JPH08326749A - Fluid bearing device, and its manufacture - Google Patents

Fluid bearing device, and its manufacture

Info

Publication number
JPH08326749A
JPH08326749A JP13825595A JP13825595A JPH08326749A JP H08326749 A JPH08326749 A JP H08326749A JP 13825595 A JP13825595 A JP 13825595A JP 13825595 A JP13825595 A JP 13825595A JP H08326749 A JPH08326749 A JP H08326749A
Authority
JP
Japan
Prior art keywords
bearing device
plate members
hydrodynamic bearing
dynamic pressure
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13825595A
Other languages
Japanese (ja)
Other versions
JP3158014B2 (en
Inventor
Takashi Yoshida
尚 吉田
Sadao Sato
貞夫 佐藤
Toshio Miyazawa
敏夫 宮沢
Tsuneo Takiguchi
恒男 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP13825595A priority Critical patent/JP3158014B2/en
Publication of JPH08326749A publication Critical patent/JPH08326749A/en
Application granted granted Critical
Publication of JP3158014B2 publication Critical patent/JP3158014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a fluid bearing device and its manufacture where static pressure pockets and dynamic pressure generation sources can be formed easily with short processing time, and the formation of a bearing with a small diameter is possible, and further bearings different in length can be manufactured easily. CONSTITUTION: Circular firsts steel plates 44 and circular second steel plates 50, where recesses 48a-48d are partitioned off, are made a plural number of sheets each. The second steel plates 50 are stacked a specified number of sheets, and these stacked second steal plates 50 are caught with a specified number of sheets each of first steel plates 44 thereby being stacked. The recesses 48a-48d are stacked, being biased by a specified angle at a time in circumferential direction from each other, and the static pressure pockets 52a-52d being made by the recesses 48a-48d are partitioned off in the shape of being twisted in circumferential direction. The stacked first steel plates 44 and the second steel plates 50 are fixed together, thus a bearing is made, and the inside periphery of the bearing is polished and 6 rotary shaft is inserted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械の主軸の如き
回転軸を圧力流体を介して回転自在に軸受けする流体軸
受装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device for rotatably bearing a rotary shaft such as a main shaft of a machine tool through a pressure fluid and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、流体の圧力により回転軸を支
持する流体軸受装置には、静圧軸受装置と動圧軸受装置
とがある。先ず、静圧軸受装置の場合について説明す
る。
2. Description of the Related Art Conventionally, there are a hydrostatic bearing device and a hydrodynamic bearing device as a hydrodynamic bearing device that supports a rotary shaft by the pressure of a fluid. First, the case of a hydrostatic bearing device will be described.

【0003】静圧軸受装置10は、図11に示すよう
に、円筒状の軸受12と、該軸受12の内部に挿入され
る回転軸14とを含む。前記軸受12の内壁に矩形状の
静圧ポケット16a〜16dが画成され、夫々の静圧ポ
ケット16a〜16dの間にランド部18a〜18dが
形成される(図12参照)。前記静圧ポケット16a〜
16dとランド部18a〜18dとの境界を構成する縁
部は前記回転軸14の軸線方向に平行に形成されてい
る。前記静圧ポケット16a〜16dの略中央部には圧
力流体が供給される流体供給通路20a〜20dが画成
され、該供給通路20a〜20dは図示しない圧力流体
供給源に連通している。
As shown in FIG. 11, the hydrostatic bearing device 10 includes a cylindrical bearing 12 and a rotary shaft 14 inserted into the bearing 12. Rectangular static pressure pockets 16a to 16d are defined on the inner wall of the bearing 12, and lands 18a to 18d are formed between the static pressure pockets 16a to 16d (see FIG. 12). The static pressure pocket 16a
An edge portion that forms a boundary between 16d and the land portions 18a to 18d is formed parallel to the axial direction of the rotary shaft 14. Fluid supply passages 20a to 20d to which a pressure fluid is supplied are defined in substantially central portions of the static pressure pockets 16a to 16d, and the supply passages 20a to 20d communicate with a pressure fluid supply source (not shown).

【0004】以上のような構成において、図示しない圧
力流体供給源が付勢されると、該圧力流体は一定の圧力
で流体供給通路20a〜20dから静圧ポケット16a
〜16dに供給され、回転軸14の外周に前記流体の圧
力が加わり、該回転軸14はこの流体圧力により浮上支
持される。
In the above-mentioned structure, when a pressure fluid supply source (not shown) is energized, the pressure fluid has a constant pressure from the fluid supply passages 20a to 20d to the static pressure pocket 16a.
To 16d, the pressure of the fluid is applied to the outer circumference of the rotary shaft 14, and the rotary shaft 14 is levitationally supported by the fluid pressure.

【0005】このような従来技術に係る静圧軸受装置1
0を製造する際には、先ず、金属の如き材料で軸受12
を円筒状に形成し、該軸受12をインデックステーブル
22に装着する(図13参照)。次いで、アングルヘッ
ド24を介してエンドミル26が装着されたフライス盤
28を付勢し、該フライス盤28と前記インデックステ
ーブル22を作動させて軸受12およびエンドミル26
を移動し、該軸受12の内壁を切削加工して静圧ポケッ
ト16a〜16dを形成する。この場合、フライス盤2
8とインデックステーブル22の動作は前もってフライ
ス盤28とインデックステーブル22に接続された図示
しないコントローラに格納されているプログラムにより
制御され、自動的に軸受12、エンドミル26を移動す
る。
A hydrostatic bearing device 1 according to such a conventional technique.
When manufacturing 0, the bearing 12 is first made of a material such as metal.
Is formed into a cylindrical shape, and the bearing 12 is attached to the index table 22 (see FIG. 13). Then, the milling machine 28 on which the end mill 26 is mounted is biased via the angle head 24, and the milling machine 28 and the index table 22 are operated to operate the bearing 12 and the end mill 26.
And the inner wall of the bearing 12 is cut to form the static pressure pockets 16a to 16d. In this case, milling machine 2
8 and the operation of the index table 22 are controlled by a program stored in a controller (not shown) connected to the milling machine 28 and the index table 22 in advance, and the bearing 12 and the end mill 26 are automatically moved.

【0006】また、アングルヘッド24とエンドミル2
6に代えて、図示しないスロットカッタをフライス盤2
8に取り付けて静圧ポケット16a〜16dを切削加工
する製造方法もある。
Also, the angle head 24 and the end mill 2
In place of 6, a slot cutter (not shown) is used for the milling machine 2
There is also a manufacturing method in which the static pressure pockets 16a to 16d are attached to the machine No.

