JPH08327583A - Solid-film type ion sensor and method for stabilizing the same - Google Patents

Solid-film type ion sensor and method for stabilizing the same

Info

Publication number
JPH08327583A
JPH08327583A JP7133277A JP13327795A JPH08327583A JP H08327583 A JPH08327583 A JP H08327583A JP 7133277 A JP7133277 A JP 7133277A JP 13327795 A JP13327795 A JP 13327795A JP H08327583 A JPH08327583 A JP H08327583A
Authority
JP
Japan
Prior art keywords
solid
ion
sensitive
film
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7133277A
Other languages
Japanese (ja)
Other versions
JP3388942B2 (en
Inventor
Hitoshi Yagi
均 八木
Yoshio Ishimori
義雄 石森
Masatake Tomimura
真武 冨村
Hiromitsu Tokunaga
博光 徳永
Wakako Kaminaga
和歌子 神長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13327795A priority Critical patent/JP3388942B2/en
Publication of JPH08327583A publication Critical patent/JPH08327583A/en
Application granted granted Critical
Publication of JP3388942B2 publication Critical patent/JP3388942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To reduce the influence of interfering ions for the stabilization of sensor outputs and as to enhance measuring accuracy by providing a water- insoluble material that has higher reactivity to the interfering ions than to ions to be detected, on the surface of or inside a solid sensitive film containing an ion-sensitive material. CONSTITUTION: An Ag lead wire 2 is pressed into an Ag/AgCl-sensitive film 1, and the connection of them is molded with a polyvinyl chloride 3. Next, potassium bromide and iodide ions are dissolved in pure water to prepare an aqueous solution containing bromide ions and iodide ions by 0.1mol/L each, and the sensitive film 1 is immersed in the aqueous solution for about 30 minutes to accumulate, on the surface of the sensitive film 1, a water-insoluble material made up of a bromide and an iodide which have higher reactivity to interfering ions than to ions to be detected. An ion sensor using the sensitive film 1 does not show draft for a solution to be detected that contains the interfering ions, and has little fluctuation in output voltage, so that its measuring accuracy can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶液中の各種イオンを検
出するのに好適な固体膜型イオンセンサ、およびこの固
体膜型イオンセンサを妨害イオンを含有する被検液の測
定に用いる場合に安定な出力が得られるようにする安定
化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid film type ion sensor suitable for detecting various ions in a solution, and a method for using the solid film type ion sensor for measuring a test liquid containing interfering ions. The present invention relates to a stabilizing method for obtaining a stable output.

【0002】[0002]

【従来の技術】従来より溶液中の各種イオンを検出する
イオンセンサとして、イオン感応物質をPVC(ポリ塩
化ビニル)などの高分子支持材料中に担持させた液膜型
イオンセンサや、固体イオン感応物質を用いた固体膜型
イオンセンサなどが知られている。例えば、塩素イオン
センサとしては、イオン交換体である第4級アンモニウ
ム塩などの感応物質を可塑剤とともにPVCに担持させ
た液膜型センサや、AgCl(塩化銀)を感応物質とし
た固体膜型センサが代表的である。これらのセンサの検
出原理は、感応膜と被検液との界面における検出目的イ
オンの解離平衡反応による界面電位差を測定することに
ある。ここで、従来の固体膜型塩素イオンセンサの一例
を図12に示す。図12において、Ag/AgCl感応
膜1に設けられた所定の穴にAgリード線2が圧入さ
れ、両者の接続部がポリ塩化ビニル3でモールドされて
いる。
2. Description of the Related Art Conventionally, as an ion sensor for detecting various ions in a solution, a liquid film type ion sensor in which an ion sensitive substance is supported on a polymer support material such as PVC (polyvinyl chloride), or a solid ion sensitive sensor A solid film type ion sensor using a substance is known. For example, as a chlorine ion sensor, a liquid film type sensor in which a sensitive substance such as a quaternary ammonium salt which is an ion exchanger is supported on PVC together with a plasticizer, or a solid film type sensor in which AgCl (silver chloride) is a sensitive substance is used. A sensor is typical. The detection principle of these sensors is to measure the interfacial potential difference due to the dissociation equilibrium reaction of the detection target ions at the interface between the sensitive film and the test liquid. Here, an example of a conventional solid film type chlorine ion sensor is shown in FIG. In FIG. 12, an Ag lead wire 2 is press-fitted into a predetermined hole provided in the Ag / AgCl sensitive film 1, and a connecting portion between the two is molded with polyvinyl chloride 3.

【0003】これらのイオンセンサを用いた測定にあた
り、被検液中に検出目的イオン以外の妨害イオンが存在
する場合、感応膜と被検液との界面において妨害イオン
の解離平衡反応も同時に生じるため、その影響を完全に
避けることはできない。ただし、上述した液膜型塩素イ
オンセンサの場合には、分析化学,41,5(199
2)や分析化学,42,77(1993)に報告されて
いるように、感応物質や可塑剤を選択することにより、
妨害イオンに対する検出目的イオンの選択性をある程度
改善できる。
In the measurement using these ion sensors, when there are interfering ions other than the detection target ions in the test liquid, a dissociation equilibrium reaction of the interfering ions simultaneously occurs at the interface between the sensitive film and the test liquid. , Its effects cannot be avoided altogether. However, in the case of the liquid film type chlorine ion sensor described above, Analytical Chemistry, 41, 5 (199
2) or Analytical Chemistry, 42, 77 (1993), by selecting a sensitizer or a plasticizer,
The selectivity of target ions for detection with respect to interfering ions can be improved to some extent.

【0004】しかし、固体膜型センサの感応物質である
AgClは、Cl- よりも同族のハロゲンイオンである
Br- やI- との反応性が高いため、被検液中にこれら
のイオンが含まれる場合には、出力電位が不安定になっ
て測定精度が低下する。例えば、固体膜型センサを臨床
的に血液中のCl- 濃度の測定に応用する場合、患者が
Br- を含む鎮静剤を摂取すると一時的に血液中のBr
- 濃度が上昇してCl- 濃度の測定に支障が生じるた
め、特にBr- に対する選択性の向上が要望されてい
る。
However, since AgCl, which is a sensitizer of a solid film type sensor, has a higher reactivity with Br and I which are halogen ions of the same family than Cl , these ions are contained in the test solution. In that case, the output potential becomes unstable and the measurement accuracy decreases. For example, when the solid-film sensor is clinically applied to the measurement of Cl concentration in blood, when a patient takes a sedative containing Br , the Br in blood is temporarily increased.
- to produce hinder the measurement of the concentration, in particular Br - - concentration rises Cl has been desired to improve the selectivity for.

【0005】また、固体膜型イオンセンサの1種とし
て、固体感応膜と被検液との界面電位差を電気信号に変
換する手段としてFETを有する固体膜型FETイオン
センサが知られている。この固体膜型FETイオンセン
サでは、微小な感応ゲート部に感応膜を形成する方法が
問題となる。従来は、素子の製造プロセスとの整合性が
よい、蒸着法、スパッタリング法、電解重合法などが用
いられている。
As one type of solid film type ion sensor, there is known a solid film type FET ion sensor having an FET as a means for converting an interface potential difference between a solid sensitive film and a test liquid into an electric signal. In this solid film type FET ion sensor, the method of forming a sensitive film on a minute sensitive gate portion poses a problem. Conventionally, a vapor deposition method, a sputtering method, an electrolytic polymerization method or the like, which has good compatibility with the device manufacturing process, has been used.

