JPH0832671B2 - Method for producing high-purity suberonitrile - Google Patents

Method for producing high-purity suberonitrile

Info

Publication number
JPH0832671B2
JPH0832671B2 JP62028193A JP2819387A JPH0832671B2 JP H0832671 B2 JPH0832671 B2 JP H0832671B2 JP 62028193 A JP62028193 A JP 62028193A JP 2819387 A JP2819387 A JP 2819387A JP H0832671 B2 JPH0832671 B2 JP H0832671B2
Authority
JP
Japan
Prior art keywords
suberonitrile
distillation
distillation column
purity
dichlorohexane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62028193A
Other languages
Japanese (ja)
Other versions
JPS63196550A (en
Inventor
寛行 難波
紘一 阿部
雅夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62028193A priority Critical patent/JPH0832671B2/en
Publication of JPS63196550A publication Critical patent/JPS63196550A/en
Publication of JPH0832671B2 publication Critical patent/JPH0832671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1,6−ジクロルヘキサンと青化ソーダより
スベロニトリルを製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing suberonitrile from 1,6-dichlorohexane and sodium cyanide.

スベロニトリルは農医薬品やジカルボン酸、ジアミン
などの製造用中間体として、有機化学および生物化学の
分野で有用である。
Suberonitrile is useful in the fields of organic chemistry and biochemistry as an intermediate for the production of agricultural drugs, dicarboxylic acids, diamines and the like.

(従来の技術) スベロニトリルの製造方法としては、特開昭61−1222
58号に1,6−ヘキサンジオールとヨウ化水素またはアル
カリ金属のヨウ化物とを反応させて得られた1,6−ジヨ
ードヘキサンを青化ソーダ、青化カリおよび青酸などの
シアノ化剤と反応させる方法がある。この方法において
は、粗スベロニトリルを疎水性有機溶剤、例えばエーテ
ル、クロロホルム、酢酸エチル等の溶剤で抽出し、水洗
して、減圧蒸溜することにより純度98%以上のスベロニ
トリルを得ている。
(Prior Art) Japanese Patent Application Laid-Open No. 61-12222 discloses a method for producing suberonitrile.
No. 58 was reacted with 1,6-hexanediol and hydrogen iodide or an iodide of an alkali metal to obtain 1,6-diiodohexane as a cyanating agent such as sodium cyanide, potassium cyanide and hydrocyanic acid. There is a method of reacting. In this method, crude suberonitrile is extracted with a hydrophobic organic solvent such as ether, chloroform, ethyl acetate or the like, washed with water, and distilled under reduced pressure to obtain suberonitrile having a purity of 98% or more.

(発明が解決しようとする問題点) 発明者等は先に、一般式が (R1〜R4は炭素数が3〜10のアルキル基を示し、これら
は互いに同一でも異なっていても良い)で表される相間
移動触媒の存在下、1,6−ジクロルヘキサンと青化ソー
ダ水溶液を反応させスベロニトリルを製造する方法を発
明した。
(Problems to be Solved by the Invention) (R 1 to R 4 represent an alkyl group having 3 to 10 carbon atoms, which may be the same or different from each other), in the presence of a phase transfer catalyst represented by 1,6-dichlorohexane and blue. A method for producing suberonitrile by reacting an aqueous solution of sodium chloride was invented.

この方法によれば、反応生成液は相間移動触媒を使用
することにより、油相と水相に分離し、油相には触媒と
スベロニトリル及び少量の未反応1,6−ジクロルヘキサ
ンと反応中間体の1−シアノ−6−クロルヘキサン(以
下モノニトリルと称する)を含有し、水相には反応生成
物であるNaClおよび少量の未反応青化ソーダが含まれ
る。
According to this method, the reaction product liquid is separated into an oil phase and an aqueous phase by using a phase transfer catalyst, and in the oil phase, the catalyst and suberonitrile and a small amount of unreacted 1,6-dichlorohexane react with each other. It contains a body of 1-cyano-6-chlorohexane (hereinafter referred to as mononitrile), and the aqueous phase contains NaCl as a reaction product and a small amount of unreacted soda blue.