【0007】一方、動圧軸受装置の場合には、動圧発生
溝は軸受か回転軸のどちらか一方に画成されるが、軸受
の内壁に螺旋状の動圧発生溝を画成することは困難であ
るため、通常、回転軸の外壁に螺旋状の動圧発生溝を画
成している。すなわち、図14に示すように、動圧軸受
装置30の回転軸32の外壁の所定の位置から軸線方向
両側に指向して回転軸32の回転方向(矢印A)に傾斜
した複数の動圧発生溝34が画成される。この回転軸3
2を円筒状の軸受36に挿入すると、動圧発生溝34が
円筒状の軸受36の内壁に対向する。
On the other hand, in the case of the dynamic pressure bearing device, the dynamic pressure generating groove is defined on either the bearing or the rotating shaft, but the spiral dynamic pressure generating groove should be defined on the inner wall of the bearing. Therefore, a spiral dynamic pressure generating groove is usually defined on the outer wall of the rotary shaft. That is, as shown in FIG. 14, a plurality of dynamic pressures are generated which are directed toward both sides in the axial direction from a predetermined position on the outer wall of the rotary shaft 32 of the dynamic pressure bearing device 30 and are inclined in the rotation direction (arrow A) of the rotary shaft 32. A groove 34 is defined. This rotating shaft 3
When 2 is inserted into the cylindrical bearing 36, the dynamic pressure generating groove 34 faces the inner wall of the cylindrical bearing 36.

【0008】以上のような構成において、回転軸32が
回転すると、空気の如き流体が動圧発生溝34の外側の
端部から動圧発生溝34に沿って軸受36の中央部に導
入されて、該動圧発生溝34の内部に実質的にとどま
る。該動圧発生溝34内の流体圧力が徐々に高まり、こ
の圧力により回転軸32が浮上支持される。
In the above structure, when the rotary shaft 32 rotates, a fluid such as air is introduced from the outer end of the dynamic pressure generating groove 34 along the dynamic pressure generating groove 34 into the central portion of the bearing 36. , Substantially stays inside the dynamic pressure generating groove 34. The fluid pressure in the dynamic pressure generating groove 34 gradually increases, and this pressure causes the rotating shaft 32 to be supported in a floating manner.

【0009】この動圧発生溝34は、金属の如き材料で
円柱状に形成された回転軸32にフライス盤等で切削加
工により画成される。
The dynamic pressure generating groove 34 is defined by a cutting process using a milling machine or the like on the rotating shaft 32 formed in a cylindrical shape with a material such as metal.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、静圧軸受装置10の場合、インデックス
テーブル22と軸受12の芯出しを正確に行う必要があ
るが、この工程は自動化ができず、熟練を要する。ま
た、軸受12の内部で切削加工を行うため、エンドミル
26等の刃具が小さくならざるを得ず、この種のエンド
ミル26等を用いて切削加工を施そうとすると加工時間
が長くなる。また、インデックステーブル22やフライ
ス盤28を複雑に動かす必要があり、制御プログラム作
成のために多大な工数が必要である。さらに、静圧軸受
装置10の回転精度等の性能を向上させるためには複雑
な形状の静圧ポケットを必要とする場合があるが、この
複雑な形状の静圧ポケットを形成する場合、フライス盤
28の動作は一層複雑になるとともに、プログラム作成
が極めて困難となり、あるいはプログラムを実質的に作
成できない場合があった。さらにまた、軸線方向の長さ
の違う軸受12を製造する場合には、製造する軸受12
の長さに合わせてインデックステーブル22やフライス
盤28の動作を制御するためのプログラムを作成しなけ
ればならず、工数が多くなるという問題があった。
However, in the above-mentioned prior art, in the case of the hydrostatic bearing device 10, the index table 22 and the bearing 12 must be accurately centered, but this process cannot be automated. , Requires skill. Further, since the cutting process is performed inside the bearing 12, the cutting tool such as the end mill 26 is inevitably small, and if the cutting process is performed using the end mill 26 of this type, the processing time becomes long. Further, it is necessary to move the index table 22 and the milling machine 28 in a complicated manner, which requires a great number of man-hours for creating the control program. Further, in order to improve the performance such as the rotation accuracy of the hydrostatic bearing device 10, a hydrostatic pocket having a complicated shape may be required. When the hydrostatic pocket having the complicated shape is formed, the milling machine 28 is used. The operation of is more complicated, and it is extremely difficult to create a program, or the program cannot be created in some cases. Furthermore, when manufacturing the bearings 12 having different axial lengths, the bearings 12 to be manufactured
There is a problem that a program for controlling the operation of the index table 22 and the milling machine 28 must be created according to the length of, and the number of steps is increased.

【0011】また、動圧軸受装置30の場合において
も、前記のような動圧発生溝34の形状のために、イン
デックステーブルやフライス盤を複雑に移動させなけれ
ばならず、制御プログラム作成の工数が極めて多くなっ
てしまう。さらにまた、動圧軸受装置30の動圧剛性、
負荷容量等の性能を向上させるために一層複雑な形状の
動圧発生溝を必要とする場合があるが、このような動圧
発生溝では、フライス盤の動きはさらに複雑になるとと
もに、プログラム作成は困難となり、あるいはプログラ
ム作成が実質的に不可能となる等、種々の難点が露呈し
ている。
Also in the case of the dynamic pressure bearing device 30, the index table and the milling machine must be moved intricately due to the shape of the dynamic pressure generating groove 34 as described above, and the number of steps for creating the control program is reduced. It will be extremely large. Furthermore, the dynamic pressure rigidity of the dynamic pressure bearing device 30,
In order to improve performance such as load capacity, a dynamic pressure generating groove with a more complicated shape may be required.However, with such a dynamic pressure generating groove, the movement of the milling machine becomes more complicated and programming is not possible. Various difficulties have been revealed, such as difficulty or making programming virtually impossible.

【0012】本発明は前記の種々の不都合を克服するた
めになされたものであり、加工時間が短く、複雑な形状
の静圧ポケットや動圧発生溝を容易に形成することがで
き、また直径の小さな軸受や長さの違う軸受を容易に製
造することが可能な流体軸受装置およびその製造方法を
提供することを目的とする。
The present invention has been made in order to overcome the above-mentioned various inconveniences. The machining time is short, static pressure pockets and dynamic pressure generating grooves having complicated shapes can be easily formed, and the diameter can be increased. An object of the present invention is to provide a hydrodynamic bearing device capable of easily manufacturing a small bearing and a bearing having a different length, and a manufacturing method thereof.

【0013】[0013]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明は、回転軸を挿通する軸受と、該軸受の内
壁に画成された静圧ポケットとを備え、前記静圧ポケッ
トに供給される流体の圧力により前記回転軸を回転自在
に支承する流体軸受装置において、複数枚の環状の第1
の板材と、前記複数枚の第1板材によって挟持され、且
つ複数枚積層されると共に内周面にリセスを有する環状
の第2の板材と、を備え、前記複数枚積層された第2板
材の夫々のリセスが互いに連通することにより静圧ポケ
ットとして画成されることを特徴とする。
To achieve the above object, the present invention comprises a bearing for inserting a rotary shaft and a static pressure pocket defined on an inner wall of the bearing. In the hydrodynamic bearing device that rotatably supports the rotary shaft by the pressure of the fluid supplied to the plurality of annular first
And a ring-shaped second plate member that is sandwiched by the plurality of first plate members and that is laminated with the plurality of first plate members and has a recess on the inner peripheral surface thereof. It is characterized in that the respective recesses are defined as static pressure pockets by communicating with each other.