【0006】例えば、本発明者らは、特開昭62−75
250号において、FET塩素イオンセンサを実現する
ために、Ag膜を蒸着した後、Ag膜の表面を電解塩化
する方法を開示した。すなわち、図13に示すように、
感応ゲート部に蒸着Ag膜11および電解塩化AgCl
膜12が形成される。
[0006] For example, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 62-75.
No. 250 disclosed a method of vapor-depositing an Ag film and then electrolytically chlorinating the surface of the Ag film in order to realize a FET chlorine ion sensor. That is, as shown in FIG.
Vapor deposition Ag film 11 and electrolytic chloride AgCl on the sensitive gate section
The film 12 is formed.

【0007】また、Sensors & Actuat
ors,9(1986)179−197には、FETイ
オンセンサ、FET参照電極を実現することを1つの目
的として、Si基板上にAg膜とAgCl膜とを順次蒸
着して積層構造の微小塩素電極を形成する方法が提案さ
れている。すなわち、図14に示すように、感応ゲート
部に蒸着Ag膜11および蒸着AgCl膜13が形成さ
れる。
Also, Sensors & Actuat
Ors, 9 (1986) 179-197, one purpose is to realize a FET ion sensor and a FET reference electrode, and an Ag film and an AgCl film are sequentially deposited on a Si substrate to form a micro chlorine electrode having a laminated structure. A method of forming the is proposed. That is, as shown in FIG. 14, the vapor deposition Ag film 11 and the vapor deposition AgCl film 13 are formed in the sensitive gate portion.

【0008】これらの方法により製造されるFETイオ
ンセンサは、上述したように(a)素子の製造プロセス
(ソース・ドレイン電極の形成など)で使用する蒸着装
置を用いて感応膜を形成するため製造プロセスとの整合
性がよいことに加えて、(b)感応膜の膜厚の制御性が
よい、(c)感応膜の薄膜化により応答速度の向上が期
待できる、という利点がある。
The FET ion sensor manufactured by these methods is manufactured in order to form the sensitive film by using the vapor deposition device used in the manufacturing process of the element (a) such as formation of the source / drain electrodes as described above. In addition to good compatibility with the process, there are advantages that (b) the controllability of the film thickness of the sensitive film is good, and (c) the response film can be expected to have an improved response speed by thinning the sensitive film.

【0009】しかし、これら従来のFETイオンセンサ
のように感応膜の膜厚が薄いと、イオン感応物質が被検
液または保存液中に溶け出してセンサ感度が徐々に低下
してしまい、1か月程度でセンサが劣化するという問題
が生じる。そこで、センサの寿命を延ばすために蒸着膜
の厚みを増加させることが考えられるが、例えば10μ
m程度の膜厚の固体感応膜を蒸着法で形成するには10
時間程度の長時間を要する。しかも、膜厚を厚くする
と、膜とセンサ基体との密着性が低下する傾向にあり、
膜が簡単に剥離してしまう問題も生じる。
However, when the film thickness of the sensitive film is thin as in these conventional FET ion sensors, the ion sensitive material is dissolved in the test solution or the storage solution, and the sensor sensitivity is gradually lowered. The problem occurs that the sensor deteriorates in about a month. Therefore, it is conceivable to increase the thickness of the vapor deposition film in order to extend the life of the sensor.
10 to form a solid sensitive film having a thickness of about m by a vapor deposition method
It takes about a long time. Moreover, if the film thickness is increased, the adhesion between the film and the sensor base tends to decrease,
There is also a problem that the film is easily peeled off.

【0010】[0010]

【発明が解決しようとする課題】以上述べたように、従
来の固体膜型イオンセンサにおいては、被検液中に検出
目的イオン以外の妨害イオンが存在すると出力が不安定
になり、測定精度が低下するという問題があった。ま
た、固体膜型イオンセンサの1種である固体膜型FET
イオンセンサにおいては、感応膜の形成方法として蒸着
法や電解法が試みられているが、十分な膜厚の感応膜が
得られないため、感応成分が溶液中に溶出しやすく感度
が低下しやすいという問題があった。
As described above, in the conventional solid film type ion sensor, if interfering ions other than the detection target ions are present in the test liquid, the output becomes unstable and the measurement accuracy becomes low. There was a problem of lowering. In addition, a solid film type FET which is a kind of solid film type ion sensor
In ion sensors, vapor deposition and electrolysis have been tried as a method of forming a sensitive film, but since a sensitive film having a sufficient film thickness cannot be obtained, the sensitive component is likely to be eluted into the solution and the sensitivity is likely to be lowered. There was a problem.

【0011】本発明は上記事情に鑑みてなされたもので
あり、被検液中に妨害イオンが存在する場合でも出力安
定性に優れ、かつ長寿命な固体膜型イオンセンサを提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid film type ion sensor having excellent output stability and long life even when interfering ions are present in a test solution. And

【0012】[0012]

【課題を解決するための手段】本発明の固体膜型イオン
センサは、イオン感応物質を含有する固体感応膜を具備
した固体膜型イオンセンサにおいて、前記固体感応膜の
表面または内部に、検出目的イオンよりも妨害イオンと
の反応性が高い難水溶性物質を存在させたことを特徴と
するものである。
The solid film type ion sensor of the present invention is a solid film type ion sensor provided with a solid sensitive film containing an ion sensitive substance, and the solid purpose type ion sensor has a detection object on the surface or inside of the solid sensitive film. It is characterized in that a poorly water-soluble substance having a higher reactivity with an interfering ion than an ion is present.

【0013】また、本発明の固体膜型イオンセンサは、
イオン感応物質を含有する固体感応膜と、前記固体感応
膜と被検液との界面電位差を電気信号に変換するFET
とを具備した固体膜型イオンセンサにおいて、前記固体
感応膜を前記FETのゲート部に非導電性接着剤を介し
て固定したことを特徴とするものである。このようない
わゆる固体膜型FETイオンセンサにおいても、前記固
体感応膜の表面または内部に、検出目的イオンよりも妨
害イオンとの反応性が高い難水溶性物質を存在させるこ
とが有効である。
Further, the solid film type ion sensor of the present invention is
A solid sensitive film containing an ion sensitive substance, and an FET for converting an interface potential difference between the solid sensitive film and a test liquid into an electric signal
In the solid film type ion sensor including the above, the solid sensitive film is fixed to the gate portion of the FET via a non-conductive adhesive. Also in such a so-called solid film type FET ion sensor, it is effective to allow a hardly water-soluble substance having higher reactivity with interfering ions than the detection target ions to exist on the surface or inside of the solid sensitive film.

【0014】さらに、本発明の固体膜型イオンセンサの
安定化方法は、上述したような固体膜型イオンセンサを
構成する固体感応膜を妨害イオンを含有する水溶液に浸
漬して、その表面に検出目的イオンよりも妨害イオンと
の反応性が高い難水溶性物質を形成するか、または固体
感応膜中に検出目的イオンよりも妨害イオンとの反応性
が高い難水溶性物質を含有させることを特徴とするもの
である。
Further, according to the method for stabilizing a solid film type ion sensor of the present invention, the solid sensitive film constituting the solid film type ion sensor as described above is immersed in an aqueous solution containing interfering ions and detected on the surface thereof. Characterized by forming a poorly water-soluble substance that has a higher reactivity with interfering ions than the target ion, or by including a poorly water-soluble substance that has a higher reactivity with the interfering ions than the detection target ion in the solid sensitive film. It is what

【0015】なお、感応膜の表面に難水溶性物質を蒸着
またはスパッタリングする方法を用いることもできる。
本発明において、難水溶性物質は検出目的イオンよりも
妨害イオンとの反応性が高いという条件を満たしていれ
ばその材料は特に限定されず、妨害イオンの難水溶性塩
でもよいし、妨害物質以外の難水溶性塩でもよい。ま
た、本発明の固体膜型FETイオンセンサにおいて、固
体感応膜をFETのゲート部に固定するために用いられ
る非導電性接着剤の材料も特に限定されない。
It is also possible to use a method of vapor-depositing or sputtering a poorly water-soluble substance on the surface of the sensitive film.
In the present invention, the poorly water-soluble substance is not particularly limited as long as it satisfies the condition that it has a higher reactivity with the interfering ion than the detection target ion, and may be a poorly water-soluble salt of the interfering ion. Other poorly water-soluble salts may be used. Further, in the solid film type FET ion sensor of the present invention, the material of the non-conductive adhesive used for fixing the solid sensitive film to the gate portion of the FET is not particularly limited.

