration sensor capable of concentrating strain on a strain resistance and achieving both high sensitivity and high resonance frequency. is there.

【0009】[0009]

【課題を解決するための手段】本発明の加速度センサ
は、上記課題を解決するために、少なくとも1つの孔部
と少なくとも2つの切り欠き部を有した片持ち梁を、少
なくとも2カ所の拘束領域によって、自動車等の運動体
に相対的に固定し、前記片持ち梁上の前記孔部と前記切
り欠き部に挟まれた部分に歪抵抗素子を設けた構成とし
たものである。
In order to solve the above-mentioned problems, the acceleration sensor of the present invention comprises a cantilever having at least one hole and at least two notches, and has at least two restraint regions. According to this configuration, the strain resistance element is fixed to a moving body such as an automobile, and a strain resistance element is provided in a portion between the hole and the notch on the cantilever.

【0010】[0010]

【作用】この構成により、孔部と切り欠き部に挟まれた
領域に歪分布を集中させ、かつ歪抵抗素子の形成されて
いる領域での歪の最大値と最小値の差を縮めることがで
きるため、高い感度と高い共振周波数を両立させること
ができ、しいては、落下時の衝撃破壊強度を向上させる
ことができる。
With this structure, the strain distribution can be concentrated in the region sandwiched between the hole and the notch, and the difference between the maximum value and the minimum value of the strain in the region where the strain resistance element is formed can be reduced. Therefore, both high sensitivity and high resonance frequency can be compatible with each other, and as a result, impact fracture strength at the time of dropping can be improved.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について図1
を用いて説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
Will be explained.

【0012】片持ち梁1はビス等(図示せず)で貫通孔
2a,2bにより運動体に固定されて拘束領域3a,3
bを形成している。そのため、図中に示したように前記
片持ち梁1に自由領域と固定領域とが形成される。そし
て、前記拘束領域3a,3bと自由領域との近傍に長方
形の孔部6と矩形状の切り欠き部9a,9bを設け、前
記孔部6と切り欠き部9a,9bに挟まれた領域で前記
自由領域が前記固定領域に接する境界近傍に歪抵抗素子
としての印刷抵抗5a,5bが形成されている。ここ
で、前記孔部6の固定領域側の辺6bは前記切り欠き部
9a,9bの辺9c,9dに対して固定領域側にずれ量
Δdだけずらしてある。また、前記拘束領域3a,3b
の境界は、前記切り欠き部9a,9bに近接して設けて
ある。
The cantilever 1 is fixed to a moving body by means of through holes 2a and 2b by means of screws or the like (not shown), and the constrained regions 3a and 3 are formed.
b is formed. Therefore, a free region and a fixed region are formed in the cantilever 1 as shown in the figure. Then, a rectangular hole 6 and rectangular cutouts 9a, 9b are provided in the vicinity of the constrained areas 3a, 3b and the free area, and in a region sandwiched by the hole 6 and the cutouts 9a, 9b. Printed resistors 5a and 5b as strain resistance elements are formed near the boundary where the free region contacts the fixed region. Here, the side 6b of the hole 6 on the side of the fixed area is displaced from the sides 9c, 9d of the cutouts 9a, 9b by the amount of deviation Δd on the side of the fixed area. Also, the restraint regions 3a, 3b
The boundary is provided near the cutouts 9a and 9b.

【0013】前記印刷抵抗5a,5bは、従来例と同様
にバランス用調整抵抗12a,12bと共にブリッジ回
路を形成し、印刷電極4a〜4dにより引き出し端子7
と電気的に接続されている。
The printing resistors 5a and 5b form a bridge circuit together with the balancing resistors 12a and 12b, as in the conventional example, and the lead terminals 7 are formed by the printing electrodes 4a to 4d.
Is electrically connected to.

【0014】上記のように構成された加速度センサにつ
いて、その動作を説明する。前記拘束領域3a,3bに
より、自動車等の運動は前記片持ち梁1に伝えられ、前
記自由領域が自身の慣性力により歪み、前記孔部6と前
記切り欠き部9a,9bのために、これらに挟まれた領
域に歪が集中する。そして、前記印刷抵抗5a,5bの
形成されている領域に分布した歪値に応じて抵抗値が変
化し、前記ブリッジ回路により、その変化が前記引き出
し端子7から電気信号として取り出される。
The operation of the acceleration sensor configured as described above will be described. Due to the restraint regions 3a and 3b, the motion of the automobile or the like is transmitted to the cantilever beam 1, the free region is distorted by its own inertial force, and due to the hole 6 and the notches 9a and 9b, Distortion concentrates in the area sandwiched between. Then, the resistance value changes according to the strain value distributed in the area where the printed resistors 5a and 5b are formed, and the change is taken out as an electric signal from the lead terminal 7 by the bridge circuit.