【0014】また、本発明は、所定形状に形成された板
材を積層して構成され、内壁に静圧ポケットが画成され
た流体軸受装置の製造方法であって、環状の第1の板材
を複数枚用意する第1の工程と、内周面にリセスを有す
る環状の第2の板材を複数枚用意する第2の工程と、前
記複数枚の第1板材によって複数枚積層された第2板材
を挟持することにより、前記夫々のリセスが互いに連通
して静圧ポケットを画成する第3の工程と、前記積層さ
れた第1板材と第2板材を軸線方向に押圧、固定する第
4の工程と、を備えることを特徴とする。
Further, the present invention is a method for manufacturing a hydrodynamic bearing device, which is constructed by laminating plate members formed in a predetermined shape and has static pressure pockets defined on the inner wall thereof. A first step of preparing a plurality of sheets, a second step of preparing a plurality of annular second plate materials having recesses on the inner peripheral surface, and a second plate material laminated by a plurality of the first plate materials By sandwiching the recesses, the respective recesses communicate with each other to define a static pressure pocket, and a fourth step of pressing and fixing the stacked first plate member and second plate member in the axial direction. And a process.

【0015】さらに、本発明は、回転軸を挿通する軸受
と、該軸受の内壁に画成された動圧発生溝とを備え、前
記回転軸が回転して流体が動圧発生溝に導入されること
により生起する流体圧力により前記回転軸を回転自在に
支承する流体軸受装置において、複数枚の環状の第1の
板材と、前記複数枚の第1板材を挟持し、且つ複数枚積
層されると共に内周面にリセスを有する環状の第2の板
材と、を備え、前記複数枚積層された第2板材の夫々の
リセスが互いに連通することにより動圧発生溝として画
成されることを特徴とする。
Further, according to the present invention, a bearing for inserting the rotary shaft and a dynamic pressure generating groove defined on an inner wall of the bearing are provided, and the rotary shaft rotates to introduce a fluid into the dynamic pressure generating groove. In the hydrodynamic bearing device that rotatably supports the rotary shaft by the fluid pressure generated by the above, a plurality of annular first plate members and the plurality of first plate members are sandwiched and a plurality of them are stacked. And an annular second plate member having a recess on the inner peripheral surface thereof, and the recesses of the plurality of second plate members stacked together are defined as a dynamic pressure generating groove by communicating with each other. And

【0016】またさらに、本発明は、所定形状に形成さ
れた板材を積層して構成され、内壁に動圧発生溝が画成
された流体軸受装置の製造方法であって、環状の第1の
板材を複数枚用意する第1の工程と、内周面にリセスを
有する環状の第2の板材を複数枚用意する第2の工程
と、前記複数枚の第2板材によって複数枚積層された第
1板材を挟持することにより、前記夫々のリセスが互い
に連通して動圧発生溝を画成する第3の工程と、前記積
層された第1板材と第2板材を軸線方向に押圧、固定す
る第4の工程と、を備えることを特徴とする。
Furthermore, the present invention is a method for manufacturing a hydrodynamic bearing device, which is constructed by stacking plate members formed in a predetermined shape, and has a dynamic pressure generating groove defined on the inner wall thereof, which is the first annular shape. A first step of preparing a plurality of plate materials, a second step of preparing a plurality of annular second plate materials having recesses on the inner peripheral surface, and a plurality of stacked second plate materials by the plurality of second plate materials A third step of sandwiching one plate member so that the respective recesses communicate with each other to define a dynamic pressure generation groove, and the stacked first plate member and second plate member are pressed and fixed in the axial direction. And a fourth step.

【0017】[0017]

【作用】本発明によれば、静圧軸受装置の場合、積層さ
れた第2板材によって画成された静圧ポケットに圧力流
体が導入される。この圧力流体によって回転軸は均等に
浮上支持される。この軸受は第1板材と第2板材が積
層、固着されることにより形成され、静圧ポケットは多
数積層された第2板材のリセスにより画成される。この
ため、従来必要とされているフライス盤による複雑な加
工が不要となる。また、リセスを周方向に偏位させて積
層するため、簡単な工程で複雑な形状の静圧ポケットを
画成することができる。
According to the present invention, in the case of the hydrostatic bearing device, the pressure fluid is introduced into the hydrostatic pocket defined by the laminated second plate members. The rotating shaft is evenly supported by the pressure fluid. This bearing is formed by laminating and fixing a first plate material and a second plate material, and a static pressure pocket is defined by a recess of a plurality of second plate materials that are laminated. Therefore, complicated processing by a milling machine, which has been conventionally required, becomes unnecessary. In addition, since the recesses are offset in the circumferential direction and stacked, a static pressure pocket having a complicated shape can be defined by a simple process.

【0018】動圧軸受装置の場合、積層された第2板材
によって画成された山状の動圧発生溝にその端部側から
流体が導入されて、該動圧発生溝内に実質的にとどま
る。この結果、該動圧発生溝内の流体圧力が徐々に高ま
り、回転軸はこの圧力流体により浮上支持される。この
軸受は第2板材のリセスを回転軸の回転方向に対して山
状となるように夫々周方向に該第2板材を偏位させて積
層するため、軸線方向に沿って傾斜した動圧発生溝を軸
受の内壁側に容易に画成することができる。
In the case of the dynamic pressure bearing device, the fluid is introduced from the end side of the mountain-shaped dynamic pressure generating groove defined by the laminated second plate member, and the fluid is substantially introduced into the dynamic pressure generating groove. Stay As a result, the fluid pressure in the dynamic pressure generation groove gradually increases, and the rotating shaft is levitationally supported by this pressure fluid. In this bearing, since the second plate member is stacked by eccentrically arranging the second plate member in the circumferential direction so that the recess of the second plate member becomes a mountain shape with respect to the rotation direction of the rotating shaft, the dynamic pressure generated along the axial direction is generated. The groove can be easily defined on the inner wall side of the bearing.

【0019】[0019]

【実施例】本発明に係る流体軸受装置について、その製
造方法との関係において好適な実施例を挙げ、添付の図
面を参照しながら以下詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrodynamic bearing device according to the present invention will be described in detail below with reference to the accompanying drawings, with reference to preferred embodiments in relation to its manufacturing method.