【0016】[0016]

【作用】本発明の固体膜型イオンセンサに用いれば、固
体感応膜の表面または内部における妨害イオンの反応サ
イトを予め妨害イオンとの反応性が高い難水溶性物質で
占有させることにより、妨害イオンの影響を低減してセ
ンサ出力を安定化でき、測定精度を向上することができ
る。
When used in the solid film type ion sensor of the present invention, by interfering the reaction site of the interfering ion on the surface or inside of the solid sensitive film with a poorly water-soluble substance having a high reactivity with the interfering ion, the interfering ion can be obtained. It is possible to stabilize the sensor output by reducing the influence of, and improve the measurement accuracy.

【0017】また、本発明の固体膜型FETイオンセン
サによれば、固体感応膜をFETのゲート部に非導電性
接着剤を介して固定するという簡単な手段により、十分
な膜厚を有する固体感応膜を用いることができるので、
イオン感応物質が徐々に溶液中に溶出したとしても、リ
ザーバとして十分な感応物質が確保され長期間にわたり
高いセンサ感度を維持できる。しかも、FETのゲート
部に固体感応膜を固定するために非導電性接着剤が介在
しているにもかかわらず、感度、応答特性などのセンサ
特性には悪影響が生じない。さらに、固体膜型FETイ
オンセンサにおいても、固体感応膜の表面または内部に
難水溶性物質を存在させれば、妨害イオンの影響を低減
してセンサ出力を安定化でき、測定精度を向上すること
ができる。
Further, according to the solid film type FET ion sensor of the present invention, a solid film having a sufficient film thickness can be obtained by a simple means of fixing the solid sensitive film to the gate portion of the FET via a non-conductive adhesive. Since a sensitive membrane can be used,
Even if the ion sensitive substance is gradually dissolved in the solution, a sufficient sensitive substance is secured as a reservoir, and high sensor sensitivity can be maintained for a long period of time. Moreover, the sensor characteristics such as sensitivity and response characteristics are not adversely affected even though the non-conductive adhesive is interposed to fix the solid sensitive film to the gate portion of the FET. Further, also in the solid film type FET ion sensor, if a hardly water-soluble substance is present on the surface or inside of the solid sensitive film, the influence of interfering ions can be reduced and the sensor output can be stabilized to improve the measurement accuracy. You can

【0018】[0018]

【実施例】以下、本発明の実施例を説明する。なお、以
下の実施例では固体膜型塩素イオンセンサについて説明
し、妨害イオンとしては臭素イオンおよび沃素イオンを
想定している。
Embodiments of the present invention will be described below. In the following examples, solid film type chlorine ion sensors will be described, and bromine ions and iodine ions are assumed as interfering ions.

【0019】実施例1 図1に本実施例における固体膜型塩素イオンセンサの構
造を示す。図1において、Ag/AgCl感応膜1に設
けられた所定の穴にAgリード線2が圧入され、両者の
接続部がポリ塩化ビニル3でモールドされている。ま
た、露出したAg/AgCl感応膜1の表面には、妨害
イオンとの反応性が高い難水溶性物質4が形成されてい
る。
Example 1 FIG. 1 shows the structure of a solid film type chlorine ion sensor in this example. In FIG. 1, an Ag lead wire 2 is press-fitted into a predetermined hole provided in an Ag / AgCl sensitive film 1, and a connecting portion between the two is molded with polyvinyl chloride 3. Further, a poorly water-soluble substance 4 having high reactivity with interfering ions is formed on the exposed surface of the Ag / AgCl sensitive film 1.

【0020】この固体膜型塩素イオンセンサは以下のよ
うにして作製された。まず、加圧成形により形成したA
g/AgClをスライス、研磨することによりAg/A
gCl感応膜1を作製した。このAg/AgCl感応膜
1に所定の穴をあけ、Agリード線2を圧入した後、両
者の接続部をポリ塩化ビニル3でモールドした。また、
純水に臭化カリウムおよび沃化カリウムを溶解し、臭素
イオンおよび沃素イオンをそれぞれ0.1mol/Lず
つ含有する水溶液を調製した。この水溶液をビーカー内
に入れてスターラーで撹拌しながらAg/AgCl感応
膜1を30分間浸漬して表面処理した。表面処理後のA
g/AgCl感応膜1の表面には黄緑色の堆積物が形成
されていた。元素分析の結果から、この堆積物は難水溶
性物質である臭化物および沃化物と確認された。
This solid film type chloride ion sensor was manufactured as follows. First, A formed by pressure molding
Ag / A by slicing and polishing g / AgCl
A gCl sensitive film 1 was prepared. After making a predetermined hole in this Ag / AgCl sensitive film 1 and press-fitting the Ag lead wire 2, the connection between both was molded with polyvinyl chloride 3. Also,
Potassium bromide and potassium iodide were dissolved in pure water to prepare an aqueous solution containing bromine ion and iodine ion in an amount of 0.1 mol / L each. This aqueous solution was placed in a beaker, and the Ag / AgCl sensitive film 1 was immersed for 30 minutes while stirring with a stirrer to perform surface treatment. A after surface treatment
Yellow-green deposits were formed on the surface of the g / AgCl sensitive film 1. From the result of elemental analysis, this deposit was confirmed to be bromide and iodide which are poorly water-soluble substances.

【0021】一方、比較のために図12に示すようなA
g/AgCl感応膜1の表面にも内部にも難水溶性物質
が存在しない従来の固体膜型塩素イオンセンサ(比較例
1)を作製した。
On the other hand, for comparison, A as shown in FIG.
A conventional solid film type chloride ion sensor (Comparative Example 1) in which a hardly water-soluble substance does not exist on the surface or inside of the g / AgCl sensitive film 1 was prepared.

【0022】実施例1の固体膜型塩素イオンセンサを用
い、[Cl- ]=10-5〜10-1mol/Lの溶液につ
いて液温37℃で塩素イオンの測定を行い感度特性曲線
を調べた結果を図2に示す。図2に示されるように、こ
の感度特性曲線は[Cl- ]=10-4〜10-1mol/
Lの濃度範囲で直線性を示し、スロープ感度は51mV
/decであった。この感度特性は比較例1の固体膜型
塩素イオンセンサと同等であり、感応膜の表面処理によ
って感度特性が劣化することはないことが確認された。
Using the solid film type chloride ion sensor of Example 1, chloride ion was measured at a liquid temperature of 37 ° C. for a solution of [Cl ] = 10 −5 to 10 −1 mol / L to examine a sensitivity characteristic curve. The results are shown in FIG. As shown in FIG. 2, this sensitivity characteristic curve shows [Cl ] = 10 −4 to 10 −1 mol /
Shows linearity in the L concentration range and has a slope sensitivity of 51 mV
Was / dec. It was confirmed that this sensitivity characteristic is equivalent to that of the solid film type chlorine ion sensor of Comparative Example 1, and that the sensitivity characteristic is not deteriorated by the surface treatment of the sensitive film.