製品のスベロニトリルは、この油相液を蒸溜すること
により得られる。粗スベロニトリルの蒸留は、スベロニ
トリルの熱分解を避けるため10〜15Torrの減圧下、200
℃以下の温度で蒸留を行う。蒸留精製は一般に、まず低
沸物を除去した後、精スベロニトリルを取り出し、高沸
物を釜残として除去する方法が採られる。この蒸溜法で
は、加熱により該相間移動触媒であるテトラブチルアン
モニウムブロミド等が一部分解してトリブチルアミン等
となり、製品スベロニトリル中に混入して品質を損ねる
ことが問題となる。
The product suberonitrile is obtained by distilling this oil phase liquid. Distillation of crude suberonitrile is performed under reduced pressure of 10 to 15 Torr to avoid pyrolysis of suberonitrile.
Distillation is carried out at a temperature below ℃. Distillation purification generally employs a method of first removing low-boiling substances, then taking out purified suberonitrile, and removing high-boiling substances as a bottom residue. In this distillation method, there is a problem in that tetrabutylammonium bromide or the like which is the phase transfer catalyst is partially decomposed into tributylamine or the like by heating and is mixed in the product suberonitrile to impair the quality.

(問題点を解決するための手段) 発明者等はスベロニトリルを精製する際の以上の如き
問題点を解決すべく鋭意検討した結果、従来一括の蒸溜
精製法で行われる方法、即ち第一蒸溜塔で低沸物を除去
し、第二蒸溜塔で高沸点物を除去する方法に代えて、ま
ず第一蒸溜塔で高沸物を除去し、次に第二蒸溜塔で低沸
物を除去するようにすれば、第一蒸留塔での加熱により
テトラブチルアンモニウムブロミド等が分解して生成す
るトリブチルアミンが低沸物として第二蒸溜塔で除去さ
れ、高純度のスベロニトリルが得られることを見出し本
発明に至った。
(Means for Solving Problems) As a result of diligent studies to solve the above problems in purifying suberonitrile, the inventors have found that the conventional batch distillation method, that is, the first distillation column To remove the low boiling point in the second distillation column, instead of removing the high boiling point in the second distillation column, first remove the high boiling point in the first distillation column, then remove the low boiling point in the second distillation column By doing so, it is found that tributylamine produced by decomposition of tetrabutylammonium bromide or the like by heating in the first distillation column is removed as a low boiling substance in the second distillation column, and high-purity suberonitrile is obtained. Invented.

即ち本発明は、一般式が (R1〜R4は炭素数が3〜10のアルキル基を示し、これら
は互いに同一でも異なっていても良い)で表される相間
移動触媒の存在下、1,6−ジクロルヘキサンと青化ソー
ダ水溶液を反応して得られた粗スベロニトリル液を蒸留
してスベロニトリルを製造するに際し、蒸留塔を2基設
け、まず第一蒸留塔において該触媒を含む高沸物を除去
し、次に第二蒸溜塔において未反応1,6−ジクロルヘキ
サンを除去することを特徴とする高純度スベロニトリル
の製造法である。
That is, the present invention has the general formula (R 1 to R 4 represent an alkyl group having 3 to 10 carbon atoms, which may be the same or different from each other), in the presence of a phase transfer catalyst represented by 1,6-dichlorohexane and blue. When producing a suberonitrile by distilling the crude suberonitrile solution obtained by reacting the sodium hydroxide aqueous solution, two distillation columns are provided, first, the high boiling substance containing the catalyst is removed in the first distillation column, and then the second boiling column is removed. A method for producing high-purity suberonitrile characterized by removing unreacted 1,6-dichlorohexane in a double distillation column.

本発明で使用される相間移動触媒の例としては、テト
ラプロピルアンモニウムブロミド、テトラブチルアンモ
ニウムブロミドなどがある。特にテトラブチルアンモニ
ウムブロミドが好適である。
Examples of the phase transfer catalyst used in the present invention include tetrapropylammonium bromide and tetrabutylammonium bromide. Tetrabutylammonium bromide is particularly preferable.

青化ソーダ水溶液は、工業的に市販されている濃度30
〜35%の水溶液をそのまま使用することができ、また更
に必要に応じて濃度を下げて使用することもできる。
Aqueous soda blue solution has an industrial concentration of 30
A ~ 35% aqueous solution can be used as it is, or the concentration can be lowered if necessary.