【0015】次に、歪集中に関する形状の一連の効果に
ついて簡単に説明する。図4(a),(b)に、加速度
センサに加速度が印加された時の各形状での片持ち梁の
変形形状と歪分布を示す。
Next, a series of effects of the shape relating to strain concentration will be briefly described. 4A and 4B show the deformed shape and the strain distribution of the cantilever in each shape when acceleration is applied to the acceleration sensor.

【0016】図4(a)(従来例)と図4(b)(第1
実施例)を比較すると、(a)の変形に比べ、切り欠き
部9a,9bを設けることにより、加速度印加時の変形
は切り欠き部9a,9bの外側の自由領域が湾曲するよ
うに変形している。このとき、この変形をさらに詳細に
みると前記切り欠き部9a,9bの角部8c,8dの近
傍の曲率が最も大きく、したがって歪の最大領域もこの
近傍に分布する。
FIG. 4A (conventional example) and FIG. 4B (first)
Compared with the deformation of (a), by providing the cutouts 9a and 9b, the deformation at the time of applying an acceleration is such that the free region outside the cutouts 9a and 9b is curved as compared with the deformation of (a). ing. At this time, looking at this deformation in more detail, the curvature of the notches 9a and 9b in the vicinity of the corners 8c and 8d is the largest, and therefore the maximum strain region is also distributed in this vicinity.

【0017】また前記孔部6と前記切り欠き部9a,9
bによる応力集中効果については、拘束領域の境界が切
り欠き部9a,9bに近接しているため、応力が角部8
a,8bの二点の近傍に高度に集中し、歪の最大値が増
加する。そこで、もし孔部の辺6bと切り欠き部9a,
9bの辺9c,9dが一線上に並んでいるときは、自由
領域と固定領域もこの線を境界線として分かれて境界線
上の極めて狭い領域に高歪が集中するだけであるが、孔
部の辺6bが前記の辺9c,9dに対して固定領域側に
Δdだけずらしてあるため、境界は帯状となり歪の絶対
値は若干低下するものの、角部8a,8bの二点を中心
に高い歪が比較的広い領域に分布する。
Further, the hole 6 and the notches 9a, 9
Regarding the effect of stress concentration by b, since the boundary of the restraint region is close to the cutouts 9a, 9b, the stress is
Highly concentrated near the two points a and 8b, and the maximum strain increases. Therefore, if the side 6b of the hole and the notch 9a,
When the sides 9c and 9d of 9b are lined up on a line, the free region and the fixed region are also divided with this line as a boundary line, and high strain is concentrated in an extremely narrow region on the boundary line. Since the side 6b is displaced from the sides 9c and 9d by Δd toward the fixed area, the boundary becomes a band and the absolute value of the strain is slightly reduced, but a high strain is generated around the two points of the corners 8a and 8b. Are distributed over a relatively wide area.

【0018】したがって、歪の最大領域は上記二つの高
い歪領域の重ね合わせとなり、角部8aと8c、角部8
bと8dを結ぶ線上に沿って、図4(b)のように高い
歪領域(最大値の85%以上の歪領域)が分布すること
になる。
Therefore, the maximum strain region is a superposition of the above two high strain regions, and the corner portions 8a and 8c and the corner portion 8 are formed.
A high strain region (strain region of 85% or more of the maximum value) is distributed along the line connecting b and 8d as shown in FIG. 4B.

【0019】以上のように第1の実施例によれば、加速
度が印加されたとき、前記切り欠き部9a,9bの外側
の湾曲変形による歪の集中と、孔部6と前記切り欠き部
9a,9bによる応力集中と、さらに前記切り欠き部9
a,9bが拘束領域3a,3bに近接していることによ
り、前記応力集中をさらに増加させる効果と、また前記
二つの集中分布の重ね合わせとにより、歪みがより高度
に集中するため、高い共振周波数と高い感度を両立させ
た加速度センサを実現することができる。また、高い歪
領域を比較的広い領域に分布させることができるため、
衝撃破壊強度の高い加速度センサを実現することができ
る。
As described above, according to the first embodiment, when acceleration is applied, the strain concentration due to the outward bending deformation of the cutouts 9a, 9b and the hole 6 and the cutout 9a are caused. , 9b, and the notch 9
Since a and 9b are close to the constraint regions 3a and 3b, the effect of further increasing the stress concentration and the superposition of the two concentration distributions cause the strain to be more highly concentrated, resulting in high resonance. It is possible to realize an acceleration sensor that achieves both high frequency and high sensitivity. Also, since the high strain area can be distributed in a relatively wide area,
An acceleration sensor with high impact fracture strength can be realized.

【0020】(実施例2)以下、本発明の第2の実施例
について図2を用いて説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to FIG.