【0023】次に、比較例1および実施例1の固体膜型
塩素イオンセンサを用い、いずれも塩素イオン濃度が1
11.0mmol/Lであるが、(1)妨害イオンを含
まない被検液、(2)妨害イオンとして臭素イオン0.
1mmol/Lを含む被検液、および(3)妨害イオン
として沃素イオン0.1mmol/Lを含む被検液の3
種の被検液に対する応答曲線を連続的に測定した。な
お、測定は(1)の被検液5回、(2)の被検液5回、
(3)の被検液5回の順序で繰り返し、各測定の間にセ
ンサをCl- 濃度100mmol/Lの校正液(N)に
浸漬した。これらの応答曲線を図3および図4に示す。
Next, using the solid film type chlorine ion sensors of Comparative Example 1 and Example 1, the chlorine ion concentration was 1 in both cases.
11.0 mmol / L, but (1) a test liquid containing no interfering ions, (2) bromine ions as an interfering ion of 0.
3 of a test solution containing 1 mmol / L and (3) a test solution containing 0.1 mmol / L of iodine ion as an interfering ion
The response curve to the test liquid of each species was continuously measured. The measurement was carried out 5 times for the test liquid of (1), 5 times for the test liquid of (2),
The test liquid of (3) was repeated in the order of 5 times, and the sensor was immersed in the calibration liquid (N) having a Cl concentration of 100 mmol / L during each measurement. These response curves are shown in FIGS. 3 and 4.

【0024】図3に示されるように、比較例1の固体膜
型塩素イオンセンサを用いた場合には、妨害イオンを含
有する被検液に対して出力ドリフトが現れ、特に沃素イ
オンを含有する被検液に対する出力ドリフトが極めて顕
著である。また、妨害イオンを含む被検液に対して出力
電圧値が大きく変動しており、妨害イオンの影響を大き
く受けていることがわかる。
As shown in FIG. 3, when the solid film type chlorine ion sensor of Comparative Example 1 was used, an output drift appeared with respect to the test liquid containing interfering ions, and particularly iodine ions were contained. The output drift with respect to the test liquid is extremely remarkable. Further, it can be seen that the output voltage value greatly fluctuates with respect to the test liquid containing the interfering ions, and is greatly affected by the interfering ions.

【0025】これに対して、図4に示されるように、実
施例1の固体膜型塩素イオンセンサを用いた場合には、
妨害イオンを含有する被検液に対して出力ドリフトは認
められず、出力電圧値の変動も小さいことがわかる。
On the other hand, as shown in FIG. 4, when the solid film type chlorine ion sensor of Example 1 is used,
It can be seen that no output drift was observed with respect to the test liquid containing interfering ions, and the fluctuation of the output voltage value was small.

【0026】さらに、比較例1および実施例1の固体膜
型塩素イオンセンサについて、上記の応答特性の評価結
果に基づいて、妨害イオンの影響を表す尺度として選択
係数(KCl,X)を以下のような手法で求めた。まず、
(1)〜(3)の各被検液に対する5回の測定結果を基
にして、(1)〜(3)の各々の被検液に対する塩素イ
オンの平均濃度を求める。次に、妨害イオン(X)を含
む(2)または(3)の場合の平均濃度から妨害イオン
を含まない(1)の場合の平均濃度を減算して両者の差
を求める。上記のようにして求めた平均濃度の差を妨害
イオンの濃度で割り算した値を選択係数とする。このよ
うにして求めた選択係数の値を下記表1に示す。この結
果から、感応膜に表面処理を施した実施例1では、比較
例1に比べて選択係数が約1桁向上しており、妨害イオ
ンの影響を大幅に低減できることがわかる。
Further, regarding the solid film type chlorine ion sensors of Comparative Example 1 and Example 1, the selection coefficient (K Cl, X ) is set as follows as a scale showing the influence of interfering ions, based on the evaluation result of the above response characteristics. It was obtained by a method such as. First,
Based on the measurement results of 5 times for each test liquid of (1) to (3), the average concentration of chlorine ions for each test liquid of (1) to (3) is obtained. Next, the difference between the two is obtained by subtracting the average concentration in the case of (1) not containing the interfering ions from the average concentration in the case of (2) or (3) containing the interfering ions (X). A value obtained by dividing the difference in average concentration obtained as described above by the concentration of interfering ions is used as the selection coefficient. The values of the selection coefficient thus obtained are shown in Table 1 below. From these results, it can be seen that in Example 1 in which the sensitive film is surface-treated, the selection coefficient is improved by about one digit as compared with Comparative Example 1, and the influence of interfering ions can be significantly reduced.

【0027】 実施例2 図5に本実施例における固体膜型塩素イオンセンサを示
す。図5において、難水溶性物質として臭化銀および沃
化銀を含有するAg/AgCl感応膜5に設けられた所
定の穴にAgリード線2が圧入され、両者の接続部がポ
リ塩化ビニル3でモールドされている。
[0027] Example 2 FIG. 5 shows a solid film type chlorine ion sensor in this example. In FIG. 5, the Ag lead wire 2 is press-fitted into a predetermined hole provided in the Ag / AgCl sensitive film 5 containing silver bromide and silver iodide as poorly water-soluble substances, and the connection between both is made of polyvinyl chloride. It is molded with.

【0028】この固体膜型塩素イオンセンサは以下のよ
うにして作製された。まず、銀、塩化銀ならびに難水溶
性塩として臭化銀および沃化銀を混合した後、加圧成形
により形成した成形体をスライス、研磨することにより
妨害イオンの難水溶性塩を含むAg/AgCl感応膜5
を作製した。このAg/AgCl感応膜5に所定の穴を
あけ、Agリード線2を圧入した後、両者の接続部をポ
リ塩化ビニル3でモールドした。
The solid film type chloride ion sensor was manufactured as follows. First, after mixing silver bromide and silver iodide as a poorly water-soluble salt with silver bromide and silver iodide, a molded body formed by pressure molding is sliced and polished to obtain Ag / containing a slightly water-soluble salt of interfering ions. AgCl sensitive film 5
Was produced. After making a predetermined hole in this Ag / AgCl sensitive film 5 and press-fitting the Ag lead wire 2, the connection between both was molded with polyvinyl chloride 3.

【0029】実施例2の固体膜型塩素イオンセンサを用
い、[Cl- ]=10-5〜10-1mol/Lの溶液につ
いて液温37℃で塩素イオンの測定を行い感度特性曲線
を調べたところ、図2と同様な結果が得られた。この感
度特性曲線は[Cl- ]=10-4〜10-1mol/Lの
濃度範囲で直線性を示し、スロープ感度は50mV/d
ecであった。この感度特性は比較例1の固体膜型塩素
イオンセンサと同等であり、感応膜中に難水溶性塩を含
有させても感度特性が劣化することはないことが確認さ
れた。
Using the solid film type chlorine ion sensor of Example 2, chlorine ion was measured at a liquid temperature of 37 ° C. for a solution of [Cl ] = 10 −5 to 10 −1 mol / L to examine the sensitivity characteristic curve. As a result, similar results to those in FIG. 2 were obtained. This sensitivity characteristic curve shows linearity in the concentration range of [Cl ] = 10 −4 to 10 −1 mol / L, and the slope sensitivity is 50 mV / d.
It was ec. This sensitivity characteristic is equivalent to that of the solid film type chlorine ion sensor of Comparative Example 1, and it was confirmed that the sensitivity characteristic is not deteriorated even if a poorly water-soluble salt is contained in the sensitive film.