【0020】先ず、第1の実施例として静圧軸受装置に
ついて説明する。図1は、本発明の第1の実施例に係る
静圧軸受装置の一部断面斜視図、図2は、図1に示す静
圧軸受装置を構成する第1の板材としての鋼板の平面
図、図3は、図1に示す静圧軸受装置を構成する第2の
板材としての鋼板の平面図、図4は、図1に示す静圧軸
受装置の構成を示す斜視図、図5は、図1に示す静圧軸
受装置の断面図、図6は、図1に示す静圧軸受装置の展
開図である。
First, a hydrostatic bearing device will be described as a first embodiment. 1 is a partial cross-sectional perspective view of a hydrostatic bearing device according to a first embodiment of the present invention, and FIG. 2 is a plan view of a steel plate as a first plate material constituting the hydrostatic bearing device shown in FIG. 3 is a plan view of a steel plate as a second plate material that constitutes the hydrostatic bearing device shown in FIG. 1, FIG. 4 is a perspective view showing the configuration of the hydrostatic bearing device shown in FIG. 1, and FIG. FIG. 6 is a sectional view of the hydrostatic bearing device shown in FIG. 1, and FIG. 6 is a development view of the hydrostatic bearing device shown in FIG.

【0021】図1において、参照符号40は、第1の実
施例に係る静圧軸受装置を示す。この静圧軸受装置40
の製造に際して、先ず、プレス加工、ワイヤカット、レ
ーザカット等により、円形の孔部42が画成された第1
の鋼板44を所定枚数形成する(図2参照)。一方、第
1鋼板44と同径の孔部46が画成され、さらにこの孔
部46の周囲にリセス48a〜48dが画成された第2
の鋼板50を所定枚数形成する(図3参照)。
In FIG. 1, reference numeral 40 indicates a hydrostatic bearing device according to the first embodiment. This hydrostatic bearing device 40
In manufacturing the first, first, a circular hole 42 is defined by press working, wire cutting, laser cutting, or the like.
A predetermined number of steel plates 44 are formed (see FIG. 2). On the other hand, the hole 46 having the same diameter as that of the first steel plate 44 is defined, and the recesses 48a to 48d are defined around the hole 46.
A predetermined number of steel plates 50 are formed (see FIG. 3).

【0022】前記第2鋼板50を所定枚数積層し、この
積層された第2鋼板50を所定枚数の前記第1鋼板44
で挟持して積層する(図4参照)。これにより、前記リ
セス48a〜48dは互いに連通して静圧ポケット52
a〜52dとして画成され、夫々の静圧ポケット52a
〜52dには周方向の一方の第1縁部54a〜54dと
他方の第2縁部56a〜56dが形成される(図5参
照)。このとき、前記第2鋼板50の夫々のリセス48
a〜48dは互いに周方向に所定角度ずつ偏位するよう
に積層され、第1縁部54a〜54dの一方の第1の隅
角部58a〜58dは他方の第2の隅角部60a〜60
dに対して周方向に長さBだけ偏位し、同様に第2縁部
56a〜56dの一方の第3の隅角部62a〜62dは
他方の第4の隅角部64a〜64dに対して周方向に長
さBだけ偏位して構成され、これによって前記静圧ポケ
ット52a〜52dは周方向に沿って捩れた形状に画成
されることになる(図6参照)。
A predetermined number of the second steel plates 50 are laminated, and a predetermined number of the second steel plates 50 are laminated.
It is sandwiched by and laminated (see FIG. 4). Accordingly, the recesses 48a to 48d communicate with each other so that the static pressure pocket 52 is formed.
a to 52d, each static pressure pocket 52a.
The first edge portions 54a to 54d in the circumferential direction and the second edge portions 56a to 56d on the other side are formed in the to 52d (see FIG. 5). At this time, each recess 48 of the second steel plate 50 is
a to 48d are stacked so as to be offset from each other by a predetermined angle in the circumferential direction, and one first corner portion 58a to 58d of the first edge portions 54a to 54d and the other second corner portion 60a to 60d.
It is displaced in the circumferential direction by a length B with respect to d, and similarly, the third corner corner portions 62a to 62d of the second edge portions 56a to 56d are different from the other fourth corner corner portions 64a to 64d. The static pressure pockets 52a to 52d are formed in a twisted shape along the circumferential direction (see FIG. 6).

【0023】なお、第1隅角部58aと、該第1隅角部
58aに隣接する第3隅角部62bとの間隔は前記長さ
Bより狭く形成され、同様に、第1隅角部58bと第3
隅角部62c、第1隅角部58cと第3隅角部62d、
第1隅角部58dと第3隅角部62aの間隔は前記長さ
Bより狭く形成される。このため、第1縁部54a〜5
4dの第1隅角部58a〜58dの近傍は第2縁部56
b〜56aの第4隅角部64b〜64aの近傍と軸線方
向に長さCだけ重複する。
The interval between the first corner portion 58a and the third corner portion 62b adjacent to the first corner portion 58a is formed to be narrower than the length B. Similarly, the first corner portion 58a is formed. 58b and third
Corner portion 62c, first corner portion 58c and third corner portion 62d,
The distance between the first corner portion 58d and the third corner portion 62a is smaller than the length B. Therefore, the first edge portions 54a-5
The vicinity of the first corner portions 58a to 58d of 4d is the second edge portion 56.
The vicinity of the fourth corner portions 64b to 64a of b to 56a overlaps the length C in the axial direction.

【0024】このように積層された第1鋼板44と第2
鋼板50をその厚さ方向に押圧し、ボルト締め、また
は、接着により固着して軸受66が形成される。接着に
より固着する方法としては、積層された第1鋼板44と
第2鋼板50に合成樹脂を真空含浸させる、あるいは第
1鋼板44と第2鋼板50を加熱して低温溶融金属を真
空含浸させる等の方法があり、また、積層する前の第1
鋼板44、第2鋼板50に接着剤を塗布しておき、積層
後に加圧して固着する方法でもよい。
The first steel plate 44 and the second steel plate 44 thus laminated
The steel plate 50 is pressed in the thickness direction thereof, and is bolted or fixed by adhesion to form the bearing 66. As the method of fixing by adhesion, the laminated first steel plate 44 and the second steel plate 50 are vacuum impregnated with synthetic resin, or the first steel plate 44 and the second steel plate 50 are heated to be vacuum impregnated with the low temperature molten metal. There is also a method of
An adhesive may be applied to the steel plate 44 and the second steel plate 50, and after stacking, pressure may be applied to fix them.

【0025】このようにして構成される前記静圧ポケッ
ト52a〜52dの略中央部に圧力流体が導入される流
体供給通路68a〜68dを画成する。この流体供給通
路68a〜68dの画成に際しては、軸受66の外壁か
らドリル等を用いて行う。該流体供給通路68a〜68
dは図示しない圧力流体供給源に連通しておく。
Fluid supply passages 68a to 68d into which a pressure fluid is introduced are defined at substantially central portions of the static pressure pockets 52a to 52d thus constructed. The fluid supply passages 68a to 68d are defined by using a drill or the like from the outer wall of the bearing 66. The fluid supply passages 68a to 68
d is connected to a pressure fluid supply source (not shown).