【0021】片持ち梁1はビス等(図示せず)で貫通孔
2a,2bにより運動体に固定されて拘束領域3a,3
bを形成している。そのため、図中に示したように前記
片持ち梁1に自由領域と固定領域とが形成される。そし
て、前記拘束領域3a,3bと自由領域との近傍に自由
領域の自由端1aに対向する向きに略コの字形状に形成
された孔部6と矩形状の切り欠き部9a,9bを設け、
前記孔部6と切り欠き部9a,9bに挟まれた領域で前
記自由領域が前記固定領域に接する境界近傍に歪抵抗素
子としての印刷抵抗5a,5bが形成されている。ここ
で、前記孔部6の固定領域側の辺6bは前記切り欠き部
9a,9bの辺9c,9dに対して固定領域側にずれ量
Δdだけずらしてある。また、前記拘束領域3a,3b
の境界は、前記切り欠き部9a,9bに近接して設けて
ある。
The cantilever 1 is fixed to the moving body by means of through holes 2a and 2b by means of screws or the like (not shown) so as to be restrained regions 3a and 3b.
b is formed. Therefore, a free region and a fixed region are formed in the cantilever 1 as shown in the figure. A hole 6 and a rectangular notch 9a, 9b formed in a substantially U shape are provided in the vicinity of the restraint regions 3a, 3b and the free region in a direction facing the free end 1a of the free region. ,
Printed resistors 5a and 5b as strain resistance elements are formed near the boundary between the free region and the fixed region in the region sandwiched by the hole 6 and the cutouts 9a and 9b. Here, the side 6b of the hole 6 on the side of the fixed area is displaced from the sides 9c, 9d of the cutouts 9a, 9b by the amount of deviation Δd on the side of the fixed area. Also, the restraint regions 3a, 3b
The boundary is provided near the cutouts 9a and 9b.

【0022】前記印刷抵抗5a,5bは、従来例と同様
にバランス用調整抵抗12a,12bと共にブリッジ回
路を形成し、印刷電極4a〜4dにより引き出し端子7
と電気的に接続されている。
The print resistors 5a and 5b form a bridge circuit together with the balance adjustment resistors 12a and 12b as in the conventional example, and the lead terminals 7 are formed by the print electrodes 4a to 4d.
Is electrically connected to.

【0023】上記のように構成された加速度センサにつ
いて、その動作を説明する。前記拘束領域3a,3bに
より、自動車等の運動は前記片持ち梁1に伝えられ、前
記自由領域が自身の慣性力により歪み、前記孔部6と前
記切り欠き部9a,9bのために、これらに挟まれた領
域に歪が集中する。さらに前記孔部6内に突出する舌状
体6aにより歪の集中する領域が狭められて歪の分布密
度が増加する。そして、前記印刷抵抗5a,5bの形成
されている領域に分布した歪値に応じて抵抗値が変化
し、前記ブリッジ回路により、その変化が前記引き出し
端子7から電気信号として取り出される。
The operation of the acceleration sensor configured as described above will be described. Due to the restraint regions 3a and 3b, the motion of the automobile or the like is transmitted to the cantilever beam 1, the free region is distorted by its own inertial force, and due to the hole 6 and the notches 9a and 9b, Distortion concentrates in the area sandwiched between. Further, the tongue-shaped body 6a protruding into the hole 6 narrows the region where strain is concentrated, and the strain distribution density is increased. Then, the resistance value changes according to the strain value distributed in the area where the printed resistors 5a and 5b are formed, and the change is taken out as an electric signal from the lead terminal 7 by the bridge circuit.

【0024】次に、歪集中に関する形状の一連の効果に
ついて簡単に説明する。図4(a),(c)に、加速度
センサに加速度が印加された時の各形状での片持ち梁の
変形形状と歪分布を示す。
Next, a series of effects of the shape relating to strain concentration will be briefly described. 4A and 4C show the deformed shape and strain distribution of the cantilever in each shape when acceleration is applied to the acceleration sensor.

【0025】図4(a)(従来例)と図4(c)(第2
実施例)を比較すると、(a)の変形に比べ、切り欠き
部を設けることにより、加速度印加時の変形は切り欠き
部9a,9bの外側の自由領域が湾曲するように変形し
ている。このとき、この変形をさらに詳細にみると前記
切り欠き部9a,9bの角部8c,8dの近傍の曲率が
最も大きく、したがって歪の最大領域もこの近傍に分布
する。
FIG. 4A (conventional example) and FIG. 4C (second)
Comparing the example, compared to the deformation of (a), by providing the notch, the deformation at the time of applying the acceleration is deformed so that the free region outside the notches 9a and 9b is curved. At this time, looking at this deformation in more detail, the curvature of the notches 9a and 9b in the vicinity of the corners 8c and 8d is the largest, and therefore the maximum strain region is also distributed in this vicinity.