【0030】次に、実施例2の固体膜型塩素イオンセン
サを用い、実施例1と全く同様な方法で、(1)妨害イ
オンを含まない被検液、(2)妨害イオンとして臭素イ
オン0.1mmol/Lを含む被検液、および(3)妨
害イオンとして沃素イオン0.1mmol/Lを含む被
検液の3種の被検液(いずれも塩素イオン濃度は11
1.0mmol/L)に対する応答曲線を連続的に測定
した。この応答曲線を図6に示す。図6に示されるよう
に、実施例2の固体膜型塩素イオンセンサを用いた場合
にも、妨害イオンを含有する被検液に対して出力ドリフ
トは認められず、出力電圧値の変動も小さいことがわか
る。
Next, using the solid-film type chlorine ion sensor of Example 2, (1) a test liquid containing no interfering ions, and (2) bromine ion 0 as interfering ions, in exactly the same manner as in Example 1. 0.1 mmol / L of test liquid, and (3) test liquid containing iodine ion 0.1 mmol / L as interfering ions (all have chloride ion concentrations of 11
The response curve to (1.0 mmol / L) was continuously measured. This response curve is shown in FIG. As shown in FIG. 6, even when the solid film type chlorine ion sensor of Example 2 was used, no output drift was observed with respect to the test liquid containing interfering ions, and the fluctuation of the output voltage value was small. I understand.

【0031】さらに、実施例1と同様な手法により、実
施例2の固体膜型塩素イオンセンサについて選択係数
(KCl,X)を求めた結果を下記表2に示す。この結果か
ら、感応膜に難水溶性塩を含有させた実施例2でも、比
較例1に比べて選択係数が約1桁向上しており、妨害イ
オンの影響を大幅に低減できることがわかる。
Further, the results of obtaining the selection coefficient (K Cl, X ) for the solid film type chlorine ion sensor of Example 2 by the same method as in Example 1 are shown in Table 2 below. From these results, it can be seen that even in Example 2 in which the sensitive film contains a poorly water-soluble salt, the selectivity coefficient is improved by about one digit as compared with Comparative Example 1, and the influence of interfering ions can be significantly reduced.

【0032】 実施例3 図7に本実施例における固体膜型FET塩素イオンセン
サの構造を示す。この固体膜型FET塩素イオンセンサ
は、信号取り出し電極と感応ゲート部とが互いにウェー
ハの表裏に分離して形成されたリアゲート型のISFE
T(Ion Sensitive Field Eff
ect Transistor:イオン感応性電界効果
トランジスタ)である。図7において、第1のシリコン
基板21と第2のシリコン基板22とがSiO2 膜23
を挟んで互いに接着されている。これらのシリコン基板
21、22は所定形状にエッチングされている。第2の
シリコン基板22が第1のシリコン基板21との間のS
iO2 膜23に達するまで完全に除去された部分が感応
ゲート部となる。第1のシリコン基板21にはソース、
ドレイン領域24、25が形成されている。これらソー
ス、ドレイン領域24、25の間の第1のシリコン基板
21の部分がチャネル領域26となる。感応ゲート部を
含む第1および第2のシリコン基板21、22の露出面
にはSiO2膜27を介してSiNx 膜28が形成され
ている。第1のシリコン基板21には感応ゲート部と反
対側の面に形成されたSiO2 膜27およびSiNx
28に開孔されたコンタクトホールを介して信号取り出
し電極29、30が形成されている。また、感応ゲート
部にはエポキシ樹脂31を介して厚さ約200μmのA
g/AgCl感応膜32が接着されている。
[0032] Example 3 FIG. 7 shows the structure of a solid film type FET chlorine ion sensor in this example. This solid film type FET chlorine ion sensor is a rear gate type ISFE in which a signal extraction electrode and a sensitive gate portion are separately formed on the front and back surfaces of a wafer.
T (Ion Sensitive Field Eff)
ect Transistor: ion sensitive field effect transistor). In FIG. 7, the first silicon substrate 21 and the second silicon substrate 22 are the SiO 2 film 23.
It is adhered to each other by sandwiching. These silicon substrates 21 and 22 are etched into a predetermined shape. S between the second silicon substrate 22 and the first silicon substrate 21
The portion completely removed to reach the iO 2 film 23 becomes the sensitive gate portion. The source is on the first silicon substrate 21,
Drain regions 24 and 25 are formed. A portion of the first silicon substrate 21 between these source / drain regions 24 and 25 becomes a channel region 26. A SiN x film 28 is formed on the exposed surfaces of the first and second silicon substrates 21 and 22 including the sensitive gate portion via a SiO 2 film 27. Signal extraction electrodes 29 and 30 are formed on the first silicon substrate 21 through contact holes formed in the SiO 2 film 27 and the SiN x film 28 formed on the surface opposite to the sensitive gate portion. . In addition, the sensitive gate is provided with an epoxy resin 31 with a thickness of about 200 μm.
The g / AgCl sensitive film 32 is adhered.

【0033】実施例3の固体膜型FET塩素イオンセン
サを用い、[Cl- ]=10-5〜10-1mol/Lの溶
液について液温37℃で塩素イオンの測定を行い、感度
特性曲線を調べたところ、図2と同様な結果が得られ
た。この感度特性曲線は[Cl- ]=10-4〜10-1
ol/Lの濃度範囲で直線性を示し、スロープ感度は5
1mV/decであった。この感度特性は蒸着Ag膜の
表面に電解塩化AgCl膜を有する図13の固体膜型F
ET塩素イオンセンサ(比較例2)または蒸着Ag膜上
に蒸着AgCl膜を有する図14の固体膜型FET塩素
イオンセンサ(比較例3)と同等であった。このように
本実施例のセンサはゲート絶縁膜とイオン感応膜との間
に非導電性のエポキシ接着剤が介在している構造である
にもかかわらず、良好な感度特性を示すことが確認され
た。
Using the solid film type FET chlorine ion sensor of Example 3, chlorine ion was measured at a liquid temperature of 37 ° C. for a solution of [Cl ] = 10 −5 to 10 −1 mol / L, and a sensitivity characteristic curve was obtained. Was examined, the result similar to that of FIG. 2 was obtained. This sensitivity characteristic curve is [Cl ] = 10 −4 to 10 −1 m
Shows linearity in the concentration range of ol / L and has a slope sensitivity of 5
It was 1 mV / dec. This sensitivity characteristic is the solid film type F of FIG. 13 having an electrolytic chloride AgCl film on the surface of a vapor deposited Ag film.
It was equivalent to the ET chlorine ion sensor (Comparative Example 2) or the solid film type FET chlorine ion sensor of FIG. 14 (Comparative Example 3) having the vapor deposited AgCl film on the vapor deposited Ag film. As described above, it was confirmed that the sensor of this example exhibits a good sensitivity characteristic despite the structure in which the non-conductive epoxy adhesive is interposed between the gate insulating film and the ion sensitive film. It was

【0034】次に、本実施例の固体膜型FET塩素イオ
ンセンサを用い、[Cl- ]濃度が10-3mol/Lお
よび10-2mol/Lである2つの被検液に対する測定
を連続的に行なった場合の応答特性を図8に示す。この
図から明らかなように、本実施例のセンサは200μm
程度の厚膜の感応膜を用いているにもかかわらず95%
応答時間が1秒以内であり、高速応答が実現できること
が確認された。この応答速度に関しても、比較例2およ
び比較例3のセンサと同等であった。
Next, using the solid film type FET chlorine ion sensor of the present embodiment, the measurement for two test liquids having [Cl ] concentrations of 10 −3 mol / L and 10 −2 mol / L was continuously performed. FIG. 8 shows the response characteristics in the case of performing the same. As is clear from this figure, the sensor of this embodiment has a thickness of 200 μm.
95% despite using a thick sensitive film
It was confirmed that the response time was within 1 second, and high-speed response could be realized. The response speed was also equal to that of the sensors of Comparative Example 2 and Comparative Example 3.