本発明において、青化ソーダの使用量は1,6−ジクロ
ルヘキサンに対する青化ソーダのモル比を理論量の2.0
に対し2.1〜2.6程度に若干過剰とすることが好ましい。
このモル比が低過ぎる場合は収率が低く、1,6−ジクロ
ルヘキサンの損失が大きくなる。またこのモル比が高過
ぎる場合は排水中にCNイオンが残留し、排水処理の費用
が増加する。
In the present invention, the amount of soda cyanide used is a theoretical amount of 2.0% of the molar ratio of soda soda to 1,6-dichlorohexane.
On the other hand, it is preferable that the amount is slightly excessive to about 2.1 to 2.6.
If this molar ratio is too low, the yield will be low and the loss of 1,6-dichlorohexane will be large. Also, if this molar ratio is too high, CN ions will remain in the wastewater, increasing the cost of wastewater treatment.

テトラブチルアンモニウムブロミド等の使用量は1,6
−ジクロルヘキサン1モル当たり、1.5〜10g、好ましく
は1.5〜6.5gとする。テトラブチルアンモニウムブロミ
ド等の使用量が少なすぎると収率が低く、多い場合は次
の精製工程の負荷が大きくなる。
The amount of tetrabutylammonium bromide used is 1,6
-1.5-10 g, preferably 1.5-6.5 g, per mol of dichlorohexane. If the amount of tetrabutylammonium bromide or the like used is too small, the yield will be low, and if it is large, the load of the next purification step will be large.

反応温度は80〜140℃、好ましくは90〜110℃とする。
反応温度が低いと反応が進行せず、高すぎる場合は着色
や重合の原因となる。
The reaction temperature is 80 to 140 ° C, preferably 90 to 110 ° C.
If the reaction temperature is low, the reaction does not proceed, and if it is too high, it causes coloring or polymerization.

反応圧力は特に制限が無いが、通常は常圧で行う。反
応時間は通常0.5〜8hr、好ましくは2〜4hrである。
The reaction pressure is not particularly limited, but is usually atmospheric pressure. The reaction time is usually 0.5 to 8 hr, preferably 2 to 4 hr.

反応生成液は常温まで冷却することにより、上層の油
相液と下層の水相液に分離する。油相液には製品のスベ
ロニトリルと反応中間体のモノニトリルおよび触媒が含
まれ、これを2基の蒸留塔で蒸留することにより、高純
度のスベロニトリルが得られる。第一蒸留塔では触媒を
含む高沸物を除去し、第二蒸留塔では低沸物を除去す
る。
The reaction product liquid is cooled to room temperature to be separated into an upper oil phase liquid and a lower water phase liquid. The oil phase liquid contains suberonitrile as a product, mononitrile as a reaction intermediate and a catalyst, and high-purity suberonitrile is obtained by distilling this with two distillation columns. The first distillation column removes high boiling substances containing the catalyst, and the second distillation column removes low boiling substances.

第一蒸溜塔および第二蒸溜塔において、前述の如くス
ベロニトリルの熱分解を避けるため液温を200℃以下、
好ましくは180℃以下とする。またこのため圧力は1〜4
0Torr、好ましくは1〜15Torrとする。圧力が高すぎれ
ば、塔底の温度が高くなりスベロニトリルが分解し回収
率が低下する。圧力がこれより低くても良いが蒸溜塔が
大きくなるので経済的でない。各蒸溜塔は段塔でも充填
塔でも良いが、理論段数として第一蒸溜塔では1段で良
く、第二蒸溜塔では蒸留条件によるが5〜50段、好まし
くは15〜30段とする。還流比は第一蒸溜塔では0〜5、
好ましくは0〜1であり、第二蒸溜塔では5〜20、好ま
しくは5〜10である。
In the first distillation column and the second distillation column, the liquid temperature is 200 ° C. or less in order to avoid thermal decomposition of suberonitrile as described above,
It is preferably 180 ° C or lower. Therefore, the pressure is 1 to 4
The pressure is 0 Torr, preferably 1 to 15 Torr. If the pressure is too high, the temperature at the bottom of the column rises and the suberonitrile decomposes, lowering the recovery rate. The pressure may be lower than this, but it is not economical because the distillation column becomes large. Each distillation column may be a plate column or a packed column, but the theoretical plate number may be 1 plate in the first distillation column and 5 to 50 plates, preferably 15 to 30 plates, depending on the distillation conditions. The reflux ratio is 0-5 in the first distillation column,
It is preferably 0-1 and in the second distillation column 5-20, preferably 5-10.