【0026】また前記孔部6と前記切り欠き部9a,9
bによる応力集中効果については、拘束領域の境界が切
り欠き部9a,9bに近接しているため、応力が角部8
a,8bの二点の近傍に高度に集中し、歪の最大値が増
加する。そこで、もし孔部の辺6bと切り欠き部9a,
9bの辺9c,9dが一線上に並んでいるときは、自由
領域と固定領域もこの線を境界線として分かれて境界線
上の極めて狭い領域に高歪が集中するだけであるが、孔
部の辺6bが前記の辺9c,9dに対して固定領域側に
Δdだけずらしてあるため、境界は帯状となり歪の絶対
値は若干低下するものの、角部8a,8bの二点を中心
に高い歪が比較的広い領域に分布する。
Further, the hole 6 and the notches 9a, 9
Regarding the effect of stress concentration by b, since the boundary of the restraint region is close to the cutouts 9a, 9b, the stress is
Highly concentrated near the two points a and 8b, and the maximum strain increases. Therefore, if the side 6b of the hole and the notch 9a,
When the sides 9c and 9d of 9b are lined up on a line, the free region and the fixed region are also divided with this line as a boundary line, and high strain is concentrated in an extremely narrow region on the boundary line. Since the side 6b is displaced from the sides 9c and 9d by Δd toward the fixed area, the boundary becomes a band and the absolute value of the strain is slightly reduced, but a high strain is generated around the two points of the corners 8a and 8b. Are distributed over a relatively wide area.

【0027】したがって、歪の最大領域は上記二つの高
い歪領域の重ね合わせとなり、角部8aと8c、角部8
bと8dを結ぶ線上に沿って、図4(c)のように高い
歪領域(最大値の85%以上の歪領域)が分布すること
になる。
Therefore, the maximum strain region is a superposition of the above two high strain regions, and the corner portions 8a and 8c and the corner portion 8 are formed.
A high strain region (strain region of 85% or more of the maximum value) is distributed along the line connecting b and 8d as shown in FIG. 4C.

【0028】しかも、前記孔部6の中央の舌状体6aの
ために剛性が増し、中央部の変形は抑制される。そのた
め、歪むことができる領域が狭められることによる応力
集中が生じ、前記孔部6と前記切り欠き部9a,9bに
挟まれた領域での歪の絶対値が増加し、高い歪領域(最
大値の85%以上の歪領域)の面積が広がる。
Moreover, since the tongue-shaped member 6a at the center of the hole 6 increases the rigidity, the deformation of the center is suppressed. Therefore, stress concentration occurs due to narrowing of the strainable region, and the absolute value of strain in the region sandwiched between the hole 6 and the cutouts 9a and 9b increases, resulting in a high strain region (maximum value). Area of 85% or more of the strain area).

【0029】以上のように第2の実施例によれば、加速
度が印加されたとき、前記切り欠き部9a,9bの外側
の湾曲変形による歪の集中と、孔部6と前記切り欠き部
9a,9bによる応力集中と、さらに前記切り欠き部9
a,9bが拘束領域3a,3bに近接していることによ
り、前記応力集中をさらに増加させる効果と、また前記
二つの集中分布の重ね合わせと、さらに前記孔部6の中
央舌状体6aによる前記重ね合わせ歪分布領域の狭小化
により、歪みがより高度に集中するため、高い共振周波
数と高い感度を両立させた加速度センサを実現すること
ができる。また、高い歪領域を広い領域に分布させるこ
とができるため、衝撃破壊強度の高い加速度センサを実
現することができる。
As described above, according to the second embodiment, when acceleration is applied, the strain concentration due to the outward bending deformation of the cutouts 9a, 9b and the hole 6 and the cutout 9a are caused. , 9b, and the notch 9
Since a and 9b are close to the restraint regions 3a and 3b, the effect of further increasing the stress concentration and the superposition of the two concentration distributions and the central tongue 6a of the hole 6 are provided. Since the strain is concentrated more highly by narrowing the overlapping strain distribution region, it is possible to realize an acceleration sensor having both high resonance frequency and high sensitivity. Further, since the high strain area can be distributed over a wide area, an acceleration sensor having high impact fracture strength can be realized.

【0030】(実施例3)次に、第3の実施例について
図3を用いて説明する。
(Third Embodiment) Next, a third embodiment will be described with reference to FIG.