【0035】さらに、比較例2および実施例3のセンサ
について、数日ごとに[Cl- ]濃度が10-3mol/
Lおよび10-2mol/Lである2つの被検液を用いて
スロープ感度を測定し、その経時変化を調べることによ
り寿命を評価した。この結果を図9に示す。比較例2の
場合には、センサ感度が徐々に低下して1か月程度でセ
ンサが劣化してしまった。これは、感応膜の感応成分が
被検液または保存液中に溶け出したためと思われる。こ
れに対して、実施例3のセンサでは、3か月経過後も感
度の低下はほとんど見られず長寿命であった。これは感
応膜の感応成分が被検液または保存液中に溶け出したと
しても、リザーバとして十分な感応物質が確保されてい
ることの効果であると考えられる。なお、初期には多少
の感度の低下が見られるが、その後はセンサ感度の変動
は少なく、安定した感度を維持していることがわかる。
これは、感応膜中で感応物質が十分均一に分布している
ためであると考えられる。
Further, in the sensors of Comparative Example 2 and Example 3, the [Cl ] concentration was 10 −3 mol / every few days.
The slope sensitivity was measured using two test liquids of L and 10 -2 mol / L, and the lifetime was evaluated by examining the change over time. The result is shown in FIG. In the case of Comparative Example 2, the sensor sensitivity gradually decreased and the sensor deteriorated in about one month. This is probably because the sensitive component of the sensitive membrane was dissolved in the test solution or the storage solution. On the other hand, in the sensor of Example 3, the sensitivity was hardly decreased even after the lapse of 3 months, and the sensor had a long life. This is considered to be due to the fact that even if the sensitive component of the sensitive membrane is dissolved in the test liquid or the preservative liquid, a sufficient sensitive substance is secured as a reservoir. It should be noted that although a slight decrease in sensitivity is observed in the initial stage, the sensor sensitivity fluctuates little after that, indicating that stable sensitivity is maintained.
It is considered that this is because the sensitive substance is sufficiently uniformly distributed in the sensitive film.

【0036】実施例4 図10に本実施例の固体膜型FET塩素イオンセンサの
構造を示す。このセンサは感応膜32の表面に難水溶性
物質33が形成されている以外は、図7に示す実施例3
のセンサと同様の構造を有する。本実施例のセンサは、
図7に示す実施例3のセンサのイオン感応膜を臭素イオ
ンおよび沃素イオンをそれぞれ0.1mol/Lずつ含
有する水溶液に30分間浸漬して表面処理することによ
り作製された。
Embodiment 4 FIG. 10 shows the structure of the solid film type FET chlorine ion sensor of this embodiment. This sensor is the same as Example 3 shown in FIG. 7, except that the slightly water-soluble substance 33 is formed on the surface of the sensitive film 32.
It has the same structure as the sensor of. The sensor of this embodiment is
The ion-sensitive membrane of the sensor of Example 3 shown in FIG. 7 was prepared by immersing the ion-sensitive membrane in an aqueous solution containing 0.1 mol / L each of bromine ion and iodine ion for 30 minutes for surface treatment.

【0037】本実施例のセンサは実施例3のセンサとほ
ぼ同等のセンサ特性を示し、[Cl- ]=10-4〜10
-1mol/Lの濃度範囲でのスロープ感度が51mV/
dec、95%応答時間が1秒以内であり、3か月経過
後も感度の低下はほとんど見られず長寿命であった。
The sensor of this embodiment has almost the same sensor characteristics as the sensor of the third embodiment, and [Cl ] = 10 −4 -10.
-Slope sensitivity in the concentration range of -1 mol / L is 51 mV /
dec, 95% response time was within 1 second, and there was almost no deterioration in sensitivity even after 3 months, and the life was long.

【0038】次に、比較例2および実施例4のセンサを
用い、実施例1と全く同様の方法で、(1)妨害イオン
を含まない被検液、(2)妨害イオンとして臭素イオン
(Br- )0.1mmol/Lを含む被検液、および
(3)妨害イオンとして沃素イオン(I- )0.1mm
ol/Lを含む被検液の3種の被検液(いずれも塩素イ
オン濃度は111.0mmol/L)に対する応答曲線
を連続的に測定したところ、それぞれ図3および図4と
同様な応答曲線が得られた。さらに、実施例1と同様な
手法により、比較例2および実施例4のセンサについて
選択係数を求めた結果を下記表3に示す。この結果か
ら、感応膜表面に難水溶性物質を形成させた実施例4の
固体膜型FET塩素イオンセンサは、比較例2のものに
比べて選択係数が約1桁向上しており、妨害イオンの影
響を大幅に低減できることがわかる。
Next, using the sensors of Comparative Example 2 and Example 4 and in exactly the same manner as in Example 1, (1) a test liquid containing no interfering ions, (2) bromine ions (Br) as interfering ions. -) the sample liquid containing 0.1 mmol / L, and (3) iodide ions as an interfering ion (I -) 0.1 mm
When the response curves to three types of test solutions containing ol / L (all have chloride ion concentrations of 111.0 mmol / L) were continuously measured, the response curves similar to those in FIGS. 3 and 4 were obtained. was gotten. Furthermore, Table 3 below shows the results of obtaining the selection coefficients for the sensors of Comparative Example 2 and Example 4 by the same method as in Example 1. From these results, the solid film type FET chlorine ion sensor of Example 4 in which the poorly water-soluble substance was formed on the surface of the sensitive film had a selectivity coefficient improved by about an order of magnitude as compared with that of Comparative Example 2, and the interfering ions were It can be seen that the effect of can be significantly reduced.

【0039】 実施例5 図11に本実施例の固体膜型FET塩素イオンセンサの
構造を示す。このセンサは難水溶性物質である臭化銀お
よび沃化銀を含有するAg/AgCl感応膜34を用い
た以外は、図7に示す実施例3のセンサと同様の構造を
有する。
[0039] Example 5 FIG. 11 shows the structure of a solid film type FET chlorine ion sensor of this example. This sensor has the same structure as the sensor of Example 3 shown in FIG. 7, except that the Ag / AgCl sensitive film 34 containing the hardly water-soluble substances silver bromide and silver iodide was used.

【0040】本実施例のセンサは実施例3のセンサとほ
ぼ同等のセンサ特性を示し、[Cl- ]=10-4〜10
-1mol/Lの濃度範囲でのスロープ感度が50mV/
dec、95%応答時間が1秒以内であり、3か月経過
後も感度の低下はほとんど見られず長寿命であった。
The sensor of this example has almost the same sensor characteristics as the sensor of Example 3, and [Cl ] = 10 −4 to 10 −10
-Slope sensitivity is 50 mV / in the concentration range of -1 mol / L
dec, 95% response time was within 1 second, and there was almost no deterioration in sensitivity even after 3 months, and the life was long.

【0041】次に、実施例5のセンサを用い、実施例1
と全く同様の方法で、(1)妨害イオンを含まない被検
液、(2)妨害イオンとして臭素イオン(Br- )0.
1mmol/Lを含む被検液、および(3)妨害イオン
として沃素イオン(I- )0.1mmol/Lを含む被
検液の3種の被検液(いずれも塩素イオン濃度は11
1.0mmol/L)に対する応答曲線を連続的に測定
したところ、図6と同様な応答曲線が得られた。さら
に、実施例1と同様な手法により、実施例5のセンサに
ついて選択係数を求めた結果を下記表4に示す。この結
果から、難水溶性物質を含有する感応膜を用いた実施例
5の固体膜型FET塩素イオンセンサも、比較例2のも
のに比べて選択係数が約1桁向上しており、妨害イオン
の影響を大幅に低減できることがわかる。
Next, using the sensor of Example 5, Example 1
In exactly the same manner as in (1) the test liquid containing no interfering ions, (2) the bromine ion (Br ) 0.
Three types of test liquids (all having a chloride ion concentration of 11), a test liquid containing 1 mmol / L and (3) a test liquid containing iodine ion (I ) 0.1 mmol / L as interfering ions.
When the response curve to 1.0 mmol / L) was continuously measured, a response curve similar to that in FIG. 6 was obtained. Furthermore, Table 4 below shows the results of obtaining the selection coefficient for the sensor of Example 5 by the same method as in Example 1. From this result, the selection coefficient of the solid film type FET chlorine ion sensor of Example 5 using the sensitive film containing the poorly water-soluble substance was improved by about one digit as compared with that of Comparative Example 2, and the interfering ions It can be seen that the effect of can be significantly reduced.