(作用および効果) 本発明によれば、相間移動触媒であるテトラブチルア
ンモニウムブロミド等が分解することにより生成するト
リブチルアミン等が製品中に混入することなく高純度の
スベロニトリルが得られる。
(Action and Effect) According to the present invention, high-purity suberonitrile can be obtained without mixing the product with tributylamine or the like produced by decomposition of tetrabutylammonium bromide or the like which is a phase transfer catalyst.

本方法においては工業的に安価に得られる1,6−ジク
ロルヘキサンを原料としており、且つ反応工程および精
製工程が非常に簡略なプロセスで高純度のスベロニトリ
ルが得られるので、本発明の工業的意義が大きい。
In this method, 1,6-dichlorohexane, which is industrially inexpensively obtained, is used as a raw material, and high-purity suberonitrile can be obtained by a very simple reaction step and purification step. Significant.

(実施例) 次に実施例を用い本発明を具体的に説明する。比較例
は、従来一般の蒸留精製法で行われる方法、即ちまず低
沸物を除去し、次に高沸物を除去する方法による場合と
し、本発明の方法による実施例と対比した。
(Example) Next, the present invention will be specifically described with reference to examples. The comparative example is based on a conventional distillation purification method, that is, a method of removing low-boiling substances first, and then a method of removing high-boiling substances, which is compared with the examples according to the method of the present invention.

実施例1 相間移動触媒としてテトラブチルアンモニウムブロミ
ドを用い、1,6−ジクロルヘキサンに対する青化ソーダ
のモル比を2.1、触媒量を1,6−ジクロルヘキサン1モル
当たり3.3gとし、常圧下反応温度110℃で4時間反応さ
せ、冷却により分離した粗スベロニトリル液1000g(ス
ベロニトリル濃度84%)を、圧力10Torr温度180℃で単
蒸留により高沸物を除去し、留出液950g(スベロニトリ
ル濃度87%)を得た。この留出液を上部に30段相当の充
填物を有する蒸留釜を用い頂部圧力5Torr(釜内15Tor
r)還流比5.0で回分蒸留を行い、低沸留出液130gを得
た。この蒸留時の温度は、頂部53〜160℃、釜内167〜19
0℃であった。この結果、純度99.0%以上の精スベロニ
トリルが820g得られ、精スベロニトリル中にトリブチル
アミンおよびブチルブロミドが検出されなかった。
Example 1 Tetrabutylammonium bromide was used as a phase transfer catalyst, the molar ratio of sodium cyanide to 1,6-dichlorohexane was 2.1, and the catalyst amount was 3.3 g per mol of 1,6-dichlorohexane under normal pressure. After reacting for 4 hours at a reaction temperature of 110 ° C., 1000 g of crude suberonitrile liquid separated by cooling (suberonitrile concentration 84%) was subjected to simple distillation at a pressure of 10 Torr temperature of 180 ° C. to remove high boiling substances, and distillate 950 g (suberonitrile concentration of 87%). %) Was obtained. This distillate was placed in a distillation pot having a packing equivalent to 30 stages at the top, and the top pressure was 5 Torr (15 Tor in the pot).
r) Batch distillation was carried out at a reflux ratio of 5.0 to obtain 130 g of a low boiling distillate. The temperature at the time of this distillation is 53-160 ℃ at the top, 167-19 in the pot
It was 0 ° C. As a result, 820 g of purified suberonitrile having a purity of 99.0% or more was obtained, and tributylamine and butyl bromide were not detected in the purified suberonitrile.