【0031】片持ち梁1はビス等(図示せず)で貫通孔
2a,2bにより運動体に固定されて拘束領域3a,3
bを形成している。そのため、図中に示したように前記
片持ち梁1に自由領域と固定領域とが形成される。そし
て、前記拘束領域3a,3bと自由領域との近傍に自由
領域の自由端に対向する向きに略コの字形状に形成され
た孔部6と切り欠き部11a,11bを設け、前記孔部
6と切り欠き部11a,11bに挟まれた領域で前記自
由領域が前記固定領域に接する境界近傍に歪抵抗素子と
しての印刷抵抗5a,5bが形成されている。ここで、
前記孔部6の固定領域側の辺6bは前記切り欠き部11
a,11bに対して第2の実施例と同様に固定領域側に
Δdだけずらしてある。また、前記拘束領域3a,3b
の境界は、前記切り欠き部11a,11bに近接して設
けてある。前記印刷抵抗5a,5bは、第2の実施例と
同様にバランス調整用抵抗12a,12bと共にブリッ
ジ回路を形成し、印刷電極4a〜4dにより引き出し端
子7と電気的に接続されている。
The cantilever 1 is fixed to the moving body by means of through holes 2a and 2b with screws or the like (not shown), and the restraining regions 3a and 3 are provided.
b is formed. Therefore, a free region and a fixed region are formed in the cantilever 1 as shown in the figure. A hole 6 and a notch 11a, 11b, which are formed in a substantially U-shape, are provided near the restraint regions 3a, 3b and the free region in a direction facing the free end of the free region. Printed resistors 5a and 5b as strain resistance elements are formed near the boundary where the free region contacts the fixed region in a region sandwiched by 6 and the cutouts 11a and 11b. here,
The side 6b of the hole 6 on the side of the fixed region is provided with the cutout 11
Similar to the second embodiment, a and 11b are shifted toward the fixed area by Δd. Also, the restraint regions 3a, 3b
The boundary is provided near the cutouts 11a and 11b. The printed resistors 5a and 5b form a bridge circuit together with the balance adjusting resistors 12a and 12b as in the second embodiment, and are electrically connected to the lead terminal 7 by the printed electrodes 4a to 4d.

【0032】以上は第2の実施例の構成と同様である。
第2の実施例の構成と異なるのは以下の二点である。
The above is the same as the configuration of the second embodiment.
The following two points are different from the configuration of the second embodiment.

【0033】一つは、切り欠き部11a,11bの形状
である。前記切り欠き部11a,11bは、固定領域側
にある角部(図2で角8a,8bに相当する)を切り落
とさないように残した矩形の形状になっている。さらに
切り落とさないことにより生じる辺の二つの頂点のう
ち、10b,10dは各々前記拘束領域3a,3bの中
心線の近傍にある。また頂点10a,10cについては
前記切り欠き部9a,9bの角部8a,8bを切り落と
した時の幅をWとすると、切り落とさないときの残りの
幅がWの1/2以上となる位置にある。
One is the shape of the cutouts 11a and 11b. The notches 11a and 11b have a rectangular shape in which the corners on the fixed region side (corresponding to the corners 8a and 8b in FIG. 2) are left so as not to be cut off. Further, of the two vertices of the side generated by not cutting off, 10b and 10d are near the center lines of the constraint regions 3a and 3b, respectively. Further, regarding the vertices 10a and 10c, when the width when the corners 8a and 8b of the cutouts 9a and 9b are cut off is W, the remaining width when not cut off is at a position of 1/2 or more of W. .

【0034】また、第2の実施例と異なるもう一つの点
は自由領域の形状である。前記自由領域の形状は、自由
端にいくに従って先細りになる形状である。
Another point different from the second embodiment is the shape of the free area. The shape of the free region is a shape that tapers toward the free end.

【0035】上記第3の実施例の構成において、その動
作は基本的には第2の実施例と同様である。すなわち、
加速度が印加されたとき、第2の実施例において説明し
たように、前記切り欠き部11a,11bの外側の自由
領域の湾曲変形による歪の集中と、孔部6と前記切り欠
き部11a,11bの応力集中による歪分布の重ね合わ
せと、さらにこれらに対して、前記孔部6の中央舌状体
6aによる前記重ね合わせ歪分布領域の狭小化により、
歪みがより高度に集中し、高い共振周波数においても、
高い感度が実現される。
The operation of the configuration of the third embodiment is basically the same as that of the second embodiment. That is,
When acceleration is applied, as described in the second embodiment, the strain concentration due to the bending deformation of the free region outside the cutouts 11a and 11b, the hole 6, and the cutouts 11a and 11b are concentrated. By superimposing the strain distributions due to the stress concentration and further narrowing the superposition strain distribution region by the central tongue 6a of the hole 6,
Distortion is more highly concentrated, and even at high resonance frequencies,
High sensitivity is realized.

【0036】次に第3の実施例の構成における特有の動
作について、図5(a),(b)を用いて説明する。
Next, a peculiar operation in the configuration of the third embodiment will be described with reference to FIGS. 5 (a) and 5 (b).