【0026】次に、この軸受66の内周を研磨して第1
鋼板44、第2鋼板50のバリ、接着剤等を削り落と
す。そして、この軸受66の内部に回転軸70が挿入さ
れる。
Next, the inner circumference of the bearing 66 is polished to make the first
Burrs of the steel plate 44 and the second steel plate 50, adhesives, etc. are scraped off. Then, the rotary shaft 70 is inserted into the bearing 66.

【0027】次に本実施例に係る静圧軸受装置40の動
作について説明する。
Next, the operation of the hydrostatic bearing device 40 according to this embodiment will be described.

【0028】図示しない圧力流体供給源が付勢される
と、油の如き流体が流体供給通路68a〜68dから一
定の圧力で静圧ポケット52a〜52dに導入され、回
転軸70の外周に前記流体の圧力が加わり、該回転軸7
0はこの流体圧力により浮上支持される。このため、回
転軸70は軸受66の内部を極めて小さい摩擦で回転す
ることが可能となる。
When a pressure fluid supply source (not shown) is energized, a fluid such as oil is introduced from the fluid supply passages 68a to 68d into the static pressure pockets 52a to 52d at a constant pressure, and the fluid is provided on the outer periphery of the rotary shaft 70. Pressure is applied to the rotary shaft 7
Zero is levitated and supported by this fluid pressure. Therefore, the rotary shaft 70 can rotate inside the bearing 66 with extremely small friction.

【0029】回転軸70にその軸線方向に沿って凹凸や
真円度歪みがある場合、例えば、微少な凸部72が回転
軸70の軸線方向に延在していると、該凸部72が静圧
ポケット52aに対向しているとき、該凸部72にかか
る流体圧力によって回転軸70は凸部72と反対方向に
偏位する傾向にある(図5参照)。この場合、回転軸7
0が回転すると、前記凸部72は静圧ポケット52aの
第2隅角部60aにかかり(図6参照)、さらに回転す
ると、該凸部72は第1縁部54aを相対的に移動し、
静圧ポケット52aに対向する凸部72の面積が徐々に
減少する。このため、該凸部72にかかる流体圧力が徐
々に少なくなり、回転軸70はその軸心の中心方向に偏
位する。
When the rotating shaft 70 has irregularities or circularity distortion along its axial direction, for example, if a minute convex portion 72 extends in the axial direction of the rotating shaft 70, the convex portion 72 will be formed. When facing the static pressure pocket 52a, the rotary shaft 70 tends to be displaced in the direction opposite to the convex portion 72 due to the fluid pressure applied to the convex portion 72 (see FIG. 5). In this case, the rotary shaft 7
When 0 rotates, the protrusion 72 engages with the second corner portion 60a of the static pressure pocket 52a (see FIG. 6), and when further rotated, the protrusion 72 relatively moves the first edge 54a,
The area of the convex portion 72 facing the static pressure pocket 52a gradually decreases. Therefore, the fluid pressure applied to the convex portion 72 is gradually reduced, and the rotary shaft 70 is displaced toward the center of its axis.

【0030】そして、前記凸部72が第1隅角部58a
に達する直前に、該凸部72は隣接する第2縁部56b
の第4隅角部64bにかかり、このため、該凸部72に
は静圧ポケット52aと静圧ポケット52bの両者から
流体圧力が加わる。
The convex portion 72 has the first corner portion 58a.
Immediately before reaching the second edge 56b adjacent to the second edge 56b.
Of the static pressure pocket 52a and the static pressure pocket 52b is applied to the convex portion 72.

【0031】回転軸70がさらに回転すると、静圧ポケ
ット52bに対向する前記凸部72の面積が増加し、徐
々に該凸部72に加わる流体圧力が増加し、再び回転軸
70は凸部72と反対方向に偏位する。そして、前記凸
部72が第3隅角部62bを経て静圧ポケット52bに
対向する位置に至る。
When the rotary shaft 70 further rotates, the area of the convex portion 72 facing the static pressure pocket 52b increases, the fluid pressure applied to the convex portion 72 gradually increases, and the rotary shaft 70 again has the convex portion 72. And deviate in the opposite direction. Then, the convex portion 72 reaches the position facing the static pressure pocket 52b through the third corner portion 62b.

【0032】このように、凸部72に加わる圧力は第1
縁部54a〜54d、第2縁部56a〜56dで徐々に
変化するため、回転軸70の軸心からの偏位は急激には
起こらず、芯振れが発生することなく回転する。また、
凸部72は常にいずれかの静圧ポケット52a〜52d
から流体圧力が加えられるため、回転軸70の偏位量が
抑えられ、回転精度が向上する。
As described above, the pressure applied to the convex portion 72 is the first
Since the edge portions 54a to 54d and the second edge portions 56a to 56d are gradually changed, the deviation from the axis of the rotating shaft 70 does not suddenly occur, and the rotating shaft 70 rotates without center runout. Also,
The convex portion 72 always has one of the static pressure pockets 52a to 52d.
Since the fluid pressure is applied from the above, the deviation amount of the rotating shaft 70 is suppressed, and the rotation accuracy is improved.

【0033】軸線方向の長さの異なる静圧軸受装置40
を製造する場合には、第1鋼板44、第2鋼板50の積
層枚数を変えるだけで、同一の製造方法により所望の長
さの静圧軸受装置40を得ることができる。
Hydrostatic bearing device 40 having different axial lengths
In the case of manufacturing, the hydrostatic bearing device 40 having a desired length can be obtained by the same manufacturing method only by changing the number of laminated first steel plates 44 and second steel plates 50.

【0034】次に、第2の実施例として動圧軸受装置に
ついて説明する。
Next, a dynamic pressure bearing device will be described as a second embodiment.

【0035】図7は、本発明の第2の実施例に係る動圧
軸受装置の一部断面斜視図、図8は、図7に示す動圧軸
受装置を構成する第3の板材としての鋼板の平面図、図
9は、図7に示す動圧軸受装置を構成する第4の板材と
しての鋼板の平面図、図10は、図7に示す動圧軸受装
置の構成を示す斜視図である。
FIG. 7 is a partial cross-sectional perspective view of a hydrodynamic bearing device according to a second embodiment of the present invention, and FIG. 8 is a steel plate as a third plate material constituting the hydrodynamic bearing device shown in FIG. FIG. 9 is a plan view of a steel plate as a fourth plate material forming the dynamic pressure bearing device shown in FIG. 7, and FIG. 10 is a perspective view showing the structure of the dynamic pressure bearing device shown in FIG. 7. .

【0036】図7において、参照符号80は、第2の実
施例に係る動圧軸受装置を示す。この動圧軸受装置80
の製造に際して、先ず、第1の実施例と同様に、円形の
孔部82が画成された第3の鋼板84と、該第3鋼板8
4と同径の孔部86が画成され、さらにこの孔部86の
周囲に複数のリセス88が画成された第4の鋼板90を
所定枚数形成する(図8、図9参照)。
In FIG. 7, reference numeral 80 indicates a hydrodynamic bearing device according to the second embodiment. This dynamic pressure bearing device 80
In manufacturing the same, first, similarly to the first embodiment, a third steel plate 84 in which a circular hole 82 is defined, and the third steel plate 8 are formed.
A hole 86 having the same diameter as that of No. 4 is defined, and a predetermined number of fourth steel plates 90 having a plurality of recesses 88 defined around the hole 86 are formed (see FIGS. 8 and 9).