比較例1 実施例1と同様にして得られた粗スベロニトリル液10
00g(スベロニトリル濃度83.0%)を、実施例1と同じ3
0段相当の蒸留釜を用い回分蒸留し、低沸留出液110gを
得た。この時の還流比は5.0とし、圧力は頂部2Torr、釜
内10Torrであり、温度は頂部42〜140℃、釜内156〜173
℃であった。この蒸留により得られた釜残液880g(スベ
ロニトリル濃度91.5%)を、圧力10Torr、温度180℃で
単蒸留することにより、精スベロニトリル810gが得られ
たが、その純度は98.4%であり、トリブチルアミン0.97
%、ブチルブロミド0.24%が検出された。
Comparative Example 1 Crude suberonitrile liquid 10 obtained in the same manner as in Example 1
00g (suberonitrile concentration 83.0%) is the same as in Example 1 3
Batch distillation was performed using a distillation pot corresponding to 0 stage to obtain 110 g of a low boiling distillate. At this time, the reflux ratio was 5.0, the pressure was 2 Torr at the top and 10 Torr in the pot, and the temperature was 42 to 140 ° C at the top and 156 to 173 in the pot.
° C. 880 g of pot residual liquid obtained by this distillation (suberonitrile concentration 91.5%) was subjected to simple distillation at a pressure of 10 Torr and a temperature of 180 ° C to obtain 810 g of purified suberonitrile, the purity of which was 98.4% and tributylamine. 0.97
%, Butyl bromide 0.24% were detected.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式が (R1〜R4は炭素数が3〜10のアルキル基を示し、これら
は互に同じでも異なっていても良い)で表される相間移
動触媒の存在下、1,6−ジクロルヘキサンと青化ソーダ
水溶液を反応させて得られた粗スベロニトリル液を蒸留
してスベロニトリルを製造するに際し、蒸留塔を2基設
け、まず第一蒸溜塔において該触媒を含む高沸物を除去
し、次に第二蒸溜塔において未反応1,6−ジクロルヘキ
サンを含む低沸物を除去することを特徴とする高純度ス
ベロニトリルの製造法
1. The general formula is (Wherein R 1 to R 4 represent an alkyl group having 3 to 10 carbon atoms, and these may be the same or different from each other), in the presence of a phase transfer catalyst, 1,6-dichlorohexane and When producing a suberonitrile by distilling a crude suberonitrile solution obtained by reacting an aqueous solution of blue soda, two distillation columns are provided, and first, a high boiling substance containing the catalyst is removed in the first distillation column, and then, Method for producing high-purity suberonitrile characterized by removing low-boiling substances containing unreacted 1,6-dichlorohexane in a second distillation column
JP62028193A 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile Expired - Lifetime JPH0832671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028193A JPH0832671B2 (en) 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028193A JPH0832671B2 (en) 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile

Publications (2)

Publication Number Publication Date
JPS63196550A JPS63196550A (en) 1988-08-15
JPH0832671B2 true JPH0832671B2 (en) 1996-03-29

Family

ID=12241843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028193A Expired - Lifetime JPH0832671B2 (en) 1987-02-12 1987-02-12 Method for producing high-purity suberonitrile

Country Status (1)

Country Link
JP (1) JPH0832671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707509A1 (en) * 1997-02-25 1998-08-27 Basf Ag Process for the removal of halides from halide-containing nitrile mixtures

Also Published As

Publication number Publication date
JPS63196550A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
US5527966A (en) Preparation of triphenylphosphine
JPH0832671B2 (en) Method for producing high-purity suberonitrile
JP2001002638A (en) Production of high-purity pyrrolidone compound
JPH08239348A (en) Production of aryl carbonate
JP4131575B2 (en) Production method of benzophenone imine
JP4102465B2 (en) A method for removing water and ammonia from a benzophenone imine reactor effluent.
JPH0710808A (en) Preparation of methyl ester of chlorine-free cyclo- propanecarboxylic acid
JP3570760B2 (en) Method for producing 2-t-butylhydroquinone
JPH07116096B2 (en) Method for producing high-purity 0-toluic acid
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
JP2676910B2 (en) Method for producing high-purity 0-toluic acid
JP3865577B2 (en) Method for producing trifluoromethanesulfonic anhydride
EP0484742B1 (en) 2-Chloropropionaldehyde trimer and production process thereof
JP3043571B2 (en) Purification method of diaminodiphenyl ether
JPS63303937A (en) Manufacture of propynol
EP0183160A1 (en) Preparation process of indole
JPH0437066B2 (en)
EP0569892B1 (en) Oxidation process
JPH06321933A (en) Production of alkylene carbonate
JP3177529B2 (en) Selective decomposition method of triacetone alcohol
JP3751657B2 (en) Method for separating acetic anhydride and acetic acid
JPH072709B2 (en) Method for producing chlorosulfonyl isocyanate
JP2001002639A (en) Production of high-purity pyrrolidone compound
JPH0832669B2 (en) Suberonitrile manufacturing method
JPH10139745A (en) Purification of dimethylformamide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term