【0037】図5(a),(b)は、加速度印加時の切
り欠き部近傍の歪分布である。図5(a)において、さ
らに詳細に歪分布をみると、角部8aと貫通孔2aの中
心を結ぶ線より外側は加速度の印加時はほとんど歪ま
ず、実質上拘束領域とみなすことができる。そのため、
歪の最大領域は、通常拘束領域の近傍に生じるために図
に示すように角部8aに掛かるように分布している。と
ころが、落下衝撃時にはこの角部8aには表面・裏面の
引っ張り歪・圧縮歪に加えて側面に生ずるせん断歪が最
大となるためにクラックの発生起点となりやすく、最大
歪領域が角部8aに加わるような図5(a)の形状で
は、クラックが発生しやすくなる。これに対して図5
(b)においては前記切り欠き部11aの固定領域側の
角を切り落とさない矩形の形状として、切り落とさない
時にできる辺の二つの頂点のうち、一つを切り落とさな
い時の残りの幅が1/2以上になる角部10aとし、も
う一つを拘束領域の中心線近傍の点10bとした。角部
10aの位置の影響については、各形状因子が相互に干
渉し合うため複雑であるが、試作検討と構造解析を併用
して検討した結果では、前記切り欠き部11aの幅Wに
対して、切り落とさない時の残りの幅が1/2Wのとき
に高歪領域の面積が最大となり、それ以上にしても領域
面積はほとんど変わらない。このとき前記片持ち梁1は
角部10aと貫通孔2aの中心を結ぶ線上で、かつ拘束
領域の近傍が最も曲率が高くなるように変形している。
しかし、自由領域の端に位置する角部10bは拘束領域
の中心線の近傍にあり、拘束領域に最も近いため変位が
ほとんど拘束されており、このため、角部10aと貫通
孔2aの中心を結ぶ線と、角部10a,10bを結ぶ線
と、拘束領域の境界線に囲まれた領域は自由領域にあり
ながら、実質上拘束領域となる。そのため、最大歪領域
は角部10bより内側へその領域を狭められる。
FIGS. 5A and 5B are strain distributions in the vicinity of the cutout portion when acceleration is applied. Looking at the strain distribution in more detail in FIG. 5A, the outside of the line connecting the center of the corner 8a and the center of the through hole 2a hardly distorts when acceleration is applied, and can be regarded as a substantially constrained region. for that reason,
Since the maximum strain region is usually generated in the vicinity of the restraint region, it is distributed so as to be applied to the corner portion 8a as shown in the figure. However, at the time of a drop impact, in addition to the tensile strain / compressive strain on the front surface / rear surface, the shear strain generated on the side surface becomes the maximum at this corner portion 8a, which easily becomes the starting point of cracks, and the maximum strain region is added to the corner portion 8a. With such a shape of FIG. 5A, cracks are likely to occur. On the other hand, FIG.
In (b), the notch 11a has a rectangular shape in which the corner on the fixed region side is not cut off, and the remaining width when one of the two vertices of the side that is not cut off is cut off is 1/2. The corner portion 10a described above is used, and the other is a point 10b near the center line of the restraint region. The influence of the position of the corner portion 10a is complicated because the respective shape factors interfere with each other, but the result of examination using both the trial examination and the structural analysis shows that the width W of the cutout portion 11a is different. When the remaining width when not cut off is 1/2 W, the area of the high strain region becomes maximum, and even if it is more than that, the region area remains almost unchanged. At this time, the cantilever 1 is deformed on the line connecting the center of the corner 10a and the center of the through hole 2a and in the vicinity of the constrained region to have the highest curvature.
However, since the corner 10b located at the end of the free region is near the center line of the restraint region and is the closest to the restraint region, the displacement is restrained. Therefore, the corner 10a and the center of the through hole 2a are The region surrounded by the connecting line, the line connecting the corners 10a and 10b, and the boundary line of the constrained region is a free region but is substantially a constrained region. Therefore, the maximum strain region can be narrowed inward of the corner 10b.

【0038】そのために、一つは領域狭小化による歪集
中のため、第2の実施例における歪集中効果と相まっ
て、より高い感度を実現することができる。
Therefore, one is the strain concentration due to the narrowing of the region, and the higher sensitivity can be realized in combination with the strain concentration effect in the second embodiment.

【0039】もう一つは、第2の実施例において説明し
たようにクラックの発生起点となりやすい角部10bに
最大歪領域が掛からないため、クラックの発生頻度の低
い形状となっている。
The other is that, as described in the second embodiment, the maximum strain region is not applied to the corner portion 10b, which is likely to be the starting point of crack generation, so that the shape of the crack is low.

【0040】また、自由領域は自由端1aにいくに従っ
て先細りになっているため、先端にいくほど重量配分は
軽くなり、自由領域の重心と固定領域との距離が短くな
るために共振周波数は高くなっている。
Since the free region is tapered toward the free end 1a, the weight distribution becomes lighter toward the free end, and the distance between the center of gravity of the free region and the fixed region becomes shorter, so that the resonance frequency is high. Has become.