【0037】次に、前記第3鋼板84を所定枚数積層
し、この積層された第3鋼板84を所定枚数の前記第4
鋼板90で挟持して積層する(図10参照)。このと
き、前記第4鋼板90の夫々のリセス88は互いに周方
向に所定角度ずつ偏位するように積層され、これによ
り、前記リセス88は互いに連通して動圧発生溝92と
して画成される。また、積層された第3鋼板84の一端
側に積層された第4鋼板90で構成される動圧発生溝9
2と、他端側に積層された第4鋼板90で構成される動
圧発生溝92とは軸線に沿って反対方向に傾斜するよう
に偏位の方向を互いに反対にして第4鋼板90を積層す
る。結果的に、一端側に積層された第4鋼板90のリセ
ス88と、他端側に積層された第4鋼板90のリセス8
8によって動圧発生溝92が山形に画成されることにな
る。この場合、前記第3鋼板84は一端側と他端側の第
4鋼板90によって挟持されるために、前記一端側と他
端側のリセス88が夫々該第3鋼板84によって遮断さ
れることになる。
Next, a predetermined number of the third steel plates 84 are laminated, and a predetermined number of the fourth steel plates 84 are laminated.
It is sandwiched by steel plates 90 and laminated (see FIG. 10). At this time, the recesses 88 of the fourth steel plate 90 are stacked so as to be offset from each other by a predetermined angle in the circumferential direction, so that the recesses 88 communicate with each other and are defined as the dynamic pressure generating grooves 92. . Further, the dynamic pressure generation groove 9 formed of the fourth steel plate 90 stacked on one end side of the stacked third steel plate 84.
2 and the dynamic pressure generating groove 92 formed of the fourth steel plate 90 laminated on the other end side are arranged so that the deviation directions thereof are opposite to each other so as to be inclined in the opposite directions along the axis. Stack. As a result, the recess 88 of the fourth steel plate 90 stacked on one end side and the recess 8 of the fourth steel plate 90 stacked on the other end side.
8, the dynamic pressure generating groove 92 is defined in a chevron shape. In this case, since the third steel plate 84 is sandwiched by the fourth steel plates 90 on one end side and the other end side, the recesses 88 on the one end side and the other end side are blocked by the third steel plate 84, respectively. Become.

【0038】このように積層された第3鋼板84と第4
鋼板90をその厚さ方向に押圧し、ボルト締め、また
は、接着により固着して軸受94が形成される。
The third steel plate 84 and the fourth steel plate laminated in this way
The bearing 94 is formed by pressing the steel plate 90 in its thickness direction and fastening it by bolting or adhering.

【0039】次に、この軸受94の内周を研磨して第3
鋼板84、第4鋼板90のバリ、接着剤等を削り落と
す。そして、この軸受94の内部に回転軸96が挿入さ
れる。
Next, the inner circumference of the bearing 94 is polished to make a third
Burrs of the steel plate 84 and the fourth steel plate 90, adhesives, etc. are scraped off. Then, the rotary shaft 96 is inserted into the bearing 94.

【0040】次に本実施例に係る動圧軸受装置80の動
作について説明する。
Next, the operation of the dynamic pressure bearing device 80 according to this embodiment will be described.

【0041】回転軸96が矢印Dの方向に回転すると、
回転軸96の周囲の空気の如き流体が回転軸96との摩
擦により動圧発生溝92の開口部98から導入される
(図7参照)。この流体は動圧発生溝92に沿って移動
して動圧発生溝92の端部100に達し、さらに流体が
動圧発生溝92から供給されるため、端部100で流体
は高圧になる。この圧力により回転軸96が浮上支持さ
れ、回転軸96は軸受94の内部を極めて小さい摩擦で
回転することが可能となる。
When the rotary shaft 96 rotates in the direction of arrow D,
A fluid such as air around the rotary shaft 96 is introduced from the opening 98 of the dynamic pressure generating groove 92 by friction with the rotary shaft 96 (see FIG. 7). This fluid moves along the dynamic pressure generating groove 92 to reach the end portion 100 of the dynamic pressure generating groove 92, and the fluid is supplied from the dynamic pressure generating groove 92, so that the fluid becomes high pressure at the end portion 100. The rotating shaft 96 is levitationally supported by this pressure, and the rotating shaft 96 can rotate inside the bearing 94 with extremely small friction.

【0042】軸線方向の長さの異なる動圧軸受装置80
を製造する場合には、第3鋼板84、第4鋼板90の積
層枚数を変えるだけて、同一の製造方法により所望の長
さの動圧軸受装置80を得ることができる。
Dynamic bearing device 80 having different axial lengths
In the case of manufacturing, the hydrodynamic bearing device 80 having a desired length can be obtained by the same manufacturing method only by changing the number of stacked third steel plates 84 and fourth steel plates 90.

【0043】[0043]

【発明の効果】本発明に係る流体軸受装置およびその製
造方法によれば、以下のような効果ならびに利点が得ら
れる。
According to the hydrodynamic bearing device and the manufacturing method thereof according to the present invention, the following effects and advantages can be obtained.

【0044】軸受は第1鋼板と第2鋼板が積層、固着さ
れることにより形成され、静圧ポケットや動圧発生溝は
第2鋼板のリセスにより画成される。このため、フライ
ス盤等の切削工具による複雑な加工が不要となり、加工
時間が短縮できて製造コストを低廉化することが可能と
なる。また、リセスを周方向に偏位させて積層するた
め、簡単な工程で複雑な形状の静圧ポケットや動圧発生
溝を画成することができ、回転精度等の性能の向上が達
成される。さらに、直径の小さな軸受も容易に製造する
ことができ、積層される第1鋼板、第2鋼板の枚数を変
えるだけで軸線方向の長さの違う軸受を製造することが
可能となる。
The bearing is formed by laminating and fixing the first steel plate and the second steel plate, and the static pressure pocket and the dynamic pressure generating groove are defined by the recess of the second steel plate. For this reason, complicated machining with a cutting tool such as a milling machine is not required, and the machining time can be shortened and the manufacturing cost can be reduced. Further, since the recesses are eccentrically stacked to be stacked, static pressure pockets and dynamic pressure generating grooves having a complicated shape can be defined by a simple process, and improvement in performance such as rotation accuracy is achieved. . Further, a bearing having a small diameter can be easily manufactured, and it becomes possible to manufacture a bearing having a different axial length by simply changing the number of laminated first steel plates and second steel plates.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る静圧軸受装置の一
部断面斜視図である。
FIG. 1 is a partial sectional perspective view of a hydrostatic bearing device according to a first embodiment of the present invention.