【0042】 なお、上記実施例3〜5では信号取り出し電極と感応ゲ
ート部とが互いにウェーハの表裏に分離して形成された
リアゲート型のISFETについて説明したが、その他
の構造のISFETに対しても本発明を適用できること
はもちろんである。
[0042] In addition, in the above-mentioned Examples 3 to 5, the rear gate type ISFET in which the signal extraction electrode and the sensitive gate portion are separately formed on the front and back surfaces of the wafer has been described, but the present invention is also applied to the ISFET having other structures. Of course, it can be applied.

【0043】[0043]

【発明の効果】以上詳述したように本発明によれば、被
検液中に妨害イオンが存在する場合でも出力安定性に優
れ、かつ長寿命な固体膜型イオンセンサを提供すること
ができる。
As described above in detail, according to the present invention, it is possible to provide a solid film type ion sensor having excellent output stability even when interfering ions are present in a test liquid and having a long life. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の固体膜型塩素イオンセンサの断面
図。
FIG. 1 is a cross-sectional view of a solid film type chloride ion sensor of Example 1.

【図2】実施例1の固体膜型塩素イオンセンサを用いて
測定した塩素イオンの感度特性曲線を示す図。
FIG. 2 is a diagram showing a sensitivity characteristic curve of chlorine ion measured by using the solid film type chlorine ion sensor of Example 1.

【図3】比較例1の固体膜型塩素イオンセンサを用いて
測定した妨害イオンを含む被検液に対する応答曲線を示
す図。
FIG. 3 is a diagram showing a response curve to a test liquid containing interfering ions, which is measured using the solid film type chloride ion sensor of Comparative Example 1.

【図4】実施例1の固体膜型塩素イオンセンサを用いて
測定した妨害イオンを含む被検液に対する応答曲線を示
す図。
FIG. 4 is a diagram showing a response curve to a test liquid containing interfering ions, which is measured using the solid film type chloride ion sensor of Example 1.

【図5】実施例2の固体膜型塩素イオンセンサの断面
図。
FIG. 5 is a cross-sectional view of a solid film type chloride ion sensor of Example 2.

【図6】実施例2の固体膜型塩素イオンセンサを用いて
測定した妨害イオンを含む被検液に対する応答曲線を示
す図。
FIG. 6 is a view showing a response curve to a test liquid containing interfering ions, which is measured by using the solid film type chloride ion sensor of Example 2;

【図7】実施例3の固体膜型FET塩素イオンセンサの
構造を示す断面図。
FIG. 7 is a cross-sectional view showing the structure of a solid film type FET chlorine ion sensor of Example 3.

【図8】実施例3の固体膜型FET塩素イオンセンサを
用いて[Cl- ]濃度が10-3mol/Lおよび10-2
mol/Lである2つの被検液に対する測定を連続的に
行なった場合の応答特性を示す図。
8 is a solid-state FET chlorine ion sensor of Example 3 with [Cl ] concentration of 10 −3 mol / L and 10 −2.
The figure which shows the response characteristic at the time of measuring continuously about two to-be-tested liquids which are mol / L.

【図9】実施例3および比較例2の固体膜型FET塩素
イオンセンサについて感度の経時変化を示す図。
FIG. 9 is a diagram showing a change in sensitivity with time for solid film type FET chlorine ion sensors of Example 3 and Comparative Example 2.

【図10】実施例4の固体膜型FET塩素イオンセンサ
の構造を示す断面図。
FIG. 10 is a cross-sectional view showing the structure of a solid film type FET chlorine ion sensor of Example 4.

【図11】実施例5の固体膜型FET塩素イオンセンサ
の構造を示す断面図。
FIG. 11 is a cross-sectional view showing the structure of a solid film type FET chlorine ion sensor of Example 5.

【図12】比較例1の固体膜型塩素イオンセンサの構造
を示す断面図。
FIG. 12 is a cross-sectional view showing the structure of a solid film type chloride ion sensor of Comparative Example 1.

【図13】比較例2の固体膜型FET塩素イオンセンサ
の構造を示す断面図。
FIG. 13 is a cross-sectional view showing the structure of a solid film type FET chlorine ion sensor of Comparative Example 2.

【図14】比較例3の固体膜型FET塩素イオンセンサ
の構造を示す断面図。
14 is a cross-sectional view showing the structure of a solid film type FET chlorine ion sensor of Comparative Example 3. FIG.

【符号の説明】[Explanation of symbols]