【0041】以上のように第3の実施例によれば、切り
欠き部11a,11bを、固定領域側の角を切り落さず
残した矩形形状とし、10aと10bを頂点とする角を
有する形状としたことにより、第2の実施例よりも高い
共振周波数において高い感度を両立させることに加え
て、落下等の衝撃破壊強度を向上させることができる。
As described above, according to the third embodiment, the notches 11a and 11b have a rectangular shape in which the corners on the fixed region side are left without being cut off, and have corners 10a and 10b as vertices. By adopting the shape, in addition to achieving high sensitivity at a higher resonance frequency than the second embodiment, it is possible to improve impact fracture strength such as dropping.

【0042】なお、第1ないし第3の実施例において、
検出部をメタルコア基板とその上に直接形成した印刷抵
抗により構成した場合、平面的加工により容易に実現で
きるため、低コストのセンサを実現することができる。
In the first to third embodiments,
When the detection unit is composed of the metal core substrate and the printing resistor directly formed on the metal core substrate, the detection unit can be easily realized by planar processing, and thus a low-cost sensor can be realized.

【0043】なお、第1ないし第3の実施例において、
バランス用印刷抵抗12a,12bを印刷抵抗5a,5
bの形成されている面の裏面に形成した印刷抵抗で構成
し、また表面と同様に印刷電極を形成し、かつ、引き出
し端子7をクリップ端子にすることで、電気的に前記四
つの抵抗を接続して、ブリッジ回路を構成したものとし
ても良い。
In the first to third embodiments,
The balance print resistors 12a and 12b are replaced with the print resistors 5a and 5
It is composed of a print resistor formed on the back surface of the surface on which b is formed, a print electrode is formed similarly to the front surface, and the lead terminal 7 is a clip terminal, so that the four resistances are electrically connected. A bridge circuit may be configured by connecting them.

【0044】[0044]

【発明の効果】以上のように本発明は、少なくとも1つ
の孔部と少なくとも2つの切り欠き部を有した片持ち梁
を、少なくとも2カ所の拘束領域によって、自動車等の
運動体に相対的に固定し、片持ち梁上の前記孔部と前記
切り欠き部に挟まれた部分に歪抵抗素子を設けた構成と
したことにより、感度と共振周波数が高く両立させるこ
とができ、また、破壊強度の高い優れた加速度センサを
実現するものである。
As described above, according to the present invention, a cantilever having at least one hole and at least two cutouts is provided relative to a moving body such as an automobile by at least two restraint regions. By fixing and providing a strain resistance element in the part sandwiched between the hole and the notch on the cantilever, it is possible to achieve both high sensitivity and high resonance frequency, and breaking strength. It is intended to realize an excellent acceleration sensor with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における加速度センサの
正面図
FIG. 1 is a front view of an acceleration sensor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における加速度センサの
正面図
FIG. 2 is a front view of an acceleration sensor according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における加速度センサの
正面図
FIG. 3 is a front view of an acceleration sensor according to a third embodiment of the present invention.

【図4】本発明の加速度センサと従来例の加速度センサ
の動作説明図
FIG. 4 is an operation explanatory view of the acceleration sensor of the present invention and the conventional acceleration sensor.

【図5】本発明の第3の実施例における加速度センサの
動作説明図
FIG. 5 is an operation explanatory diagram of the acceleration sensor according to the third embodiment of the present invention.

【図6】従来の加速度センサの正面図FIG. 6 is a front view of a conventional acceleration sensor.

【図7】従来の加速度センサにおけるブリッジ回路の結
線図
FIG. 7 is a connection diagram of a bridge circuit in a conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

1 片持ち梁 2a,2b 貫通孔 3a,3b 拘束領域 4a,4b,4c,4d 印刷電極 5a,5b 印刷抵抗 6 孔部 7 引き出し端子 8a,8b,8c,8d 角部 9a,9b,11a,11b 切り欠き部 10a,10b,10c,10d 頂点 1 cantilever 2a, 2b through hole 3a, 3b constrained region 4a, 4b, 4c, 4d printed electrode 5a, 5b printing resistor 6 hole portion 7 lead terminal 8a, 8b, 8c, 8d corner portion 9a, 9b, 11a, 11b Notch parts 10a, 10b, 10c, 10d Vertices