【図2】図1に示す静圧軸受装置を構成する第1の鋼板
の平面図である。
2 is a plan view of a first steel plate forming the hydrostatic bearing device shown in FIG. 1. FIG.

【図3】図1に示す静圧軸受装置を構成する第2の鋼板
の平面図である。
FIG. 3 is a plan view of a second steel plate forming the hydrostatic bearing device shown in FIG.

【図4】図1に示す静圧軸受装置の構成を示す斜視図で
ある。
4 is a perspective view showing the configuration of the hydrostatic bearing device shown in FIG. 1. FIG.

【図5】図1に示す静圧軸受装置の断面図である。5 is a cross-sectional view of the hydrostatic bearing device shown in FIG.

【図6】図1に示す静圧軸受装置の展開図である。6 is a development view of the hydrostatic bearing device shown in FIG. 1. FIG.

【図7】本発明の第2の実施例に係る動圧軸受装置の一
部断面斜視図である。
FIG. 7 is a partial cross-sectional perspective view of a dynamic pressure bearing device according to a second embodiment of the present invention.

【図8】図7に示す動圧軸受装置を構成する第3の鋼板
の平面図である。
8 is a plan view of a third steel plate forming the dynamic pressure bearing device shown in FIG. 7. FIG.

【図9】図7に示す動圧軸受装置を構成する第4の鋼板
の平面図である。
9 is a plan view of a fourth steel plate forming the dynamic pressure bearing device shown in FIG. 7. FIG.

【図10】図7に示す動圧軸受装置の構成を示す斜視図
である。
10 is a perspective view showing the structure of the dynamic pressure bearing device shown in FIG. 7. FIG.

【図11】従来技術に係る静圧軸受装置の一部断面斜視
図である。
FIG. 11 is a partial cross-sectional perspective view of a hydrostatic bearing device according to a conventional technique.

【図12】図11に示す静圧軸受装置の断面図である。12 is a sectional view of the hydrostatic bearing device shown in FIG.

【図13】図11に示す静圧軸受装置の製造装置の正面
図である。
13 is a front view of an apparatus for manufacturing the hydrostatic bearing device shown in FIG.

【図14】従来技術に係る動圧軸受装置の一部断面斜視
図である。
FIG. 14 is a partial cross-sectional perspective view of a dynamic pressure bearing device according to a conventional technique.

【符号の説明】[Explanation of symbols]