1…Ag/AgCl感応膜、2…Agリード線、3…ポ
リ塩化ビニル、4…難水溶性物質、5…臭化銀および沃
化銀を含有するAg/AgCl感応膜、11…蒸着Ag
膜、12…電解塩化AgCl膜、13…蒸着AgCl
膜、21…第1のシリコン基板、22…第2のシリコン
基板、23…SiO2 膜、24…ソース領域、25…ド
レイン領域、26…チャネル領域、27…SiO2 膜、
28…SiNx 膜、29、30…信号取り出し電極、3
1…エポキシ樹脂、32…Ag/AgCl感応膜、33
…難水溶性物質、34…臭化銀および沃化銀を含有する
Ag/AgCl感応膜。
1 ... Ag / AgCl sensitive film, 2 ... Ag lead wire, 3 ... Polyvinyl chloride, 4 ... Slightly water-soluble substance, 5 ... Ag / AgCl sensitive film containing silver bromide and silver iodide, 11 ... Evaporated Ag
Film, 12 ... Electrolytic chlorinated AgCl film, 13 ... Evaporated AgCl
Film, 21 ... First silicon substrate, 22 ... Second silicon substrate, 23 ... SiO 2 film, 24 ... Source region, 25 ... Drain region, 26 ... Channel region, 27 ... SiO 2 film,
28 ... SiN x film, 29, 30 ... Signal extraction electrode, 3
1 ... Epoxy resin, 32 ... Ag / AgCl sensitive film, 33
... Slightly water-soluble substance, 34 ... Ag / AgCl sensitive film containing silver bromide and silver iodide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳永 博光 栃木県大田原市下石上1385番の1 株式会 社東芝那須工場内 (72)発明者 神長 和歌子 栃木県大田原市下石上1385番の1 株式会 社東芝那須工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiromitsu Tokunaga 1385-1 Shimoishigami, Otawara-shi, Tochigi Stock company Toshiba Nasu factory (72) Inventor Wakako Shinaga 1385-1 Shimoishi, Otawara, Tochigi Company Toshiba Nasu Factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 イオン感応物質を含有する固体感応膜を
具備した固体膜型イオンセンサにおいて、前記固体感応
膜の表面または内部に、検出目的イオンよりも妨害イオ
ンとの反応性が高い難水溶性物質を存在させたことを特
徴とする固体膜型イオンセンサ。
1. A solid film type ion sensor comprising a solid sensitive film containing an ion sensitive substance, wherein the surface or the interior of the solid sensitive film is highly water-reactive and has a higher reactivity with an interfering ion than a target ion for detection. A solid film type ion sensor characterized by the presence of a substance.
【請求項2】 イオン感応物質を含有する固体感応膜を
具備した固体膜型イオンセンサの出力を安定化する方法
であって、前記固体感応膜を妨害イオンを含有する水溶
液に浸漬して、その表面に検出目的イオンよりも妨害イ
オンとの反応性が高い難水溶性物質を形成することを特
徴とする固体膜型イオンセンサの安定化方法。
2. A method for stabilizing the output of a solid film type ion sensor equipped with a solid sensitive film containing an ion sensitive substance, comprising immersing the solid sensitive film in an aqueous solution containing interfering ions, the method comprising: A method for stabilizing a solid film type ion sensor, comprising forming a hardly water-soluble substance having a higher reactivity with an interfering ion than a target ion on a surface.
【請求項3】 イオン感応物質を含有する固体感応膜を
具備した固体膜型イオンセンサの出力を安定化する方法
であって、前記固体感応膜中に検出目的イオンよりも妨
害イオンとの反応性が高い難水溶性物質を含有させるこ
とを特徴とする固体膜型イオンセンサの安定化方法。
3. A method for stabilizing the output of a solid film type ion sensor comprising a solid sensitive film containing an ion sensitive substance, comprising a reactivity with an interfering ion rather than a detection target ion in the solid sensitive film. A method for stabilizing a solid film type ion sensor, which comprises containing a poorly water-soluble substance having a high content.
【請求項4】 イオン感応物質を含有する固体感応膜
と、前記固体感応膜と被検液との界面電位差を電気信号
に変換するFETとを具備した固体膜型イオンセンサに
おいて、前記固体感応膜を前記FETのゲート部に非導
電性接着剤を介して固定したことを特徴とする固体膜型
イオンセンサ。
4. A solid film type ion sensor comprising a solid sensitive film containing an ion sensitive substance and an FET for converting an interface potential difference between the solid sensitive film and a test liquid into an electric signal. Is fixed to the gate portion of the FET via a non-conductive adhesive agent, a solid film type ion sensor.
【請求項5】 前記固体感応膜の表面または内部に、検
出目的イオンよりも妨害イオンとの反応性が高い難水溶
性物質を存在させたことを特徴とする請求項4記載の固
体膜型イオンセンサ。
5. The solid film type ion according to claim 4, wherein a poorly water-soluble substance having a higher reactivity with an interfering ion than a detection target ion is present on the surface or inside of the solid sensitive film. Sensor.
【請求項6】 イオン感応物質を含有する固体感応膜
と、前記固体感応膜と被検液との界面電位差を電気信号
に変換するFETとを具備し、前記固体感応膜を前記F
ETのゲート部に非導電性接着剤を介して固定した固体
膜型イオンセンサの出力を安定化する方法であって、前
記固体感応膜を妨害イオンを含有する水溶液に浸漬し
て、その表面に検出目的イオンよりも妨害イオンとの反
応性が高い難水溶性物質を形成することを特徴とする固
体膜型イオンセンサの安定化方法。
6. A solid sensitive film containing an ion sensitive substance, and a FET for converting an interface potential difference between the solid sensitive film and a test liquid into an electric signal, wherein the solid sensitive film is the F
A method for stabilizing the output of a solid film type ion sensor fixed to a gate portion of an ET via a non-conductive adhesive, comprising immersing the solid sensitive film in an aqueous solution containing interfering ions, A method for stabilizing a solid film type ion sensor, which comprises forming a hardly water-soluble substance having a higher reactivity with an interfering ion than a target ion.
【請求項7】 イオン感応物質を含有する固体感応膜
と、前記固体感応膜と被検液との界面電位差を電気信号
に変換するFETとを具備し、前記固体感応膜を前記F
ETのゲート部に非導電性接着剤を介して固定した固体
膜型イオンセンサの出力を安定化する方法であって、前
記固体感応膜中に検出目的イオンよりも妨害イオンとの
反応性が高い難水溶性物質を含有させることを特徴とす
る固体膜型イオンセンサの安定化方法。
7. A solid sensitive film containing an ion sensitive substance, and a FET for converting an interfacial potential difference between the solid sensitive film and a test liquid into an electric signal, wherein the solid sensitive film is the F
A method for stabilizing the output of a solid film type ion sensor fixed to a gate portion of an ET via a non-conductive adhesive, which has higher reactivity with interfering ions than detection target ions in the solid sensitive film. A method for stabilizing a solid film type ion sensor, characterized by containing a poorly water-soluble substance.
JP13327795A 1995-05-31 1995-05-31 Solid film type ion sensor and its stabilization method Expired - Lifetime JP3388942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13327795A JP3388942B2 (en) 1995-05-31 1995-05-31 Solid film type ion sensor and its stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13327795A JP3388942B2 (en) 1995-05-31 1995-05-31 Solid film type ion sensor and its stabilization method

Publications (2)

Publication Number Publication Date
JPH08327583A true JPH08327583A (en) 1996-12-13
JP3388942B2 JP3388942B2 (en) 2003-03-24

Family

ID=15100882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13327795A Expired - Lifetime JP3388942B2 (en) 1995-05-31 1995-05-31 Solid film type ion sensor and its stabilization method

Country Status (1)

Country Link
JP (1) JP3388942B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145402A (en) * 2008-12-16 2010-07-01 Robert Bosch Gmbh Gas sensor with field-effect transistor
WO2021100988A1 (en) * 2019-11-22 2021-05-27 한국재료연구원 Electrolyte, corrosion sensor and chloride ion measuring sensor comprising same, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145402A (en) * 2008-12-16 2010-07-01 Robert Bosch Gmbh Gas sensor with field-effect transistor
WO2021100988A1 (en) * 2019-11-22 2021-05-27 한국재료연구원 Electrolyte, corrosion sensor and chloride ion measuring sensor comprising same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP3388942B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
JP2546786Y2 (en) Graphite-based solid-state polymer membrane ion-selective electrode
JPH05503580A (en) Polarographic chemical sensor with external reference electrode
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
KR20050055202A (en) Micro reference electrode of implantable continuous biosensor using iridium oxide, manufacturing method thereof, and implantable continuous biosensor
JPS63304150A (en) Enzyme electrode for inspecting glucose and glucose inspection
Yang et al. An iridium oxide reference electrode for use in microfabricated biosensors and biochips
US5387328A (en) Bio-sensor using ion sensitive field effect transistor with platinum electrode
US6021339A (en) Urine testing apparatus capable of simply and accurately measuring a partial urine to indicate urinary glucose value of total urine
WO2020091033A1 (en) Triple-pole electrode having electrically conductive diamond electrode as reference electrode, device, and electrochemical measuring method
Suzuki et al. Miniature Clark-type oxygen electrode with a three-electrode configuration
US6508921B1 (en) Lithium ion-selective electrode for clinical applications
US20090266712A1 (en) Calcium ion sensors and fabrication method thereof, and sensing systems comprising the same
AU2001247614A1 (en) Lithium ion-selective electrode for clinical applications
US4619739A (en) Method and apparatus for measuring halogen ion concentration
JP3388942B2 (en) Solid film type ion sensor and its stabilization method
EP0833149A1 (en) Method for measuring ion concentration
Salimi et al. Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film
Pui et al. Micro-size potentiometric probes for gas and substrate sensing
Vlasov et al. Ion-selective field-effect transistor and chalcogenide glass ion-selective electrode systems for biological investigations and industrial applications
NL8501760A (en) METHOD FOR MANUFACTURING A FLUORIDE SENSITIVE MEMBRANE
EP0241991A2 (en) Field effect transistor having a membrane overlying the gate insulator
JP2001281204A (en) Diaphragm-type sensor
Abdulla et al. Biosensing with coated-wire electrodes. Part 1. Glucose sensors
JPS6243557A (en) Solid electrode for electrochemical sensor
EP1038172A1 (en) Sensor devices and analytical method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

EXPY Cancellation because of completion of term