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 運動体に固定されている少なくとも2カ
所の拘束領域によって、変位を略拘束された固定領域
と、運動体と相対的に変位可能な自由領域と、前記拘束
領域と自由領域との近傍に少なくとも1つの孔部及び少
なくとも2つの矩形状の切り欠き部を有した片持ち梁
と、前記片持ち梁の前記孔部と前記切り欠き部に挟まれ
た部分に設けられた歪抵抗素子と、前記歪抵抗素子に電
気的に接続されるように固定領域に取り付けられた引き
出し端子とを備えた加速度センサ。
1. A fixed region whose displacement is substantially restrained by at least two restraint regions fixed to a moving body, a free region displaceable relative to the moving body, the restraint region and the free region. And a cantilever having at least one hole and at least two rectangular notches near the hole, and a strain resistance provided in a portion sandwiched between the hole and the notch of the cantilever. An acceleration sensor comprising an element and a lead terminal attached to a fixed region so as to be electrically connected to the strain resistance element.
【請求項2】 孔部を、自由領域の自由端に対向する向
きに略コの字形状とした請求項1記載の加速度センサ。
2. The acceleration sensor according to claim 1, wherein the hole has a substantially U shape in a direction facing the free end of the free region.
【請求項3】 拘束領域の境界と切り欠き部が近接して
いることを特徴とする請求項2記載の加速度センサ。
3. The acceleration sensor according to claim 2, wherein the boundary of the constrained region and the notch are close to each other.
【請求項4】 孔部が、自由領域の自由端に対向する向
きに略コの字形状としたとき、前記孔部の固定領域側の
辺の位置が切り欠き部に対して固定領域側にずらしてあ
ることを特徴とする請求項3記載の加速度センサ。
4. When the hole has a substantially U-shape in a direction facing the free end of the free area, the position of the side of the hole on the fixed area side is closer to the fixed area than the cutout. The acceleration sensor according to claim 3, wherein the acceleration sensor is shifted.
【請求項5】 拘束領域の自由領域との近傍に、前記拘
束領域に略平行な2つの切り欠き部を有し、その形状
を、少なくとも固定領域側の角を残した矩形状としたこ
とを特徴とする請求項1乃至4のいずれかに記載の加速
度センサ。
5. The restraint region has two cutouts in the vicinity of the free region in parallel with the restraint region, and has a rectangular shape with at least the corners on the fixed region side. The acceleration sensor according to any one of claims 1 to 4, which is characterized in that.
【請求項6】 自由領域を、自由端に向うにしたがい先
細りとなる形状とした請求項5記載の加速度センサ。
6. The acceleration sensor according to claim 5, wherein the free region has a tapered shape toward the free end.
【請求項7】 切り欠き部の形状を固定領域側の角を残
した矩形の形状において、角を残してできる辺の二つの
頂点のうち、一つを拘束領域の中心近傍の点とし、もう
一つを角を残した時の残りの幅が1/2以上になる点と
した請求項6記載の加速度センサ。
7. The notch has a rectangular shape in which a corner is left on the fixed area side, and one of two vertices of a side left with a corner is a point near the center of the constraint area, and The acceleration sensor according to claim 6, wherein one of the points has a remaining width of 1/2 or more when a corner is left.
【請求項8】 検出部が、メタルコア基板と、その上に
直接形成された歪抵抗素子により構成されている請求項
1乃至7のいずれかに記載の加速度センサ。
8. The acceleration sensor according to claim 1, wherein the detection unit includes a metal core substrate and a strain resistance element directly formed on the metal core substrate.
JP13492995A 1995-06-01 1995-06-01 Acceleration sensor Pending JPH08327655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13492995A JPH08327655A (en) 1995-06-01 1995-06-01 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13492995A JPH08327655A (en) 1995-06-01 1995-06-01 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH08327655A true JPH08327655A (en) 1996-12-13

Family

ID=15139861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13492995A Pending JPH08327655A (en) 1995-06-01 1995-06-01 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH08327655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191079A (en) * 2010-03-12 2011-09-29 Hitachi Automotive Systems Ltd Angular rate sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191079A (en) * 2010-03-12 2011-09-29 Hitachi Automotive Systems Ltd Angular rate sensor

Similar Documents

Publication Publication Date Title
US5166571A (en) Vibration gyro having an H-shaped vibrator
JPH07325104A (en) Acceleration sensor
JP2780594B2 (en) Acceleration sensor
JP2002131152A (en) Fixing structure of sensing element
US6662657B2 (en) Force-sensing transducers, accelerometers, rate sensors, methods of forming force-sensing transducers, and methods of forming vibrating-beam force transducers
JPH0989692A (en) Steering torque sensor
JPH08327655A (en) Acceleration sensor
EP1655611A2 (en) Piezoresistive acceleration sensor with reduced temperature offset
JPH07209327A (en) Acceleration sensor
EP0802417A2 (en) Semiconductor acceleration sensor
JPH06300776A (en) Revolution accelerometer
JP3275597B2 (en) Vibrating gyro
JP3265792B2 (en) Angular velocity sensor
JP2007256046A (en) Acceleration sensor
JP2722939B2 (en) Acceleration sensor
JPH08248060A (en) Semiconductor acceleration detector
JPH07101176B2 (en) Vibration type angular velocity detector
JP2000055668A (en) Angular velocity detecting sensor
JP3114480B2 (en) Acceleration sensor
JPS62108161A (en) Acceleration sensor
JP2539560B2 (en) Semiconductor acceleration sensor and airbag system
JPH08160070A (en) Acceleration sensor
JPH07128358A (en) Acceleration sensor
WO2022168469A1 (en) Load sensor
JP3183158B2 (en) Acceleration sensor and method of manufacturing the same