40…静圧軸受装置 44、50、8
4、90…鋼板 48a〜48d、88…リセス 52a〜52d…
静圧ポケット 66、94…軸受 70、96…回転
軸 80…動圧軸受装置 92…動圧発生溝
40 ... Hydrostatic bearing device 44, 50, 8
4, 90 ... Steel plates 48a to 48d, 88 ... Recesses 52a to 52d ...
Hydrostatic pockets 66, 94 ... Bearings 70, 96 ... Rotating shaft 80 ... Dynamic pressure bearing device 92 ... Dynamic pressure generating groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝口 恒男 埼玉県狭山市新狭山1−10−1 ホンダエ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuneo Takiguchi 1-10-1 Shin-Sayama, Sayama-shi, Saitama Honda Engineering Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】回転軸を挿通する軸受と、該軸受の内壁に
画成された静圧ポケットとを備え、前記静圧ポケットに
供給される流体の圧力により前記回転軸を回転自在に支
承する流体軸受装置において、 複数枚の環状の第1の板材と、 前記複数枚の第1板材によって挟持され、且つ複数枚積
層されると共に内周面にリセスを有する環状の第2の板
材と、 を備え、前記複数枚積層された第2板材の夫々のリセス
が互いに連通することにより静圧ポケットとして画成さ
れることを特徴とする流体軸受装置。
1. A bearing having a rotary shaft inserted therethrough, and a static pressure pocket defined on an inner wall of the bearing. The rotary shaft is rotatably supported by the pressure of a fluid supplied to the static pressure pocket. In the hydrodynamic bearing device, a plurality of annular first plate members, and an annular second plate member that is sandwiched by the plurality of first plate members, is stacked, and has a recess on the inner peripheral surface, A hydrodynamic bearing device comprising: a plurality of second plate members, wherein the recesses of the laminated second plate members communicate with each other so as to be defined as static pressure pockets.
【請求項2】請求項1記載の流体軸受装置において、 前記複数枚積層された第2板材の夫々のリセスが互いに
周方向に偏位して積層され、静圧ポケットが前記第2板
材の軸線方向に沿って捩れて画成されることを特徴とす
る流体軸受装置。
2. The hydrodynamic bearing device according to claim 1, wherein the recesses of each of the plurality of laminated second plate members are circumferentially offset from each other and laminated, and the hydrostatic pocket has an axial line of the second plate member. A hydrodynamic bearing device, wherein the hydrodynamic bearing device is defined by being twisted along a direction.
【請求項3】請求項2記載の流体軸受装置において、一
つの静圧ポケットの始端部が周方向に互いに隣接する他
の静圧ポケットの終端部と第2板材の軸線方向において
重複していることを特徴とする流体軸受装置。
3. A hydrodynamic bearing device according to claim 2, wherein the start end of one static pressure pocket overlaps with the end of another static pressure pocket which is adjacent to each other in the circumferential direction in the axial direction of the second plate member. A hydrodynamic bearing device characterized by the above.
【請求項4】所定形状に形成された板材を積層して構成
され、内壁に静圧ポケットが画成された流体軸受装置の
製造方法であって、 環状の第1の板材を複数枚用意する第1の工程と、 内周面にリセスを有する環状の第2の板材を複数枚用意
する第2の工程と、 前記複数枚の第1板材によって複数枚積層された第2板
材を挟持することにより、前記夫々のリセスが互いに連
通して静圧ポケットを画成する第3の工程と、 前記積層された第1板材と第2板材を軸線方向に押圧、
固定する第4の工程と、 を備えることを特徴とする流体軸受装置の製造方法。
4. A method for manufacturing a hydrodynamic bearing device, which is constructed by stacking plate members formed in a predetermined shape and has static pressure pockets defined on the inner wall thereof, and a plurality of annular first plate members are prepared. A first step; a second step of preparing a plurality of annular second plate members having recesses on the inner peripheral surface; and a sandwiching of a plurality of second plate members laminated by the plurality of first plate members. A third step in which the respective recesses communicate with each other to define a static pressure pocket, and the stacked first plate member and second plate member are pressed in the axial direction,
A fourth step of fixing, and a method of manufacturing a hydrodynamic bearing device, comprising:
【請求項5】請求項4記載の流体軸受装置の製造方法に
おいて、 前記第3の工程では、前記複数枚の第2板材の夫々のリ
セスを互いに周方向に偏位して積層させることにより前
記リセスが第2板材の軸線方向に沿って捩れた静圧ポケ
ットとして画成されることを特徴とする流体軸受装置の
製造方法。
5. The method for manufacturing a hydrodynamic bearing device according to claim 4, wherein in the third step, the recesses of the plurality of second plate materials are circumferentially offset from each other and stacked. A method of manufacturing a hydrodynamic bearing device, wherein the recess is defined as a static pressure pocket twisted along the axial direction of the second plate member.
【請求項6】回転軸を挿通する軸受と、該軸受の内壁に
画成された動圧発生溝とを備え、前記回転軸が回転して
流体が動圧発生溝に導入されることにより生起する流体
圧力により前記回転軸を回転自在に支承する流体軸受装
置において、 複数枚の環状の第1の板材と、 前記複数枚の第1板材を挟持し、且つ複数枚積層される
と共に内周面にリセスを有する環状の第2の板材と、 を備え、前記複数枚積層された第2板材の夫々のリセス
が互いに連通することにより動圧発生溝として画成され
ることを特徴とする流体軸受装置。
6. A bearing which passes through a rotary shaft, and a dynamic pressure generating groove defined on an inner wall of the bearing, wherein the rotary shaft rotates to introduce a fluid into the dynamic pressure generating groove. In a hydrodynamic bearing device that rotatably supports the rotary shaft by a fluid pressure, a plurality of annular first plate members and a plurality of the first plate members are sandwiched, and a plurality of the first plate members are laminated and an inner peripheral surface is formed. And a second annular plate member having a recess, and the recesses of the plurality of laminated second plate members communicate with each other to define a dynamic pressure generating groove. apparatus.
【請求項7】請求項6記載の流体軸受装置において、前
記複数枚の積層された第2板材によって画成される動圧
発生溝は回転軸の回転方向に対して山状に形成されてい
ることを特徴とする流体軸受装置。
7. The hydrodynamic bearing device according to claim 6, wherein the dynamic pressure generating groove defined by the plurality of laminated second plate members is formed in a mountain shape in the rotation direction of the rotary shaft. A hydrodynamic bearing device characterized by the above.
【請求項8】請求項7記載の流体軸受装置において、前
記動圧発生溝の山状の頂部に前記第1板材が配置される
ことにより、該動圧発生溝が遮断されていることを特徴
とする流体軸受装置。
8. The hydrodynamic bearing device according to claim 7, wherein the dynamic pressure generating groove is blocked by disposing the first plate member on the mountain-shaped top of the dynamic pressure generating groove. Hydrodynamic bearing device.
【請求項9】所定形状に形成された板材を積層して構成
され、内壁に動圧発生溝が画成された流体軸受装置の製
造方法であって、 環状の第1の板材を複数枚用意する第1の工程と、 内周面にリセスを有する環状の第2の板材を複数枚用意
する第2の工程と、 前記複数枚の第2板材によって複数枚積層された第1板
材を挟持することにより、前記夫々のリセスが互いに連
通して動圧発生溝を画成する第3の工程と、 前記積層された第1板材と第2板材を軸線方向に押圧、
固定する第4の工程と、 を備えることを特徴とする流体軸受装置の製造方法。
9. A method of manufacturing a hydrodynamic bearing device, comprising a plurality of plate members formed in a predetermined shape laminated together, wherein a dynamic pressure generating groove is defined on an inner wall, wherein a plurality of annular first plate members are prepared. And a second step of preparing a plurality of annular second plate members having recesses on the inner peripheral surface thereof, and sandwiching a plurality of first plate members stacked by the plurality of second plate members. Thus, a third step in which the respective recesses communicate with each other to define a dynamic pressure generation groove, and the stacked first plate member and second plate member are pressed in the axial direction,
A fourth step of fixing, and a method of manufacturing a hydrodynamic bearing device, comprising:
【請求項10】請求項9記載の流体軸受装置の製造方法
において、前記第3の工程では前記複数枚の第2板材の
夫々のリセスを回転軸の回転方向に対して山状に画成し
た動圧発生溝となるように、該第2板材を周方向に互い
に偏位させて積層することを特徴とする流体軸受装置の
製造方法。
10. The method for manufacturing a hydrodynamic bearing device according to claim 9, wherein in the third step, each recess of the plurality of second plate members is formed in a mountain shape in the rotation direction of the rotation shaft. A method of manufacturing a hydrodynamic bearing device, comprising stacking the second plate members so as to be offset from each other in the circumferential direction so as to form a dynamic pressure generating groove.
JP13825595A 1995-06-05 1995-06-05 Hydrodynamic bearing device and method of manufacturing the same Expired - Fee Related JP3158014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13825595A JP3158014B2 (en) 1995-06-05 1995-06-05 Hydrodynamic bearing device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13825595A JP3158014B2 (en) 1995-06-05 1995-06-05 Hydrodynamic bearing device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08326749A true JPH08326749A (en) 1996-12-10
JP3158014B2 JP3158014B2 (en) 2001-04-23

Family

ID=15217682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13825595A Expired - Fee Related JP3158014B2 (en) 1995-06-05 1995-06-05 Hydrodynamic bearing device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3158014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117613A (en) * 2010-12-01 2012-06-21 Canon Inc Static pressure gas bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078001A1 (en) * 2005-01-21 2006-07-27 National University Corporation Chiba University Elastic surface wave device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117613A (en) * 2010-12-01 2012-06-21 Canon Inc Static pressure gas bearing

Also Published As

Publication number Publication date
JP3158014B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
EP0716239B1 (en) Method for making precision self-contained hydrodynamic bearing assembly
US8241093B2 (en) Precision guiding device in a machine for machining cylindrical components
EP2305403B1 (en) Method of cutting a thin-walled member
WO2006043444A1 (en) Machined cage for cylindrical roller bearing and method of manufacturing the same
JPS59118577A (en) Spool for rotary control valve of power steering gear and method of manufacturing said spool
GB2313633A (en) Conic fluid bearing
US6450075B1 (en) Ventilated air cooled cutting system
US6660407B1 (en) Friction-welded shaft-disc assembly and method for the manufacture thereof
KR101818276B1 (en) Structured Sliding Surface of a Bearing Shell
US4743126A (en) Hydrodynamic bearings, and secondary assemblies for producing said bearings
JP2004237339A (en) Method for manufacturing clutch housing
CN100413626C (en) Broaching tool and method for machining the surfaces of bores
JPH08326749A (en) Fluid bearing device, and its manufacture
US4604011A (en) Method and apparatus for edge-planing sheet metal
JPH11239902A (en) Spindle supporting device for machine tool
JPH0861369A (en) Hydrostatic gas bearing
JPH0236748A (en) Laminated rotor core and manufacture thereof
JP2759866B2 (en) Rotary cutting tool for boring
US5836077A (en) Method for forming grooves
JP4846225B2 (en) Machined cage for cylindrical roller bearings
JPS5973137A (en) Manufacture of spiral grooved bearing housing
JPS60146611A (en) Method of machining projecting seat
JP2002346801A (en) Manufacturing method of plastic-ring
JP3160871B2 (en) Rotating magnetic head device
JP2000257549A (en) Manufacture of shoe for swash plate type hydraulic rotation machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees